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Preface
SECOND EDITION

Common Lisp has succeeded. Since publication of the first edition of this

book in 1984, many implementors have used it as a de facto standard for Lisp
implementation. As a result, it is now much easier to port large Lisp programs

from one implementation to another. Common Lisp has proved to be a useful

and stable platform for rapid prototyping and systems delivery in artificial

intelligence and other areas. With experience gained in using Common Lisp

for so many applications, implementors found no shortage of opportunities for
innovation. One of the important characteristics of Lisp is its good support for

experimental extension of the language; while Common Lisp has been stable,

it has not stagnated.

The 1984 definition of Common Lisp was imperfect and incomplete. In some
cases this was inadvertent: some odd boundary situation was overlooked and

its consequences not specified, or different passages were in conflict, or some

property of Lisp was so well-known and traditionally relied upon that I forgot

to write it down. In other cases the informal committee that was defining
Common Lisp could not settle on a solution, and therefore agreed to leave

some important aspect of the language unspecified rather than choose a less

than satisfactory definition. An example is error handling; 1984 Common

Lisp had plenty of ways to signal errors but no way for a program to trap or

process them.

Over the next year I collected reports of errors in the book and gaps in

the language. In December 1985, a group of implementors and users met in

Boston to discuss the state of Common Lisp. I prepared two lists for this

meeting, one of errata and clarifications that I thought would be relatively
uncontroversial (boy, was I wrong!) and one of more substantial changes I

thought should be considered and perhaps voted upon. Others also brought

proposals to discuss. It became clear to everyone that there was now enough

interest in Common Lisp, and dependence on its stability, that a more formal

mechanism was needed for managing changes to the language.

xiii



xiv PREFACE (SECOND EDITION)

This realization led to the formation of X3J13, a subcommittee of ANSI

committee X3, to produce a formal American National Standard for Common

Lisp. That process is nearing completion. X3J13 has completed the bulk of

its technical work in rectifying the 1984 definition and codifying extensions

to that definition that have received widespread use and approval. A draft
standard is now being prepared; it will probably be available in 1990. There

will then be a period (required by ANSI) for public review. X3J13 must then

consider the comments it receives and respond appropriately. If the comments

result in substantial changes to the draft standard, multiple public review
periods may be required before the draft can be approved as an American

National Standard.

Fortunately, X3J13 has done an outstanding job of documenting its work.

For every change that came to a formal vote, a document was prepared that

described the problem to be solved and one or more solutions. For each

solution there is a detailed proposal for changing the language; a rationale; test
cases that distinguish the proposal from the status quo or from other proposals

for solving that problem; discussions of current practice, cost to implementors,

cost to users, cost of not adopting the proposal, benefits of adoption, aesthetic

criteria; and any relevant informal discussion that may have preceded creation
of the formal proposal. All of these proposal documents were made available

on-line as well as in paper form. By my count, by June 1989 some 186 such

proposals were approved as language changes. (This count does not include

many proposals that came before the committee but were rejected.)

The purpose of this second edition is to bridge the gap between the first
edition and the forthcoming ANSI standard for Common Lisp. Because of the

requirement for formal public review, it will be some time yet before the ANSI

standard is final. This book in no way resembles the forthcoming standard

(which is being written independently by Kathy Chapman of Digital Equip-

ment Corporation with assistance from the X3J13 Drafting Subcommittee).

I have incorporated into this second edition a great deal of material based
on the votes of X3J13, in order to give the reader a picture of where the

language is heading. My purpose here is not simply to quote the X3J13

documents verbatim but to paraphrase them and relate them to the structure

of the first edition. A single vote by X3J13 may be discussed in many parts
of this book, and a single passage of this book may be affected by many of

the votes.

I wish to be very clear: this book is not an official document of X3J13,

though it is based on publicly available material produced by X3J13. In

no way does this book constitute a definitive description of the forthcoming

ANSI standard. The committee’s decisions have been remarkably stable (it
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has rescinded earlier decisions only two or three times), and I do not expect

radical changes in direction. Nevertheless, it is quite probable that the draft

standard will be substantively revised in response to editorial review or public

comment. I have therefore reported here on the actions of X3J13 not to

inscribe them in stone, but to make clear how the language of the first edition
is likely to change. I have tried to be careful in my wording to avoid saying

“the language has been changed” and to state simply that “X3J13 voted at

such-and-so time to make the following change.”

Until the day when an official ANSI Common Lisp standard emerges, it
is likely that the 1984 definition of Common Lisp will continue to be used

widely. This book has been designed to be used as a reference both to the

1984 definition and to the language as modified by the actions of X3J13.

It contains the entire text of the first edition of Common Lisp: The Lan-

guage, with corrections and minor editorial changes; however, more than half
of the material in this edition is new. All new material is identified by solid

lines in the left margin. Dotted lines in the left margin indicate material from

the first edition that applies to the 1984 definition but that has been modified

by a vote of X3J13. Modifications to these outmoded passages are explained
by preceding or following text (which will have a solid line in the margin). In

summary:

. To use the 1984 language definition, read all material that does not have a

solid line in the margin.

. To use the updated language definition, read everything, but be wary of

material with a dotted line in the margin.

At the end of the book is an index of the X3J13 votes, ordered by the com-
mittee’s internal code names (included to ease cross-reference to the X3J13

documents, which may be useful during the public review periods). Refer-

ences to this list of votes appear as numbers in angle brackets; thus “〈14〉”
refers to the vote on issue number 14, whereas “[14]” refers to reference 14 in

the bibliography.
I have kept changes to the wording of the first-edition material to a min-

imum. Obvious spelling and typographical errors have been corrected, and

the entire text has been edited to a uniform style of spelling and punctuation.

(Note in particular that the first edition used the spelling “signalling” but
this edition, in deference to the style decision of the X3J13 Drafting Subcom-

mittee, uses “signaling.”) A few minor changes were made to accommodate

typographical or layout constraints. (For example, the word “also” has been

deleted from the first sentence of chapter 1, partly to make that paragraph

look better and partly to allow a better page break at the bottom of page 2.)
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In a very few cases the first edition contained substantive errors that I could

not in good conscience correct silently; these have been flagged by paragraphs

beginning with the phrase Notice of correction.

The chapter and section numbering of this edition matches that of the

first edition, with the exception that a new section 7.9 has been interpolated.
Four new chapters (26–29) describe substantial changes approved by X3J13:

an extended loop macro, a pretty printer interface, the Common Lisp Object

System, and the Common Lisp Condition System.

X3J13, in the course of its work, formed a subcommittee to study whether
additional means of iteration should be standardized for use in Common Lisp,

for a great deal of existing practice in this area was not included in the first

edition because of lack of agreement in 1984. The X3J13 Iteration Subcom-

mittee produced reports on three possible facilities. One (loop) was approved

for inclusion in the forthcoming draft standard and is described in chapter 26.
X3J13 expressed interest in the other two approaches (series and genera-

tors), but the consensus as of January 1989 was that these other approaches

were not yet sufficiently mature or in sufficiently widespread use to warrant

inclusion in the draft Common Lisp standard at that time. However, the sub-
committee was directed to continue work on these approaches and X3J13 is

open to the possibility of standardizing them at a later date. Please note that

I do not wish the prejudge the question of whether X3J13 will ever choose

to make the other two proposals the subject of standardization. Neverthe-

less, I have chosen to include them in the second edition, in cooperation with
Dr. Richard C. Waters, as appendices A and B, in order to make these ideas

available to the Lisp community. In my judgement these proposals address

an area of language design not otherwise covered by Common Lisp and are

likely to have practical value even if they are never adopted as part of a formal
standard.

Some new material in this book has nothing to do with the work of X3J13.

In many places I have added explanations, clarifications, new examples, warn-

ings, and tips on writing portable code. Appendix C contains a piece of code

that may help in understanding the backquote syntax.
This second edition, unlike the first edition, also includes a few diagrams

to pep up the text. However, there are absolutely no new jokes, and very few

outright lies.
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Introduction

Common Lisp is a new dialect of Lisp, a successor to MacLisp [33, 37], in-
fluenced strongly by Zetalisp [55, 34] and to some extent by Scheme [46] and

Interlisp [50].

1.1. Purpose

Common Lisp is intended to meet these goals:

Commonality

Common Lisp originated in an attempt to focus the work of several imple-

mentation groups, each of which was constructing successor implementations

of MacLisp for different computers. These implementations had begun to

diverge because of the differences in the implementation environments: mi-

crocoded personal computers (Zetalisp, Spice Lisp), commercial timeshared
computers (NIL—the “New Implementation of Lisp”), and supercomputers

(S-1 Lisp). While the differences among the several implementation environ-

ments of necessity will continue to force certain incompatibilities among the

implementations, Common Lisp serves as a common dialect to which each
implementation makes any necessary extensions.

Portability

Common Lisp intentionally excludes features that cannot be implemented

easily on a broad class of machines. On the one hand, features that are
difficult or expensive to implement on hardware without special microcode

are avoided or provided in a more abstract and efficiently implementable

form. (Examples of this are the invisible forwarding pointers and locatives

of Zetalisp. Some of the problems that they solve are addressed in differ-

ent ways in Common Lisp.) On the other hand, features that are useful

1



2 COMMON LISP

only on certain “ordinary” or “commercial” processors are avoided or made

optional. (An example of this is the type declaration facility, which is use-

ful in some implementations and completely ignored in others. Type dec-

larations are completely optional and for correct programs affect only effi-

ciency, not semantics.) Common Lisp is designed to make it easy to write
programs that depend as little as possible on machine-specific characteris-

tics, such as word length, while allowing some variety of implementation

techniques.

Consistency

Most Lisp implementations are internally inconsistent in that by default the

interpreter and compiler may assign different semantics to correct programs.

This semantic difference stems primarily from the fact that the interpreter

assumes all variables to be dynamically scoped, whereas the compiler assumes

all variables to be local unless explicitly directed otherwise. This difference
has been the usual practice in Lisp for the sake of convenience and efficiency

but can lead to very subtle bugs. The definition of Common Lisp avoids

such anomalies by explicitly requiring the interpreter and compiler to impose

identical semantics on correct programs so far as possible.

Expressiveness

Common Lisp culls what experience has shown to be the most useful and un-

derstandable constructs from not only MacLisp but also Interlisp, other Lisp

dialects, and other programming languages. Constructs judged to be awk-
ward or less useful have been excluded. (An example is the store construct

of MacLisp.)

Compatibility

Unless there is a good reason to the contrary, Common Lisp strives to be

compatible with Lisp Machine Lisp, MacLisp, and Interlisp, roughly in that
order.

Efficiency

Common Lisp has a number of features designed to facilitate the production of

high-quality compiled code in those implementations whose developers care to
invest effort in an optimizing compiler. One implementation of Common Lisp,

namely S-1 Lisp, already has a compiler that produces code for numerical

computations that is competitive in execution speed to that produced by

a Fortran compiler [11]. The S-1 Lisp compiler extends the work done in

MacLisp to produce extremely efficient numerical code [19].
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Power

Common Lisp is a descendant of MacLisp, which has traditionally placed
emphasis on providing system-building tools. Such tools may in turn be used

to build the user-level packages such as Interlisp provides; these packages are

not, however, part of the Common Lisp core specification. It is expected such

packages will be built on top of the Common Lisp core.

Stability

It is intended that Common Lisp will change only slowly and with due delib-
eration. The various dialects that are supersets of Common Lisp may serve

as laboratories within which to test language extensions, but such extensions

will be added to Common Lisp only after careful examination and experimen-

tation.

The goals of Common Lisp are thus very close to those of Standard Lisp
[31] and Portable Standard Lisp [51]. Common Lisp differs from Standard

Lisp primarily in incorporating more features, including a richer and more

complicated set of data types and more complex control structures.

This book is intended to be a language specification rather than an

implementation specification (although implementation notes are scattered
throughout the text). It defines a set of standard language concepts and con-

structs that may be used for communication of data structures and algorithms

in the Common Lisp dialect. This set of concepts and constructs is sometimes

referred to as the “core Common Lisp language” because it contains conceptu-

ally necessary or important features. It is not necessarily implementationally
minimal. While many features could be defined in terms of others by writing

Lisp code, and indeed may be implemented that way, it was felt that these

features should be conceptually primitive so that there might be agreement

among all users as to their usage. (For example, bignums and rational numbers
could be implemented as Lisp code given operations on fixnums. However, it

is important to the conceptual integrity of the language that they be regarded

by the user as primitive, and they are useful enough to warrant a standard

definition.)

For the most part, this book defines a programming language, not a pro-
gramming environment. A few interfaces are defined for invoking such stan-

dard programming tools as a compiler, an editor, a program trace facility,

and a debugger, but very little is said about their nature or operation. It is

expected that one or more extensive programming environments will be built

using Common Lisp as a foundation, and will be documented separately.
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There are now many implementations of Common Lisp, some programmed

by research groups in universities and some by companies that sell them com-

mercially, and a number of useful programming environments have indeed

grown up around these implementations. What is more, all the goals stated

above have been achieved, most notably that of portability. Moving large
bodies of Lisp code from one computer to another is now routine.

1.2. Notational Conventions

A number of special notational conventions are used throughout this book for

the sake of conciseness.

1.2.1. Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit

indication to the contrary. (Decimal notation is normally taken for granted,

of course. Unfortunately, for certain other dialects of Lisp, MacLisp in partic-

ular, the default notation for numbers is octal (base 8) rather than decimal,
and so the use of decimal notation for describing Common Lisp is, taken in

its historical context, a bit unusual!)

1.2.2. Nil, False, and the Empty List

In Common Lisp, as in most Lisp dialects, the symbol nil is used to represent

both the empty list and the “false” value for Boolean tests. An empty list may,

of course, also be written (); this normally denotes the same object as nil.

(It is possible, by extremely perverse manipulation of the package system, to
cause the sequence of letters nil to be recognized not as the symbol that

represents the empty list but as another symbol with the same name. This

obscure possibility will be ignored in this book.) These two notations may

be used interchangeably as far as the Lisp system is concerned. However,
as a matter of style, this book uses the notation () when it is desirable to

emphasize the use of an empty list, and uses the notation nil when it is

desirable to emphasize the use of the Boolean “false”. The notation ’nil

(note the explicit quotation mark) is used to emphasize the use of a symbol.

For example:

(defun three () 3) ;Emphasize empty parameter list

(append ’() ’()) ⇒ () ;Emphasize use of empty lists
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(not nil) ⇒ t ;Emphasize use as Boolean “false”

(get ’nil ’color) ;Emphasize use as a symbol

Any data object other than nil is construed to be Boolean “not false”, that

is, “true”. The symbol t is conventionally used to mean “true” when no other

value is more appropriate. When a function is said to “return false” or to “be
false” in some circumstance, this means that it returns nil. However, when

a function is said to “return true” or to “be true” in some circumstance, this

means that it returns some value other than nil, but not necessarily t.

1.2.3. Evaluation, Expansion, and Equivalence

Execution of code in Lisp is called evaluation because executing a piece of
code normally results in a data object called the value produced by the code.

The symbol ⇒ is used in examples to indicate evaluation. For example,

(+ 4 5) ⇒ 9

means “the result of evaluating the code (+ 4 5) is (or would be, or would
have been) 9.”

The symbol → is used in examples to indicate macro expansion. For exam-

ple,

(push x v) → (setf v (cons x v))

means “the result of expanding the macro-call form (push x v) is (setf v

(cons x v)).” This implies that the two pieces of code do the same thing;

the second piece of code is the definition of what the first does.

The symbol ≡ is used in examples to indicate code equivalence. For exam-
ple,

(gcd x (gcd y z)) ≡ (gcd (gcd x y) z)

means “the value and effects of evaluating the form (gcd x (gcd y z)) are

always the same as the value and effects of (gcd (gcd x y) z) for any values
of the variables x, y, and z.” This implies that the two pieces of code do the

same thing; however, neither directly defines the other in the way macro

expansion does.

1.2.4. Errors

When this book specifies that it “is an error” for some situation to occur, this

means that:
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. No valid Common Lisp program should cause this situation to occur.

. If this situation occurs, the effects and results are completely undefined as
far as adherence to the Common Lisp specification is concerned.

. No Common Lisp implementation is required to detect such an error. Of

course, implementors are encouraged to provide for detection of such errors

wherever reasonable.

This is not to say that some particular implementation might not define the

effects and results for such a situation; the point is that no program conforming

to the Common Lisp specification may correctly depend on such effects or

results.

On the other hand, if it is specified in this book that in some situation “an

error is signaled,” this means that:

. If this situation occurs, an error will be signaled (see error and cerror).

. Valid Common Lisp programs may rely on the fact that an error will be

signaled.

. Every Common Lisp implementation is required to detect such an error.

In places where it is stated that so-and-so “must” or “must not” or “may
not” be the case, then it “is an error” if the stated requirement is not met.

For example, if an argument “must be a symbol,” then it “is an error” if the

argument is not a symbol. In all cases where an error is to be signaled, the

word “signaled” is always used explicitly in this book.

X3J13 has adopted a more elaborate terminology for errors, and has made

some effort to specify the type of error to be signaled in situations where
signaling is appropriate. This effort was not complete as of September 1989,

and I have made little attempt to incorporate the new error terminology

or error type specifications in this book. However, the new terminology is

described and used in the specification of the Common Lisp Object System

appearing in chapter 28; this gives the flavor of how erroneous situations will
be described, and appropriate actions prescribed, in the forthcoming ANSI

Common Lisp standard.

1.2.5. Descriptions of Functions and Other Entities

Functions, variables, named constants, special forms, and macros are de-

scribed using a distinctive typographical format. Table 1-1 illustrates the

manner in which Common Lisp functions are documented. The first line
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Table 1-1: Sample Function Description

[Function]sample-function arg1 arg2 &optional arg3 arg4

The function sample-function adds together arg1 and arg2, and then mul-

tiplies the result by arg3. If arg3 is not provided or is nil, the multiplication

isn’t done. sample-function then returns a list whose first element is this

result and whose second element is arg4 (which defaults to the symbol foo).
For example:

(sample-function 3 4) ⇒ (7 foo)

(sample-function 1 2 2 ’bar) ⇒ (6 bar)

In general, (sample-function x y) ≡ (list (+ x y) ’foo).

Table 1-2: Sample Variable Description

[Variable]*sample-variable*

The variable *sample-variable* specifies how many times the special form
sample-special-form should iterate. The value should always be a non-

negative integer or nil (which means iterate indefinitely many times). The

initial value is 0 (meaning no iterations).

Table 1-3: Sample Constant Description

[Constant ]sample-constant

The named constant sample-constant has as its value the height of the

terminal screen in furlongs times the base-2 logarithm of the implementation’s

total disk capacity in bytes, as a floating-point number.

specifies the name of the function, the manner in which it accepts arguments,
and the fact that it is a function. If the function takes many arguments, then

the names of the arguments may spill across two or three lines. The para-

graphs following this standard header explain the definition and uses of the

function and often present examples or related functions.

Sometimes two or more related functions are explained in a single combined

description. In this situation the headers for all the functions appear together,
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Table 1-4: Sample Special Form Description

[Special form]sample-special-form [name] ( {var}∗ ) { form}+

This evaluates each form in sequence as an implicit progn, and does this as

many times as specified by the global variable *sample-variable*. Each

variable var is bound and initialized to 43 before the first iteration, and un-

bound after the last iteration. The name name, if supplied, may be used
in a return-from form to exit from the loop prematurely. If the loop ends

normally, sample-special-form returns nil. For example:

(setq *sample-variable* 3)

(sample-special-form () form1 form2)

This evaluates form1, form2, form1, form2, form1, form2 in that order.

Table 1-5: Sample Macro Description

[Macro]sample-macro var [[ declaration* | doc-string ]] {tag | statement}∗

This evaluates the statements as a prog body, with the variable var bound to

43.

(sample-macro x (return (+ x x))) ⇒ 86

(sample-macro var . body) → (prog ((var 43)) . body)

followed by the combined description.

In general, actual code (including actual names of functions) appears in this

typeface: (cons a b). Names that stand for pieces of code (metavariables)

are written in italics. In a function description, the names of the parameters

appear in italics for expository purposes. The word &optional in the list
of parameters indicates that all arguments past that point are optional; the

default values for the parameters are described in the text. Parameter lists

may also contain &rest, indicating that an indefinite number of arguments

may appear, or &key, indicating that keyword arguments are accepted. (The

&optional/&rest/&key syntax is actually used in Common Lisp function
definitions for these purposes.)

Table 1-2 illustrates the manner in which a global variable is documented.

The first line specifies the name of the variable and the fact that it is a variable.
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Purely as a matter of convention, all global variables used by Common Lisp

have names beginning and ending with an asterisk.

Table 1-3 illustrates the manner in which a named constant is documented.

The first line specifies the name of the constant and the fact that it is a

constant. (A constant is just like a global variable, except that it is an error
ever to alter its value or to bind it to a new value.)

Tables 1-4 and 1-5 illustrate the documentation of special forms and macros,

which are closely related in purpose. These are very different from functions.

Functions are called according to a single, specific, consistent syntax; the
&optional/&rest/&key syntax specifies how the function uses its arguments

internally but does not affect the syntax of a call. In contrast, each special

form or macro can have its own idiosyncratic syntax. It is by special forms

and macros that the syntax of Common Lisp is defined and extended.

In the description of a special form or macro, an italicized word names
a corresponding part of the form that invokes the special form or macro.

Parentheses stand for themselves and should be written as such when invoking

the special form or macro. Brackets, braces, stars, plus signs, and vertical bars

are metasyntactic marks. Brackets, [ and ], indicate that what they enclose
is optional (may appear zero times or one time in that place); the square

brackets should not be written in code. Braces, { and }, simply parenthesize

what they enclose but may be followed by a star, ∗, or a plus sign, +; a

star indicates that what the braces enclose may appear any number of times

(including zero, that is, not at all), whereas a plus sign indicates that what
the braces enclose may appear any non-zero number of times (that is, must

appear at least once). Within braces or brackets, a vertical bar, |, separates

mutually exclusive choices. In summary, the notation {x}∗ means zero or

more occurrences of x, the notation {x}+ means one or more occurrences of
x, and the notation [x ] means zero or one occurrence of x. These notations

are also used for syntactic descriptions expressed as BNF-like productions, as

in table 22-2.

Double brackets, [[ and ]], indicate that any number of the alternatives

enclosed may be used, and those used may occur in any order, but each
alternative may be used at most once unless followed by a star. For example,

p [[ x | {y}∗ | z ]] q

means that at most one x, any number of y’s, and at most one z may appear

between the mandatory occurrences of p and q, and those that appear may

be in any order.

A downward arrow, ↓, indicates a form of syntactic indirection that helps

to make [[ ]] notation more readable. If X is some non-terminal symbol
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occurring on the left-hand side of some BNF production, then the right-hand

side of that production is to be textually substituted for any occurrence of

↓X . Thus the two fragments

p [[ ↓xyz-mixture ]] q

xyz-mixture ::= x | {y}∗ | z

are together equivalent to the previous example.

In the last example in table 1-5, notice the use of dot notation. The dot ap-

pearing in the expression (sample-macro var . body) means that the name

body stands for a list of forms, not just a single form, at the end of a list. This

notation is often used in examples.

In the heading line in table 1-5, notice the use of [[ ]] notation to indicate

that any number of declarations may appear but at most one documentation
string (which may appear before, after, or somewhere in the middle of any

declarations).

1.2.6. The Lisp Reader

The term “Lisp reader” refers not to you, the reader of this book, nor to some

person reading Lisp code, but specifically to a Lisp procedure, namely the

function read, which reads characters from an input stream and interprets
them by parsing as representations of Lisp objects.

1.2.7. Overview of Syntax

Certain characters are used in special ways in the syntax of Common Lisp.

The complete syntax is explained in detail in chapter 22, but a quick summary

here may be useful:

( A left parenthesis begins a list of items. The list may contain any number

of items, including zero. Lists may be nested. For example, (cons (car

x) (cdr y)) is a list of three things, of which the last two are themselves

lists.

) A right parenthesis ends a list of items.

’ An acute accent (also called single quote or apostrophe) followed by

an expression form is an abbreviation for (quote form). Thus ’foo

means (quote foo) and ’(cons ’a ’b) means (quote (cons (quote

a) (quote b))).
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; Semicolon is the comment character. It and all characters up to the end

of the line are discarded.

" Double quotes surround character strings:

"This is a thirty-nine-character string."

\ Backslash is an escape character. It causes the next character to be treated

as a letter rather than for its usual syntactic purpose. For example, A\(B

denotes a symbol whose name consists of the three characters A, (, and
B. Similarly, "\"" denotes a character string containing one character, a

double quote, because the first and third double quotes serve to delimit the

string, and the second double quote serves as the contents of the string.

The backslash causes the second double quote to be taken literally and pre-

vents it from being interpreted as the terminating delimiter of the string.

| Vertical bars are used in pairs to surround the name (or part of the name)
of a symbol that has many special characters in it. It is roughly equivalent

to putting a backslash in front of every character so surrounded. For

example, |A(B)|, A|(|B|)|, and A\(B\) all mean the symbol whose name

consists of the four characters A, (, B, and ).

#-- The number sign signals the beginning of a complicated syntactic struc-

ture. The next character designates the precise syntax to follow. For
example, #--o105 means 1058 (105 in octal notation); #--x105 means 10516

(105 in hexadecimal notation); #--b1011 means 10112 (1011 in binary no-

tation); #--\L denotes a character object for the character L; and #--(a b c)

denotes a vector of three elements a, b, and c. A particularly important
case is that #--’fn means (function fn), in a manner analogous to ’form

meaning (quote form).

‘ Grave accent (“backquote”) signals that the next expression is a template

that may contain commas. The backquote syntax represents a program

that will construct a data structure according to the template.

, Commas are used within the backquote syntax.

: Colon is used to indicate which package a symbol belongs to. For example,

network:reset denotes the symbol named reset in the package named
network. A leading colon indicates a keyword, a symbol that always eval-

uates to itself. The colon character is not actually part of the print name

of the symbol. This is all explained in chapter 11; until you read that,

just keep in mind that a symbol notated with a leading colon is in effect a

constant that evaluates to itself.
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Notice of correction. In the first edition, the characters “,” and “:” at the

left margin above were inadvertently omitted.

Brackets, braces, question mark, and exclamation point (that is, [, ], {,

}, ?, and !) are not used for any purpose in standard Common Lisp syntax.

These characters are explicitly reserved to the user, primarily for use as macro
characters for user-defined lexical syntax extensions (see section 22.1.3).

All code in this book is written using lowercase letters. Common Lisp is
........................................................................................................................................................................................................

generally insensitive to the case in which code is written. Internally, names of

symbols are ordinarily converted to and stored in uppercase form. There are
ways to force case conversion on output if desired; see *print-case*. In this

book, wherever an interactive exchange between a user and the Lisp system

is shown, the input is exhibited with lowercase letters and the output with

uppercase letters.

X3J13 voted in June 1989 〈150〉 to introduce readtable-case. Certain
settings allow the names of symbols to be case-sensitive. The default behav-

ior, however, is as described in the previous paragraph. In any event, only

uppercase letters appear in the internal print names of symbols naming the

standard Common Lisp facilities described in this book.



2

Data Types

Common Lisp provides a variety of types of data objects. It is important to

note that in Lisp it is data objects that are typed, not variables. Any variable
can have any Lisp object as its value. (It is possible to make an explicit

declaration that a variable will in fact take on one of only a limited set of

values. However, such a declaration may always be omitted, and the program

will still run correctly. Such a declaration merely constitutes advice from the

user that may be useful in gaining efficiency. See declare.)

In Common Lisp, a data type is a (possibly infinite) set of Lisp objects.

Many Lisp objects belong to more than one such set, and so it doesn’t always

make sense to ask what is the type of an object; instead, one usually asks only

whether an object belongs to a given type. The predicate typep may be used
to ask whether an object belongs to a given type, and the function type-of

returns a type to which a given object belongs.

The data types defined in Common Lisp are arranged into a hierarchy

(actually a partial order) defined by the subset relationship. Certain sets
of objects, such as the set of numbers or the set of strings, are interesting

enough to deserve labels. Symbols are used for most such labels (here, and

throughout this book, the word “symbol” refers to atomic symbols, one kind

of Lisp object, elsewhere known as literal atoms). See chapter 4 for a complete

description of type specifiers.

The set of all objects is specified by the symbol t. The empty data type,

which contains no objects, is denoted by nil.

A type called common encompasses all the data objects required by the
........................................................................................................................................................................................................

Common Lisp language. A Common Lisp implementation is free to provide
other data types that are not subtypes of common.

X3J13 voted in March 1989 〈17〉 to remove the type common (and the pred-

icate commonp) from the language, on the grounds that it has not proved to

be useful in practice and that it could be difficult to redefine in the face of

13
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other changes to the Common Lisp type system (such as the introduction of

CLOS classes).

The following categories of Common Lisp objects are of particular interest:

numbers, characters, symbols, lists, arrays, structures, and functions. There

are others as well. Some of these categories have many subdivisions. There are

also standard types defined to be the union of two or more of these categories.

The categories listed above, while they are data types, are neither more nor
less “real” than other data types; they simply constitute a particularly useful

slice across the type hierarchy for expository purposes.

Here are brief descriptions of various Common Lisp data types. The remain-

ing sections of this chapter go into more detail and also describe notations

for objects of each type. Descriptions of Lisp functions that operate on data

objects of each type appear in later chapters.

. Numbers are provided in various forms and representations. Common Lisp

provides a true integer data type: any integer, positive or negative, has in
principle a representation as a Common Lisp data object, subject only to

total memory limitations (rather than machine word width). A true rational

data type is provided: the quotient of two integers, if not an integer, is a

ratio. Floating-point numbers of various ranges and precisions are also

provided, as well as Cartesian complex numbers.

. Characters represent printed glyphs such as letters or text formatting op-

erations. Strings are one-dimensional arrays of characters. Common Lisp

provides for a rich character set, including ways to represent characters of

various type styles.

. Symbols (sometimes called atomic symbols for emphasis or clarity) are

named data objects. Lisp provides machinery for locating a symbol ob-

ject, given its name (in the form of a string). Symbols have property lists,

which in effect allow symbols to be treated as record structures with an

extensible set of named components, each of which may be any Lisp object.
Symbols also serve to name functions and variables within programs.

. Lists are sequences represented in the form of linked cells called conses.

There is a special object (the symbol nil) that is the empty list. All other

lists are built recursively by adding a new element to the front of an existing
list. This is done by creating a new cons, which is an object having two

components called the car and the cdr. The car may hold anything, and the

cdr is made to point to the previously existing list. (Conses may actually be

used completely generally as two-element record structures, but their most

important use is to represent lists.)
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. Arrays are dimensioned collections of objects. An array can have any non-

negative number of dimensions and is indexed by a sequence of integers. A

general array can have any Lisp object as a component; other types of arrays

are specialized for efficiency and can hold only certain types of Lisp objects.

It is possible for two arrays, possibly with differing dimension information,
to share the same set of elements (such that modifying one array modifies

the other also) by causing one to be displaced to the other. One-dimensional

arrays of any kind are called vectors. One-dimensional arrays of characters

are called strings. One-dimensional arrays of bits (that is, of integers whose
values are 0 or 1) are called bit-vectors.

. Hash tables provide an efficient way of mapping any Lisp object (a key) to

an associated object.

. Readtables are used to control the built-in expression parser read.

. Packages are collections of symbols that serve as name spaces. The parser

recognizes symbols by looking up character sequences in the current pack-

age.

. Pathnames represent names of files in a fairly implementation-independent

manner. They are used to interface to the external file system.

. Streams represent sources or sinks of data, typically characters or bytes.

They are used to perform I/O, as well as for internal purposes such as

parsing strings.

. Random-states are data structures used to encapsulate the state of the

built-in random-number generator.

. Structures are user-defined record structures, objects that have named com-

ponents. The defstruct facility is used to define new structure types. Some

Common Lisp implementations may choose to implement certain system-
supplied data types, such as bignums, readtables, streams, hash tables, and

pathnames, as structures, but this fact will be invisible to the user.

. Functions are objects that can be invoked as procedures; these may take ar-
........................................................................................................................................................................................................

guments and return values. (All Lisp procedures can be construed to return

values and therefore every procedure is a function.) Such objects include

compiled-functions (compiled code objects). Some functions are represented

as a list whose car is a particular symbol such as lambda. Symbols may

also be used as functions.
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X3J13 voted in June 1988 〈90〉 to specify that symbols are not of type

function, but are automatically coerced to functions in certain situations

(see section 2.13).

X3J13 voted in June 1988 〈30〉 to adopt the Common Lisp Condition Sys-

tem, thereby introducing a new category of data objects:

. Conditions are objects used to affect control flow in certain conventional
ways by means of signals and handlers that intercept those signals. In

particular, errors are signaled by raising particular conditions, and errors

may be trapped by establishing handlers for those conditions.

X3J13 voted in June 1988 〈12〉 to adopt the Common Lisp Object System,

thereby introducing additional categories of data objects:

. Classes determine the structure and behavior of other objects, their in-
stances. Every Common Lisp data object belongs to some class. (In some

ways the CLOS class system is a generalization of the system of type spec-

ifiers of the first edition of this book, but the class system augments the

type system rather than supplanting it.)

. Methods are chunks of code that operate on arguments satisfying a partic-
ular pattern of classes. Methods are not functions; they are not invoked

directly on arguments but instead are bundled into generic functions.

. Generic functions are functions that contain, among other information, a

set of methods. When invoked, a generic function executes a subset of its

methods. The subset chosen for execution depends in a specific way on the
classes or identities of the arguments to which it is applied.

These categories are not always mutually exclusive. The required relation-

ships among the various data types are explained in more detail in section 2.15.

2.1. Numbers

Several kinds of numbers are defined in Common Lisp. They are divided into

integers; ratios; floating-point numbers, with names provided for up to four

different floating-point representations; and complex numbers.
X3J13 voted in March 1989 〈151〉 to add the type real.

The number data type encompasses all kinds of numbers. For convenience,

there are names for some subclasses of numbers as well. Integers and ratios

are of type rational. Rational numbers and floating-point numbers are of

type real. Real numbers and complex numbers are of type number.
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Although the names of these types were chosen with the terminology of

mathematics in mind, the correspondences are not always exact. Integers and

ratios model the corresponding mathematical concepts directly. Numbers of

type float may be used to approximate real numbers, both rational and ir-

rational. The real type includes all Common Lisp numbers that represent
mathematical real numbers, though there are mathematical real numbers (ir-

rational numbers) that do not have an exact Common Lisp representation.

Only real numbers may be ordered using the <, >, <UU, and >UU functions.

Compatibility note: The Fortran 77 standard defines the term real datum to mean
“a processor approximation to the value of a real number.” In practice the Fortran
basic real type is the floating-point data type that Common Lisp calls single-float.
The Fortran double precision type is Common Lisp’s double-float. The Pascal real
data type is an “implementation-defined subset of the real numbers.” In practice
this is usually a floating-point type, often what Common Lisp calls double-float.

A translation of an algorithm written in Fortran or Pascal that uses real data
usually will use some appropriate precision of Common Lisp’s float type. Some
algorithms may gain accuracy or flexibility by using Common Lisp’s rational or
real type instead.

2.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike

most programming languages, Common Lisp in principle imposes no limit on

the magnitude of an integer; storage is automatically allocated as necessary

to represent large integers.
In every Common Lisp implementation there is a range of integers that are

represented more efficiently than others; each such integer is called a fixnum,

and an integer that is not a fixnum is called a bignum. Common Lisp is

designed to hide this distinction as much as possible; the distinction between

fixnums and bignums is visible to the user in only a few places where the
efficiency of representation is important. Exactly which integers are fixnums

is implementation-dependent; typically they will be those integers in the range

−2n to 2n − 1, inclusive, for some n not less than 15. See most-positive-

fixnum and most-negative-fixnum.
X3J13 voted in January 1989 〈76〉 to specify that fixnum must be a su-

pertype of the type (signed-byte 16), and additionally that the value of

array-dimension-limit must be a fixnum (implying that the implementor

should choose the range of fixnums to be large enough to accommodate the

largest size of array to be supported).
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Rationale: This specification allows programmers to declare variables in portable
code to be of type fixnum for efficiency. Fixnums are guaranteed to encompass at
least the set of 16-bit signed integers (compare this to the data type short int in
the C programming language). In addition, any valid array index must be a fixnum,
and therefore variables used to hold array indices (such as a dotimes variable) may
be declared fixnum in portable code.

Integers are ordinarily written in decimal notation, as a sequence of decimal

digits, optionally preceded by a sign and optionally followed by a decimal

point. For example:

0 ;Zero

-0 ;This always means the same as 0
+6 ;The first perfect number

28 ;The second perfect number

1024. ;Two to the tenth power

-1 ;eπi

15511210043330985984000000. ;25 factorial (25!), probably a bignum

Compatibility note: MacLisp and Lisp Machine Lisp normally assume that in-
tegers are written in octal (radix-8) notation unless a decimal point is present.
Interlisp assumes integers are written in decimal notation and uses a trailing Q to
indicate octal radix; however, a decimal point, even in trailing position, always indi-
cates a floating-point number. This is of course consistent with Fortran. Ada does
not permit trailing decimal points but instead requires them to be embedded. In
Common Lisp, integers written as described above are always construed to be in
decimal notation, whether or not the decimal point is present; allowing the decimal
point to be present permits compatibility with MacLisp.

Integers may be notated in radices other than ten. The notation

#--nnrddddd or #--nnRddddd

means the integer in radix-nn notation denoted by the digits ddddd. More
precisely, one may write #--, a non-empty sequence of decimal digits represent-

ing an unsigned decimal integer n, r (or R), an optional sign, and a sequence

of radix-n digits, to indicate an integer written in radix n (which must be

between 2 and 36, inclusive). Only legal digits for the specified radix may be

used; for example, an octal number may contain only the digits 0 through 7.
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For digits above 9, letters of the alphabet of either case may be used in or-

der. Binary, octal, and hexadecimal radices are useful enough to warrant the

special abbreviations #--b for #--2r, #--o for #--8r, and #--x for #--16r. For example:

#--2r11010101 ;Another way of writing 213 decimal
#--b11010101 ;Ditto

#--b+11010101 ;Ditto

#--o325 ;Ditto, in octal radix

#--xD5 ;Ditto, in hexadecimal radix
#--16r+D5 ;Ditto

#--o-300 ;Decimal −192, written in base 8

#--3r-21010 ;Same thing in base 3

#--25R-7H ;Same thing in base 25

#--xACCEDED ;181202413, in hexadecimal radix

2.1.2. Ratios

A ratio is a number representing the mathematical ratio of two integers. In-
tegers and ratios collectively constitute the type rational. The canonical

representation of a rational number is as an integer if its value is integral,

and otherwise as the ratio of two integers, the numerator and denominator,

whose greatest common divisor is 1, and of which the denominator is positive

(and in fact greater than 1, or else the value would be integral). A ratio is
notated with / as a separator, thus: 3/5. It is possible to notate ratios in

non-canonical (unreduced) forms, such as 4/6, but the Lisp function prin1

always prints the canonical form for a ratio.

If any computation produces a result that is a ratio of two integers such

that the denominator evenly divides the numerator, then the result is imme-
diately converted to the equivalent integer. This is called the rule of rational

canonicalization.

Rational numbers may be written as the possibly signed quotient of decimal

numerals: an optional sign followed by two non-empty sequences of digits

separated by a /. This syntax may be described as follows:

ratio ::= [sign] {digit}+ / {digit}+

The second sequence may not consist entirely of zeros. For example:

2/3 ;This is in canonical form

4/6 ;A non-canonical form for the same number

-17/23 ;A not very interesting ratio
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-30517578125/32768 ;This is (−5/2)15

10/5 ;The canonical form for this is 2

To notate rational numbers in radices other than ten, one uses the same

radix specifiers (one of #--nnR, #--O, #--B, or #--X) as for integers. For example:

#--o-101/75 ;Octal notation for -65/61

#--3r120/21 ;Ternary notation for 15/7
#--Xbc/ad ;Hexadecimal notation for 188/173

#--xFADED/FACADE ;Hexadecimal notation for 1027565/16435934

2.1.3. Floating-Point Numbers

Common Lisp allows an implementation to provide one or more kinds of

floating-point number, which collectively make up the type float. Now a

floating-point number is a (mathematical) rational number of the form s ·
f · be−p, where s is +1 or −1, the sign; b is an integer greater than 1, the
base or radix of the representation; p is a positive integer, the precision (in

base-b digits) of the floating-point number; f is a positive integer between

b p−1 and b p−1 (inclusive), the significand; and e is an integer, the exponent.

The value of p and the range of e depends on the implementation and on

the type of floating-point number within that implementation. In addition,
there is a floating-point zero; depending on the implementation, there may

also be a “minus zero.” If there is no minus zero, then 0.0 and -0.0 are both

interpreted as simply a floating-point zero.

Implementation note: The form of the above description should not be con-
strued to require the internal representation to be in sign-magnitude form. Two’s-
complement and other representations are also acceptable. Note that the radix of
the internal representation may be other than 2, as on the IBM 360 and 370, which
use radix 16; see float-radix.

Floating-point numbers may be provided in a variety of precisions and sizes,

depending on the implementation. High-quality floating-point software tends

to depend critically on the precise nature of the floating-point arithmetic and

so may not always be completely portable. As an aid in writing programs
that are moderately portable, however, certain definitions are made here:

. A short floating-point number (type short-float) is of the representation

of smallest fixed precision provided by an implementation.
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Table 2-1: Recommended Minimum Floating-Point Precision and Exponent Size

Format Minimum Precision Minimum Exponent Size

Short 13 bits 5 bits
Single 24 bits 8 bits
Double 50 bits 8 bits
Long 50 bits 8 bits

. A long floating-point number (type long-float) is of the representation of

the largest fixed precision provided by an implementation.

. Intermediate between short and long formats are two others, arbitrarily

called single and double (types single-float and double-float).

The precise definition of these categories is implementation-dependent. How-
ever, the rough intent is that short floating-point numbers be precise to at

least four decimal places (but also have a space-efficient representation); single

floating-point numbers, to at least seven decimal places; and double floating-

point numbers, to at least fourteen decimal places. It is suggested that the

precision (measured in bits, computed as p log2 b) and the exponent size (also
measured in bits, computed as the base-2 logarithm of 1 plus the maximum

exponent value) be at least as great as the values in table 2-1.

Floating-point numbers are written in either decimal fraction or computer-

ized scientific notation: an optional sign, then a non-empty sequence of digits

with an embedded decimal point, then an optional decimal exponent specifi-
cation. If there is no exponent specifier, then the decimal point is required,

and there must be digits after it. The exponent specifier consists of an ex-

ponent marker, an optional sign, and a non-empty sequence of digits. For

preciseness, here is a modified-BNF description of floating-point notation.

floating-point-number ::= [sign] {digit}∗ decimal-point {digit}+ [exponent ]
| [sign] {digit}+ [decimal-point {digit}∗ ] exponent

sign ::= + | -
decimal-point ::= .

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
exponent ::= exponent-marker [sign] {digit}+

exponent-marker ::= e | s | f | d | l | E | S | F | D | L

If no exponent specifier is present, or if the exponent marker e (or E) is used,

then the precise format to be used is not specified. When such a representation

is read and converted to an internal floating-point data object, the format
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specified by the variable *read-default-float-format* is used; the initial

value of this variable is single-float.

The letters s, f, d, and l (or their respective uppercase equivalents) explic-

itly specify the use of short, single, double, and long format, respectively.

Examples of floating-point numbers:

0.0 ;Floating-point zero in default format
0E0 ;Also floating-point zero in default format

-.0 ;This may be a zero or a minus zero,

; depending on the implementation

0. ;The integer zero, not a floating-point zero!
0.0s0 ;A floating-point zero in short format

0s0 ;Also a floating-point zero in short format

3.1415926535897932384d0 ;A double-format approximation to π

6.02E+23 ;Avogadro’s number, in default format

602E+21 ;Also Avogadro’s number, in default format
3.010299957f-1 ;log10 2, in single format

-0.000000001s9 ;eπi in short format, the hard way

Notice of correction. The first edition unfortunately listed an incorrect

value (3.1010299957f-1) for the base-10 logarithm of 2.

The internal format used for an external representation depends only on

the exponent marker and not on the number of decimal digits in the external

representation.

While Common Lisp provides terminology and notation sufficient to ac-

commodate four distinct floating-point formats, not all implementations will

have the means to support that many distinct formats. An implementation is

therefore permitted to provide fewer than four distinct internal floating-point
formats, in which case at least one of them will be “shared” by more than one

of the external format names short, single, double, and long according to the

following rules:

. If one internal format is provided, then it is considered to be single, but

serves also as short, double, and long. The data types short-float,

single-float, double-float, and long-float are considered to be iden-

tical. An expression such as (eql 1.0s0 1.0d0) will be true in such an
implementation because the two numbers 1.0s0 and 1.0d0 will be con-

verted into the same internal format and therefore be considered to have

the same data type, despite the differing external syntax. Similarly, (typep

1.0L0 ’short-float) will be true in such an implementation. For output

purposes all floating-point numbers are assumed to be of single format and
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thus will print using the exponent letter E or F.

. If two internal formats are provided, then either of two correspondences

may be used, depending on which is the more appropriate:

– One format is short; the other is single and serves also as double and

long. The data types single-float, double-float, and long-float are

considered to be identical, but short-float is distinct. An expression

such as (eql 1.0s0 1.0d0)will be false, but (eql 1.0f0 1.0d0)will be
true. Similarly, (typep 1.0L0 ’short-float) will be false, but (typep

1.0L0 ’single-float) will be true. For output purposes all floating-

point numbers are assumed to be of short or single format.

– One format is single and serves also as short; the other is double and

serves also as long. The data types short-float and single-float

are considered to be identical, and the data types double-float and

long-float are considered to be identical. An expression such as (eql

1.0s0 1.0d0) will be false, as will (eql 1.0f0 1.0d0); but (eql 1.0d0

1.0L0) will be true. Similarly, (typep 1.0L0 ’short-float) will be

false, but (typep 1.0L0 ’double-float) will be true. For output pur-
poses all floating-point numbers are assumed to be of single or double

format.

. If three internal formats are provided, then either of two correspondences

may be used, depending on which is the more appropriate:

– One format is short; another format is single; and the third format is

double and serves also as long. Similar constraints apply.

– One format is single and serves also as short; another is double; and the
third format is long.

Implementation note: It is recommended that an implementation provide as
many distinct floating-point formats as feasible, using table 2-1 as a guideline. Ide-
ally, short-format floating-point numbers should have an “immediate” representation
that does not require heap allocation; single-format floating-point numbers should
approximate IEEE proposed standard single-format floating-point numbers; and
double-format floating-point numbers should approximate IEEE proposed standard
double-format floating-point numbers [23, 17, 16].
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2.1.4. Complex Numbers

Complex numbers (type complex) are represented in Cartesian form, with

a real part and an imaginary part, each of which is a non-complex number
(integer, ratio, or floating-point number). It should be emphasized that the

parts of a complex number are not necessarily floating-point numbers; in this,

Common Lisp is like PL/I and differs from Fortran. However, both parts

must be of the same type: either both are rational, or both are of the same
floating-point format.

Complex numbers may be notated by writing the characters #--C followed by

a list of the real and imaginary parts. If the two parts as notated are not

of the same type, then they are converted according to the rules of floating-

point contagion as described in chapter 12. (Indeed, #--C(a b) is equivalent to
#--,(complex a b); see the description of the function complex.) For example:

#--C(3.0s1 2.0s-1) ;Real and imaginary parts are short format
#--C(5 -3) ;A Gaussian integer

#--C(5/3 7.0) ;Will be converted internally to #--C(1.66666 7.0)

#--C(0 1) ;The imaginary unit, that is, i

The type of a specific complex number is indicated by a list of the word

complex and the type of the components; for example, a specialized repre-

sentation for complex numbers with short floating-point parts would be of

type (complex short-float). The type complex encompasses all complex
representations.

A complex number of type (complex rational), that is, one whose com-

ponents are rational, can never have a zero imaginary part. If the result of

a computation would be a complex rational with a zero imaginary part, the
result is immediately converted to a non-complex rational number by taking

the real part. This is called the rule of complex canonicalization. This rule

does not apply to floating-point complex numbers; #--C(5.0 0.0) and 5.0 are

different.

2.2. Characters

Characters are represented as data objects of type character.
There are two subtypes of interest, called standard-char and string-

........................................................................................................................................................................................................

char.

X3J13 voted in March 1989 〈11〉 to remove the type string-char.

A character object can be notated by writing #--\ followed by the charac-

ter itself. For example, #--\g means the character object for a lowercase g.
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This works well enough for printing characters. Non-printing characters have

names, and can be notated by writing #--\ and then the name; for example,

#--\Space (or #--\SPACE or #--\space or #--\sPaCE) means the space character. The

syntax for character names after #--\ is the same as that for symbols. However,

only character names that are known to the particular implementation may
be used.

2.2.1. Standard Characters

Common Lisp defines a standard character set (subtype standard-char) for
two purposes. Common Lisp programs that are written in the standard char-

acter set can be read by any Common Lisp implementation; and Common Lisp

programs that use only standard characters as data objects are most likely

to be portable. The Common Lisp character set consists of a space charac-

ter #--\Space, a newline character #--\Newline, and the following ninety-four
non-blank printing characters or their equivalents:

! " #-- $ % & ’ ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < UU > ?

@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _

‘ a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

The Common Lisp standard character set is apparently equivalent to the

ninety-five standard ASCII printing characters plus a newline character. Nev-
ertheless, Common Lisp is designed to be relatively independent of the ASCII

character encoding. For example, the collating sequence is not specified ex-

cept to say that digits must be properly ordered, the uppercase letters must

be properly ordered, and the lowercase letters must be properly ordered (see
char< for a precise specification). Other character encodings, particularly

EBCDIC, should be easily accommodated (with a suitable mapping of print-

ing characters).

Of the ninety-four non-blank printing characters, the following are used in

only limited ways in the syntax of Common Lisp programs:

[ ] { } ? ! ^ _ ~ $ %

All of these characters except ! and _ are used within format strings as
........................................................................................................................................................................................................

formatting directives. Except for this, [, ], {, }, ?, and ! are not used in

Common Lisp and are reserved to the user for syntactic extensions; ^ and _

are not yet used in Common Lisp but are part of the syntax of reserved tokens

and are reserved to implementors; ~ is not yet used in Common Lisp and is

reserved to implementors; and $ and % are normally regarded as alphabetic
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characters but are not used in the names of any standard Common Lisp

functions, variables, or other entities.

X3J13 voted in June 1989 〈139〉 to add a format directive ~_ (see chap-

ter 27).

The following characters are called semi-standard:

#--\Backspace #--\Tab #--\Linefeed #--\Page #--\Return #--\Rubout

Not all implementations of Common Lisp need to support them; but those

implementations that use the standard ASCII character set should support

them, treating them as corresponding respectively to the ASCII characters

BS (octal code 010), HT (011), LF (012), FF (014), CR (015), and DEL

(177). These characters are not members of the subtype standard-char

unless synonymous with one of the standard characters specified above. For

example, in a given implementation it might be sensible for the implementor

to define #--\Linefeed or #--\Return to be synonymous with #--\Newline, or

#--\Tab to be synonymous with #--\Space.

2.2.2. Line Divisions

The treatment of line divisions is one of the most difficult issues in designing

portable software, simply because there is so little agreement among operating
systems. Some use a single character to delimit lines; the recommended ASCII

character for this purpose is the line feed character LF (also called the new line

character, NL), but some systems use the carriage return character CR. Much

more common is the two-character sequence CR followed by LF. Frequently

line divisions have no representation as a character but are implicit in the
structuring of a file into records, each record containing a line of text. A deck

of punched cards has this structure, for example.

Common Lisp provides an abstract interface by requiring that there be a sin-

gle character, #--\Newline, that within the language serves as a line delimiter.
(The language C has a similar requirement.) An implementation of Common

Lisp must translate between this internal single-character representation and

whatever external representation(s) may be used.

Implementation note: How the character called #--\Newline is represented inter-
nally is not specified here, but it is strongly suggested that the ASCII LF character
be used in Common Lisp implementations that use the ASCII character encoding.
The ASCII CR character is a workable, but in most cases inferior, alternative.
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When the first edition was written it was not yet clear that UNIX would

become so widely accepted. The decision to represent the line delimiter as a

single character has proved to be a good one.

The requirement that a line division be represented as a single character has

certain consequences. A character string written in the middle of a program in
such a way as to span more than one line must contain exactly one character

to represent each line division. Consider this code fragment:

(setq a-string "This string

contains

forty-two characters.")

Between g and c there must be exactly one character, #--\Newline; a two-

character sequence, such as #--\Return and then #--\Newline, is not acceptable,

nor is the absence of a character. The same is true between s and f.
When the character #--\Newline is written to an output file, the Common

Lisp implementation must take the appropriate action to produce a line divi-

sion. This might involve writing out a record or translating #--\Newline to a

CR/LF sequence.

Implementation note: If an implementation uses the ASCII character encoding,
uses the CR/LF sequence externally to delimit lines, uses LF to represent #--\Newline
internally, and supports #--\Return as a data object corresponding to the ASCII char-
acter CR, the question arises as to what action to take when the program writes out
#--\Return followed by #--\Newline. It should first be noted that #--\Return is not a
standard Common Lisp character, and the action to be taken when #--\Return is writ-
ten out is therefore not defined by the Common Lisp language. A plausible approach
is to buffer the #--\Return character and suppress it if and only if the next character
is #--\Newline (the net effect is to generate a CR/LF sequence). Another plausible
approach is simply to ignore the difficulty and declare that writing #--\Return and
then #--\Newline results in the sequence CR/CR/LF in the output.

2.2.3. Non-standard Characters

Any implementation may provide additional characters, whether printing

characters or named characters. Some plausible examples:
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#--\π #--\α #--\Break #--\Home-Up #--\Escape

The use of such characters may render Common Lisp programs non-portable.

2.2.4. Character Attributes
........................................................................................................................................................................................................

Every object of type character has three attributes: code, bits, and font.

The code attribute is intended to distinguish among the printed glyphs and
formatting functions for characters; it is a numerical encoding of the character

proper. The bits attribute allows extra flags to be associated with a character.

The font attribute permits a specification of the style of the glyphs (such as

italics). Each of these attributes may be understood to be a non-negative

integer.

The font attribute may be notated in unsigned decimal notation between
the #-- and the \. For example, #--3\a means the letter a in font 3. This might

mean the same thing as #--\α if font 3 were used to represent Greek letters.

Note that not all Common Lisp implementations provide for non-zero font

attributes; see char-font-limit.

The bits attribute may be notated by preceding the name of the character
by the names or initials of the bits, separated by hyphens. The character itself

may be written instead of the name, preceded if necessary by \. For example:

#--\Control-Meta-Return #--\Meta-Control-Q

#--\Hyper-Space #--\Meta-\a

#--\Control-A #--\Meta-Hyper-\:

#--\C-M-Return #--\Hyper-\π

Note that not all Common Lisp implementations provide for non-zero bits

attributes; see char-bits-limit.

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font

attributes with that of implementation-defined attributes.

2.2.5. String Characters
........................................................................................................................................................................................................

Any character whose bits and font attributes are zero may be contained in

strings. All such characters together constitute a subtype of the characters;

this subtype is called string-char.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char. Two

new subtypes of character are base-character, defined to be equivalent to

the result of the function call
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(upgraded-array-element-type ’standard-char)

and extended-character, defined to be equivalent to the type specifier

(and character (not base-character))

An implementation may support additional subtypes of character that may

or may not be supertypes of base-character. In addition, an implementation

may define base-character to be equivalent to character. The choice of any
base characters that are not standard characters is implementation-defined.

Only base characters can be elements of a base string. No upper bound is

specified for the number of distinct characters of type base-character—

that is implementation-dependent—but the lower bound is 96, the number of
standard Common Lisp characters.

2.3. Symbols

Symbols are Lisp data objects that serve several purposes and have several
interesting characteristics. Every object of type symbol has a name, called

its print name. Given a symbol, one can obtain its name in the form of a

string. Conversely, given the name of a symbol as a string, one can obtain the

symbol itself. (More precisely, symbols are organized into packages, and all

the symbols in a package are uniquely identified by name. See chapter 11.)

Symbols have a component called the property list, or plist. By conven-

tion this is always a list whose even-numbered components (calling the first

component zero) are symbols, here functioning as property names, and whose

odd-numbered components are associated property values. Functions are pro-
vided for manipulating this property list; in effect, these allow a symbol to be

treated as an extensible record structure.

Symbols are also used to represent certain kinds of variables in Lisp pro-

grams, and there are functions for dealing with the values associated with
symbols in this role.

A symbol can be notated simply by writing its name. If its name is not

empty, and if the name consists only of uppercase alphabetic, numeric, or

certain pseudo-alphabetic special characters (but not delimiter characters such
as parentheses or space), and if the name of the symbol cannot be mistaken

for a number, then the symbol can be notated by the sequence of characters

in its name. Any uppercase letters that appear in the (internal) name may

be written in either case in the external notation (more on this below). For

example:
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FROBBOZ ;The symbol whose name is FROBBOZ

frobboz ;Another way to notate the same symbol

fRObBoz ;Yet another way to notate it

unwind-protect ;A symbol with a - in its name

+$ ;The symbol named +$

1+ ;The symbol named 1+

+1 ;This is the integer 1, not a symbol

pascal_style ;This symbol has an underscore in its name

b^2-4*a*c ;This is a single symbol!
; It has several special characters in its name

file.rel.43 ;This symbol has periods in its name

/usr/games/zork ;This symbol has slashes in its name

In addition to letters and numbers, the following characters are normally
considered to be alphabetic for the purposes of notating symbols:

+ - * / @ $ % ^ & _ UU < > ~ .

Some of these characters have conventional purposes for naming things; for

example, symbols that name special variables generally have names beginning
and ending with *. The last character listed above, the period, is considered

alphabetic provided that a token does not consist entirely of periods. A single

period standing by itself is used in the notation of conses and dotted lists; a

token consisting of two or more periods is syntactically illegal. (The period

also serves as the decimal point in the notation of numbers.)

The following characters are also alphabetic by default but are explicitly re-
served to the user for definition as reader macro characters (see section 22.1.3)

or any other desired purpose and therefore should not be used routinely in

names of symbols:

? ! [ ] { }

A symbol may have uppercase letters, lowercase letters, or both in its print

name. However, the Lisp reader normally converts lowercase letters to the

corresponding uppercase letters when reading symbols. The net effect is that

most of the time case makes no difference when notating symbols. Case does
make a difference internally and when printing a symbol. Internally the sym-

bols that name all standard Common Lisp functions, variables, and keywords

have uppercase names; their names appear in lowercase in this book for read-

ability. Typing such names with lowercase letters works because the function

read will convert lowercase letters to the equivalent uppercase letters.
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X3J13 voted in June 1989 〈150〉 to introduce readtable-case, which con-

trols whether read will alter the case of letters read as part of the name of a

symbol.

If a symbol cannot be simply notated by the characters of its name because

the (internal) name contains special characters or lowercase letters, then there
are two “escape” conventions for notating them. Writing a \ character before

any character causes the character to be treated itself as an ordinary character

for use in a symbol name; in particular, it suppresses internal conversion of

lowercase letters to their uppercase equivalents. If any character in a notation
is preceded by \, then that notation can never be interpreted as a number.

For example:

\( ;The symbol whose name is (

\+1 ;The symbol whose name is +1

+\1 ;Also the symbol whose name is +1
\frobboz ;The symbol whose name is fROBBOZ

3.14159265\s0 ;The symbol whose name is 3.14159265s0

3.14159265\S0 ;A different symbol, whose name is 3.14159265S0

3.14159265s0 ;A short-format floating-point approximation to π

APL\\360 ;The symbol whose name is APL\360
apl\\360 ;Also the symbol whose name is APL\360

\(b^2\)\ -\ 4*a*c ;The name is (B^2) - 4*A*C;

; it has parentheses and two spaces in it

\(\b^2\)\ -\ 4*\a*\c ;The name is (b^2) - 4*a*c;
; the letters are explicitly lowercase

It may be tedious to insert a \ before every delimiter character in the name of

a symbol if there are many of them. An alternative convention is to surround

the name of a symbol with vertical bars; these cause every character between

them to be taken as part of the symbol’s name, as if \ had been written before
each one, excepting only | itself and \, which must nevertheless be preceded

by \. For example:

|"| ;The same as writing \"

|(b^2) - 4*a*c| ;The name is (b^2) - 4*a*c

|frobboz| ;The name is frobboz, not FROBBOZ
|APL\360| ;The name is APL360, because the \ quotes the 3

|APL\\360| ;The name is APL\360

|apl\\360| ;The name is apl\360

|\|\|| ;Same as \|\|: the name is ||

|(B^2) - 4*A*C| ;The name is (B^2) - 4*A*C;
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; it has parentheses and two spaces in it

|(b^2) - 4*a*c| ;The name is (b^2) - 4*a*c

2.4. Lists and Conses

A cons is a record structure containing two components called the car and

the cdr. Conses are used primarily to represent lists.

A list is recursively defined to be either the empty list or a cons whose cdr
component is a list. A list is therefore a chain of conses linked by their cdr

components and terminated by nil, the empty list. The car components of

the conses are called the elements of the list. For each element of the list there

is a cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, separated by
blank space (space, tab, or return characters) and surrounded by parentheses.

(a b c) ;A list of three symbols

(2.0s0 (a 1) #--\*) ;A list of three things: a short floating-point

; number, another list, and a character object

The empty list nil therefore can be written as (), because it is a list with no

elements.

A dotted list is one whose last cons does not have nil for its cdr, rather
some other data object (which is also not a cons, or the first-mentioned cons

would not be the last cons of the list). Such a list is called “dotted” because

of the special notation used for it: the elements of the list are written between

parentheses as before, but after the last element and before the right paren-
thesis are written a dot (surrounded by blank space) and then the cdr of the

last cons. As a special case, a single cons is notated by writing the car and

the cdr between parentheses and separated by a space-surrounded dot. For

example:

(a . 4) ;A cons whose car is a symbol

; and whose cdr is an integer
(a b c . d) ;A dotted list with three elements whose last cons

; has the symbol d in its cdr

Compatibility note: In MacLisp, the dot in dotted-list notation need not be
surrounded by white space or other delimiters. The dot is required to be delimited
in Common Lisp, as in Lisp Machine Lisp.
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It is legitimate to write something like (a b . (c d)); this means the same

as (a b c d). The standard Lisp output routines will never print a list in

the first form, however; they will avoid dot notation wherever possible.

Often the term list is used to refer either to true lists or to dotted lists. When

the distinction is important, the term “true list” will be used to refer to a list
terminated by nil. Most functions advertised to operate on lists expect to

be given true lists. Throughout this book, unless otherwise specified, it is an

error to pass a dotted list to a function that is specified to require a list as an

argument.

Implementation note: Implementors are encouraged to use the equivalent of the
predicate endp wherever it is necessary to test for the end of a list. Whenever
feasible, this test should explicitly signal an error if a list is found to be terminated
by a non-nil atom. However, such an explicit error signal is not required, because
some such tests occur in important loops where efficiency is important. In such
cases, the predicate atom may be used to test for the end of the list, quietly treating
any non-nil list-terminating atom as if it were nil.

Sometimes the term tree is used to refer to some cons and all the other

conses transitively accessible to it through car and cdr links until non-conses

are reached; these non-conses are called the leaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they
are simply useful points of view about structures of conses. There are yet

other terms, such as association list. None of these are true Lisp data types.

Conses are a data type, and nil is the sole object of type null. The Lisp

data type list is taken to mean the union of the cons and null data types,

and therefore encompasses both true lists and dotted lists.

2.5. Arrays

An array is an object with components arranged according to a Cartesian

coordinate system. In general, these components may be any Lisp data ob-

jects.

The number of dimensions of an array is called its rank (this terminology

is borrowed from APL); the rank is a non-negative integer. Likewise, each
dimension is itself a non-negative integer. The total number of elements in

the array is the product of all the dimensions.

An implementation of Common Lisp may impose a limit on the rank of

an array, but this limit may not be smaller than 7. Therefore, any Common

Lisp program may assume the use of arrays of rank 7 or less. (A program
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may determine the actual limit on array ranks for a given implementation by

examining the constant array-rank-limit.)

It is permissible for a dimension to be zero. In this case, the array has no
elements, and any attempt to access an element is in error. However, other

properties of the array, such as the dimensions themselves, may be used. If the

rank is zero, then there are no dimensions, and the product of the dimensions

is then by definition 1. A zero-rank array therefore has a single element.

An array element is specified by a sequence of indices. The length of the

sequence must equal the rank of the array. Each index must be a non-negative

integer strictly less than the corresponding array dimension. Array indexing

is therefore zero-origin, not one-origin as in (the default case of) Fortran.

As an example, suppose that the variable foo names a 3-by-5 array. Then

the first index may be 0, 1, or 2, and the second index may be 0, 1, 2, 3,

or 4. One may refer to array elements using the function aref; for example,
(aref foo 2 1) refers to element (2, 1) of the array. Note that aref takes a

variable number of arguments: an array, and as many indices as the array has

dimensions. A zero-rank array has no dimensions, and therefore aref would

take such an array and no indices, and return the sole element of the array.

In general, arrays can be multidimensional, can share their contents with

other array objects, and can have their size altered dynamically (either en-

larging or shrinking) after creation. A one-dimensional array may also have a
fill pointer.

Multidimensional arrays store their components in row-major order; that is,

internally a multidimensional array is stored as a one-dimensional array, with
the multidimensional index sets ordered lexicographically, last index varying

fastest. This is important in two situations: (1) when arrays with different

dimensions share their contents, and (2) when accessing very large arrays in a

virtual-memory implementation. (The first situation is a matter of semantics;

the second, a matter of efficiency.)

An array that is not displaced to another array, has no fill pointer, and is

not to have its size adjusted dynamically after creation is called a simple array.

The user may provide declarations that certain arrays will be simple. Some
implementations can handle simple arrays in an especially efficient manner;

for example, simple arrays may have a more compact representation than

non-simple arrays.

X3J13 voted in June 1989 〈3〉 to clarify that if one or more of the

:adjustable, :fill-pointer, and :displaced-to arguments is true when

make-array is called, then whether the resulting array is simple is unspecified;

but if all three arguments are false, then the resulting array is guaranteed to
be simple.



DATA TYPES 35

2.5.1. Vectors

One-dimensional arrays are called vectors in Common Lisp and constitute the

type vector (which is therefore a subtype of array). Vectors and lists are
collectively considered to be sequences. They differ in that any component of

a one-dimensional array can be accessed in constant time, whereas the average

component access time for a list is linear in the length of the list; on the other

hand, adding a new element to the front of a list takes constant time, whereas

the same operation on an array takes time linear in the length of the array.

A general vector (a one-dimensional array that can have any data object

as an element but that has no additional paraphernalia) can be notated by

notating the components in order, separated by whitespace and surrounded

by #--( and ). For example:

#--(a b c) ;A vector of length 3

#--() ;An empty vector

#--(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47)

;A vector containing the primes below 50

Note that when the function read parses this syntax, it always constructs a

simple general vector.

Rationale: Many people have suggested that brackets be used to notate vectors, as
[a b c] instead of #--(a b c). This notation would be shorter, perhaps more read-
able, and certainly in accord with cultural conventions in other parts of computer
science and mathematics. However, to preserve the usefulness of the user-definable
macro-character feature of the function read, it is necessary to leave some characters
to the user for this purpose. Experience in MacLisp has shown that users, especially
implementors of languages for use in artificial intelligence research, often want to
define special kinds of brackets. Therefore Common Lisp avoids using brackets and
braces for any syntactic purpose.

Implementations may provide certain specialized representations of arrays

for efficiency in the case where all the components are of the same specialized

(typically numeric) type. All implementations provide specialized arrays for
the cases when the components are characters (or rather, a special subset of

the characters); the one-dimensional instances of this specialization are called

strings. All implementations are also required to provide specialized arrays

of bits, that is, arrays of type (array bit); the one-dimensional instances of

this specialization are called bit-vectors.
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2.5.2. Strings

A string is simply a vector of characters. More precisely, a string is a
........................................................................................................................................................................................................

specialized vector whose elements are of type string-char.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and

to redefine the type string to be the union of one or more specialized vector

types, the types of whose elements are subtypes of the type character. Sub-

types of string include simple-string, base-string, and simple-base-

string.

base-string ≡ (vector base-character)

simple-base-string ≡ (simple-array base-character (*))

An implementation may support other string subtypes as well. All Common

Lisp functions that operate on strings treat all strings uniformly; note, how-

ever, that it is an error to attempt to insert an extended character into a base
string.
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The type string is therefore a subtype of the type vector.

A string can be written as the sequence of characters contained in the string,

preceded and followed by a " (double quote) character. Any " or \ character

in the sequence must additionally have a \ character before it.

For example:

"Foo" ;A string with three characters in it

"" ;An empty string

"\"APL\\360?\" he cried." ;A string with twenty characters
"|x| UU |-x|" ;A ten-character string

Notice that any vertical bar | in a string need not be preceded by a \. Sim-

ilarly, any double quote in the name of a symbol written using vertical-bar

notation need not be preceded by a \. The double-quote and vertical-bar

notations are similar but distinct: double quotes indicate a character string

containing the sequence of characters, whereas vertical bars indicate a symbol
whose name is the contained sequence of characters.

The characters contained by the double quotes, taken from left to right,

occupy locations within the string with increasing indices. The leftmost char-

acter is string element number 0, the next one is element number 1, the next

one is element number 2, and so on.

Note that the function prin1 will print any character vector (not just a
simple one) using this syntax, but the function read will always construct a

simple string when it reads this syntax.

2.5.3. Bit-Vectors

A bit-vector can be written as the sequence of bits contained in the string,

preceded by #--*; any delimiter character, such as whitespace, will terminate

the bit-vector syntax. For example:

#--*10110 ;A five-bit bit-vector; bit 0 is a 1
#--* ;An empty bit-vector

The bits notated following the #--*, taken from left to right, occupy locations

within the bit-vector with increasing indices. The leftmost notated bit is

bit-vector element number 0, the next one is element number 1, and so on.

The function prin1 will print any bit-vector (not just a simple one) using

this syntax, but the function read will always construct a simple bit-vector

when it reads this syntax.
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2.6. Hash Tables

Hash tables provide an efficient way of mapping any Lisp object (a key) to an

associated object. They are provided as primitives of Common Lisp because
some implementations may need to use internal storage management strate-

gies that would make it very difficult for the user to implement hash tables in

a portable fashion. Hash tables are described in chapter 16.

2.7. Readtables

A readtable is a data structure that maps characters into syntax types for the

Lisp expression parser. In particular, a readtable indicates for each character

with syntax macro character what its macro definition is. This is a mechanism

by which the user may reprogram the parser to a limited but useful extent.
See section 22.1.5.

2.8. Packages

Packages are collections of symbols that serve as name spaces. The parser
recognizes symbols by looking up character sequences in the current package.

Packages can be used to hide names internal to a module from other code.

Mechanisms are provided for exporting symbols from a given package to the

primary “user” package. See chapter 11.

2.9. Pathnames

Pathnames are the means by which a Common Lisp program can interface to

an external file system in a reasonably implementation-independent manner.

See section 23.1.1.

2.10. Streams

A stream is a source or sink of data, typically characters or bytes. Nearly

all functions that perform I/O do so with respect to a specified stream. The
function open takes a pathname and returns a stream connected to the file

specified by the pathname. There are a number of standard streams that are

used by default for various purposes. See chapter 21.

X3J13 voted in January 1989 〈167〉 to introduce subtypes of type stream:

broadcast-stream, concatenated-stream, echo-stream, synonym-stream,
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string-stream, file-stream, and two-way-stream are disjoint subtypes of

stream. Note particularly that a synonym stream is always and only of type

synonym-stream, regardless of the type of the stream for which it is a syn-

onym.

2.11. Random-States

An object of type random-state is used to encapsulate state information

used by the pseudo-random number generator. For more information about
random-state objects, see section 12.9.

2.12. Structures

Structures are instances of user-defined data types that have a fixed number

of named components. They are analogous to records in Pascal. Structures

are declared using the defstruct construct; defstruct automatically defines

access and constructor functions for the new data type.

Different structures may print out in different ways; the definition of a

structure type may specify a print procedure to use for objects of that type
(see the :print-function option to defstruct). The default notation for

structures is

#--S(structure-name

slot-name-1 slot-value-1

slot-name-2 slot-value-2

...)

where #--S indicates structure syntax, structure-name is the name (a symbol) of
the structure type, each slot-name is the name (also a symbol) of a component,

and each corresponding slot-value is the representation of the Lisp object in

that slot.

2.13. Functions

A function is anything that may be correctly given to the funcall or apply
........................................................................................................................................................................................................

function, and is to be executed as code when arguments are supplied.

A compiled-function is a compiled code object.

A lambda-expression (a list whose car is the symbol lambda) may serve as

a function. Depending on the implementation, it may be possible for other
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lists to serve as functions. For example, an implementation might choose to

represent a “lexical closure” as a list whose car contains some special marker.

A symbol may serve as a function; an attempt to invoke a symbol as a

function causes the contents of the symbol’s function cell to be used. See

symbol-function and defun.

The result of evaluating a function special form will always be a function.

X3J13 voted in June 1988 〈90〉 to revise these specifications. The type

function is to be disjoint from cons and symbol, and so a list whose car

is lambda is not, properly speaking, of type function, nor is any symbol.

However, standard Common Lisp functions that accept functional arguments
will accept a symbol or a list whose car is lambda and automatically coerce

it to be a function; such standard functions include funcall, apply, and

mapcar. Such functions do not, however, accept a lambda-expression as a

functional argument; therefore one may not write

(mapcar ’(lambda (x y) (sqrt (* x y))) p q)

but instead one must write something like

(mapcar #--’(lambda (x y) (sqrt (* x y))) p q)

This change makes it impermissible to represent a lexical closure as a list

whose car is some special marker.

The value of a function special form will always be of type function.

2.14. Unreadable Data Objects

Some objects may print in implementation-dependent ways. Such objects

cannot necessarily be reliably reconstructed from a printed representation,

and so they are usually printed in a format informative to the user but not
acceptable to the read function: #--<useful information>. The Lisp reader will

signal an error on encountering #--<.

As a hypothetical example, an implementation might print

#--<stack-pointer si:rename-within-new-definition-maybe #--o311037552>

for an implementation-specific “internal stack pointer” data type whose

printed representation includes the name of the type, some information about

the stack slot pointed to, and the machine address (in octal) of the stack slot.

See print-unreadable-object, a macro that prints an object using #--<

syntax.
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2.15. Overlap, Inclusion, and Disjointness of Types

The Common Lisp data type hierarchy is tangled and purposely left some-

what open-ended so that implementors may experiment with new data types

as extensions to the language. This section explicitly states all the defined
relationships between types, including subtype/supertype relationships, dis-

jointness, and exhaustive partitioning. The user of Common Lisp should not

depend on any relationships not explicitly stated here. For example, it is not

valid to assume that because a number is not complex and not rational that

it must be a float, because implementations are permitted to provide yet
other kinds of numbers.

First we need some terminology. If x is a supertype of y, then any object
of type y is also of type x, and y is said to be a subtype of x. If types x and

y are disjoint, then no object (in any implementation) may be both of type x

and of type y. Types a1 through an are an exhaustive union of type x if each

aj is a subtype of x, and any object of type x is necessarily of at least one of
the types aj; a1 through an are furthermore an exhaustive partition if they are

also pairwise disjoint.

. The type t is a supertype of every type whatsoever. Every object is of type
t.

. The type nil is a subtype of every type whatsoever. No object is of type

nil.

. The types cons, symbol, array, number, and character are pairwise dis-
........................................................................................................................................................................................................

joint.

X3J13 voted in June 1988 〈41〉 to extend the preceding paragraph as follows.

. The types cons, symbol, array, number, character, hash-table,

readtable, package, pathname, stream, random-state, and any single
other type created by defstruct or defclass are pairwise disjoint.

The wording of the first edition was intended to allow implementors to use

the defstruct facility to define the built-in types hash-table, readtable,
package, pathname, stream, random-state. The change still permits this im-

plementation strategy but forbids these built-in types from including, or being

included in, other types (in the sense of the defstruct :include option).

X3J13 voted in June 1988 〈90〉 to specify that the type function is disjoint

from the types cons, symbol, array, number, and character. The type

compiled-function is a subtype of function; implementations are free to
define other subtypes of function.
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. The types rational, float, and complex are pairwise disjoint subtypes of
........................................................................................................................................................................................................

number.

X3J13 voted in March 1989 〈151〉 to rewrite the preceding item as follows.

. The types real and complex are pairwise disjoint subtypes of number.

Rationale: It might be thought that real and complex should form an exhaustive
partition of the type number. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp number system.

. The types rational and float are pairwise disjoint subtypes of real.

Rationale: It might be thought that rational and float should form an exhaus-
tive partition of the type real. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp number system.

. The types integer and ratio are disjoint subtypes of rational.

Rationale: It might be thought that integer and ratio should form an exhaustive
partition of the type rational. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp rational number
system.

. The types fixnum and bignum are disjoint subtypes of integer.
........................................................................................................................................................................................................

Rationale: It might be thought that fixnum and bignum should form an exhaustive
partition of the type integer. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp integer number
system, such as the idea of adding explicit representations of infinity or of positive
and negative infinity.

X3J13 voted in January 1989 〈76〉 to specify that the types fixnum and

bignum do in fact form an exhaustive partition of the type integer; more

precisely, they voted to specify that the type bignum is by definition equivalent

to (and integer (not fixnum)). This is consistent with the first edition

text in section 2.1.1.

I interpret this to mean that implementators could still experiment with
such extensions as adding explicit representations of infinity, but such infinities

would necessarily be of type bignum.
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. The types short-float, single-float, double-float, and long-float

are subtypes of float. Any two of them must be either disjoint or identical;

if identical, then any other types between them in the above ordering must

also be identical to them (for example, if single-float and long-float

are identical types, then double-float must be identical to them also).

. The type null is a subtype of symbol; the only object of type null is nil.

. The types cons and null form an exhaustive partition of the type list.

. The type standard-char is a subtype of string-char; string-char is a
........................................................................................................................................................................................................

subtype of character.

X3J13 voted in March 1989 〈11〉 to remove the type string-char. The

preceding item is replaced by the following.

. The type standard-char is a subtype of base-character. The types

base-character and extended-character form an exhaustive partition
of character.

. The type string is a subtype of vector, for string means (vector
........................................................................................................................................................................................................

string-char).
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X3J13 voted in March 1989 〈11〉 to remove the type string-char. The

preceding item is replaced by the following.

. The type string is a subtype of vector; it is the union of all types
(vector c) such that c is a subtype of character.

. The type bit-vector is a subtype of vector, for bit-vector means

(vector bit).

. The types (vector t), string, and bit-vector are disjoint.

. The type vector is a subtype of array; for all types x, the type (vector

x) is the same as the type (array x (*)).

. The type simple-array is a subtype of array.

. The types simple-vector, simple-string, and simple-bit-vector are
........................................................................................................................................................................................................

disjoint subtypes of simple-array, for they respectively mean (simple-

array t (*)), (simple-array string-char (*)), and (simple-array

bit (*)).

X3J13 voted in March 1989 〈11〉 to remove the type string-char. The

preceding item is replaced by the following.

. The types simple-vector, simple-string, and simple-bit-vector are

disjoint subtypes of simple-array, for they mean (simple-array t (*)),

the union of all types (simple-array c (*)) such that c is a subtype of

character, and (simple-array bit (*)), respectively.

. The type simple-vector is a subtype of vector and indeed is a subtype

of (vector t).

. The type simple-string is a subtype of string. (Note that although
string is a subtype of vector, simple-string is not a subtype of simple-

vector.)

Rationale: The hypothetical name simple-general-vector would have been more
accurate than simple-vector, but in this instance euphony and user convenience
were deemed more important to the design of Common Lisp than a rigid symmetry.

. The type simple-bit-vector is a subtype of bit-vector. (Note that

although bit-vector is a subtype of vector, simple-bit-vector is not a

subtype of simple-vector.)

. The types vector and list are disjoint subtypes of sequence.
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. The types random-state, readtable, package, pathname, stream, and

hash-table are pairwise disjoint.

X3J13 voted in June 1988 〈41〉 to make random-state, readtable,

package, pathname, stream, and hash-table pairwise disjoint from a number

of other types as well; see note above.

X3J13 voted in January 1989 〈167〉 to introduce subtypes of type stream.

. The types two-way-stream, echo-stream, broadcast-stream, file-

stream, synonym-stream, string-stream, and concatenated-stream are

disjoint subtypes of stream.

. Any two types created by defstruct are disjoint unless one is a supertype

of the other by virtue of the :include option.

. An exhaustive union for the type common is formed by the types cons,
........................................................................................................................................................................................................

symbol, (array x) where x is either t or a subtype of common, string,
fixnum, bignum, ratio, short-float, single-float, double-float,

long-float, (complex x) where x is a subtype of common, standard-char,

hash-table, readtable, package, pathname, stream, random-state, and

all types created by the user via defstruct. An implementation may not

unilaterally add subtypes to common; however, future revisions to the Com-
mon Lisp standard may extend the definition of the common data type. Note

that a type such as number or arraymay or may not be a subtype of common,

depending on whether or not the given implementation has extended the

set of objects of that type.

X3J13 voted in March 1989 〈17〉 to remove the type common from the lan-
guage.
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Scope and Extent

In describing various features of the Common Lisp language, the notions of

scope and extent are frequently useful. These notions arise when some object

or construct must be referred to from some distant part of a program. Scope

refers to the spatial or textual region of the program within which references
may occur. Extent refers to the interval of time during which references may

occur.

As a simple example, consider this program:

(defun copy-cell (x) (cons (car x) (cdr x)))

The scope of the parameter named x is the body of the defun form. There is

no way to refer to this parameter from any other place but within the body of

the defun. Similarly, the extent of the parameter x (for any particular call to

copy-cell) is the interval from the time the function is invoked to the time

it is exited. (In the general case, the extent of a parameter may last beyond
the time of function exit, but that cannot occur in this simple case.)

Within Common Lisp, a referenceable entity is established by the execu-
tion of some language construct, and the scope and extent of the entity are

described relative to the construct and the time (during execution of the con-

struct) at which the entity is established. For the purposes of this discussion,

the term “entity” refers not only to Common Lisp data objects, such as sym-
bols and conses, but also to variable bindings (both ordinary and special),

catchers, and go targets. It is important to distinguish between an entity and

a name for the entity. In a function definition such as

(defun foo (x y) (* x (+ y 1)))

there is a single name, x, used to refer to the first parameter of the procedure

whenever it is invoked; however, a new binding is established on every invoca-

tion. A binding is a particular parameter instance. The value of a reference to

46
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the name x depends not only on the scope within which it occurs (the one in

the body of foo in the example occurs in the scope of the function definition’s

parameters) but also on the particular binding or instance involved. (In this

case, it depends on the invocation during which the reference is made). More

complicated examples appear at the end of this chapter.

There are a few kinds of scope and extent that are particularly useful in

describing Common Lisp:

. Lexical scope. Here references to the established entity can occur only within

certain program portions that are lexically (that is, textually) contained

within the establishing construct. Typically the construct will have a part

designated the body, and the scope of all entities established will be (or
include) the body.

Example: the names of parameters to a function normally are lexically

scoped.

. Indefinite scope. References may occur anywhere, in any program.

. Dynamic extent. References may occur at any time in the interval between

establishment of the entity and the explicit disestablishment of the entity.

As a rule, the entity is disestablished when execution of the establishing

construct completes or is otherwise terminated. Therefore entities with dy-
namic extent obey a stack-like discipline, paralleling the nested executions

of their establishing constructs.

Example: the with-open-file construct opens a connection to a file and

creates a stream object to represent the connection. The stream object
has indefinite extent, but the connection to the open file has dynamic ex-

tent: when control exits the with-open-file construct, either normally or

abnormally, the stream is automatically closed.

Example: the binding of a “special” variable has dynamic extent.

. Indefinite extent. The entity continues to exist as long as the possibility

of reference remains. (An implementation is free to destroy the entity if

it can prove that reference to it is no longer possible. Garbage collection

strategies implicitly employ such proofs.)

Example: most Common Lisp data objects have indefinite extent.

Example: the bindings of lexically scoped parameters of a function have

indefinite extent. (By contrast, in Algol the bindings of lexically scoped

parameters of a procedure have dynamic extent.) The function definition
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(defun compose (f g)

#--’(lambda (x)

(funcall f (funcall g x))))

when given two arguments, immediately returns a function as its value.

The parameter bindings for f and g do not disappear because the returned
function, when called, could still refer to those bindings. Therefore

(funcall (compose #--’sqrt #--’abs) -9.0)

produces the value 3.0. (An analogous procedure would not necessarily

work correctly in typical Algol implementations or, for that matter, in most

Lisp dialects.)

In addition to the above terms, it is convenient to define dynamic scope

to mean indefinite scope and dynamic extent. Thus we speak of “special”
variables as having dynamic scope, or being dynamically scoped, because they

have indefinite scope and dynamic extent: a special variable can be referred

to anywhere as long as its binding is currently in effect.

The term “dynamic scope” is a misnomer. Nevertheless it is both traditional
and useful.

The above definitions do not take into account the possibility of shadowing.

Remote reference of entities is accomplished by using names of one kind or

another. If two entities have the same name, then the second may shadow

the first, in which case an occurrence of the name will refer to the second and
cannot refer to the first.

In the case of lexical scope, if two constructs that establish entities with the

same name are textually nested, then references within the inner construct

refer to the entity established by the inner one; the inner one shadows the
outer one. Outside the inner construct but inside the outer one, references

refer to the entity established by the outer construct. For example:

(defun test (x z)

(let ((z (* x 2))) (print z))

z)

The binding of the variable z by the let construct shadows the parameter

binding for the function test. The reference to the variable z in the print

form refers to the let binding. The reference to z at the end of the function

refers to the parameter named z.

In the case of dynamic extent, if the time intervals of two entities overlap,

then one interval will necessarily be nested within the other one. This is a

property of the design of Common Lisp.
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Implementation note: Behind the assertion that dynamic extents nest properly
is the assumption that there is only a single program or process. Common Lisp
does not address the problems of multiprogramming (timesharing) or multiprocess-
ing (more than one active processor) within a single Lisp environment. The doc-
umentation for implementations that extend Common Lisp for multiprogramming
or multiprocessing should be very clear on what modifications are induced by such
extensions to the rules of extent and scope. Implementors should note that Common
Lisp has been carefully designed to allow special variables to be implemented using
either the “deep binding” technique or the “shallow binding” technique, but the two
techniques have different semantic and performance implications for multiprogram-
ming and multiprocessing.

A reference by name to an entity with dynamic extent will always refer to

the entity of that name that has been most recently established that has not

yet been disestablished. For example:

(defun fun1 (x)

(catch ’trap (+ 3 (fun2 x))))

(defun fun2 (y)

(catch ’trap (* 5 (fun3 y))))

(defun fun3 (z)

(throw ’trap z))

Consider the call (fun1 7). The result will be 10. At the time the throw

is executed, there are two outstanding catchers with the name trap: one

established within procedure fun1, and the other within procedure fun2. The

latter is the more recent, and so the value 7 is returned from the catch form
in fun2. Viewed from within fun3, the catch in fun2 shadows the one in

fun1. Had fun2 been defined as

(defun fun2 (y)

(catch ’snare (* 5 (fun3 y))))

then the two catchers would have different names, and therefore the one in
fun1 would not be shadowed. The result would then have been 7.

As a rule, this book simply speaks of the scope or extent of an entity; the

possibility of shadowing is left implicit.

The important scope and extent rules in Common Lisp follow:

. Variable bindings normally have lexical scope and indefinite extent.
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. Variable bindings for which there is a dynamic-extent declaration also have

lexical scope and indefinite extent, but objects that are the values of such

bindings may have dynamic extent. (The declaration is the programmer’s

guarantee that the program will behave correctly even if certain of the data

objects have only dynamic extent rather than the usual indefinite extent.)

. Bindings of variable names to symbol macros by symbol-macrolet have

lexical scope and indefinite extent.

. Variable bindings that are declared to be special have dynamic scope

(indefinite scope and dynamic extent).

. Bindings of function names established, for example, by flet and labels

have lexical scope and indefinite extent.

. Bindings of function names for which there is a dynamic-extent declaration
also have lexical scope and indefinite extent, but function objects that are

the values of such bindings may have dynamic extent.

. Bindings of function names to macros as established by macrolet have

lexical scope and indefinite extent.

. Condition handlers and restarts have dynamic scope (see chapter 29).

. A catcher established by a catch or unwind-protect special form has dy-

namic scope.

. An exit point established by a block construct has lexical scope and dy-

namic extent. (Such exit points are also established by do, prog, and other

iteration constructs.)

. The go targets established by a tagbody, named by the tags in the tagbody,

and referred to by go have lexical scope and dynamic extent. (Such go

targets may also appear as tags in the bodies of do, prog, and other iteration

constructs.)

. Named constants such as nil and pi have indefinite scope and indefinite

extent.

The rules of lexical scoping imply that lambda-expressions appearing in the

function construct will, in general, result in “closures” over those non-special
variables visible to the lambda-expression. That is, the function represented

by a lambda-expression may refer to any lexically apparent non-special vari-

able and get the correct value, even if the construct that established the

binding has been exited in the course of execution. The compose example

shown earlier in this chapter provides one illustration of this. The rules also
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imply that special variable bindings are not “closed over” as they may be in

certain other dialects of Lisp.

Constructs that use lexical scope effectively generate a new name for each
established entity on each execution. Therefore dynamic shadowing cannot

occur (though lexical shadowing may). This is of particular importance when

dynamic extent is involved. For example:

(defun contorted-example (f g x)

(if (UU x 0)

(funcall f)

(block here

(+ 5 (contorted-example g

#--’(lambda ()

(return-from here 4))

(- x 1))))))

Consider the call (contorted-example nil nil 2). This produces the re-

sult 4. During the course of execution, there are three calls on contorted-

example, interleaved with two establishments of blocks:

(contorted-example nil nil 2)

(block here1 ...)

(contorted-example nil #--’(lambda () (return-from here1 4)) 1)

(block here2 ...)

(contorted-example #--’(lambda () (return-from here1 4))

#--’(lambda () (return-from here2 4))

0)

(funcall f)

where f ⇒ #--’(lambda () (return-from here1 4))

(return-from here1 4)

At the time the funcall is executed there are two block exit points out-

standing, each apparently named here. In the trace above, these exit points

are distinguished for expository purposes by subscripts. The return-from

form executed as a result of the funcall operation refers to the outer out-

standing exit point (here1), not the inner one (here2). This is a consequence
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of the rules of lexical scoping: it refers to that exit point textually visible at

the point of execution of the function construct (here abbreviated by the #--’

syntax) that resulted in creation of the function object actually invoked by

the funcall.

If, in this example, one were to change the form (funcall f) to (funcall

g), then the value of the call (contorted-example nil nil 2) would be 9.

The value would change because the funcall would cause the execution of

(return-from here2 4), thereby causing a return from the inner exit point

(here2). When that occurs, the value 4 is returned from the middle invocation
of contorted-example, 5 is added to that to get 9, and that value is returned

from the outer block and the outermost call to contorted-example. The

point is that the choice of exit point returned from has nothing to do with

its being innermost or outermost; rather, it depends on the lexical scoping

information that is effectively packaged up with a lambda-expression when
the function construct is executed.

This function contorted-example works only because the function named

by f is invoked during the extent of the exit point. Block exit points are like

non-special variable bindings in having lexical scope, but they differ in having
dynamic extent rather than indefinite extent. Once the flow of execution has

left the block construct, the exit point is disestablished. For example:

(defun illegal-example ()

(let ((y (block here #--’(lambda (z) (return-from here z)))))

(if (numberp y) y (funcall y 5))))

One might expect the call (illegal-example) to produce 5 by the following

incorrect reasoning: the let statement binds the variable y to the value of the

block construct; this value is a function resulting from the lambda-expression.

Because y is not a number, it is invoked on the value 5. The return-from

should then return this value from the exit point named here, thereby exiting

from the block again and giving y the value 5 which, being a number, is then

returned as the value of the call to illegal-example.

The argument fails only because exit points are defined in Common Lisp
to have dynamic extent. The argument is correct up to the execution of the

return-from. The execution of the return-from is an error, however, not

because it cannot refer to the exit point, but because it does correctly refer

to an exit point and that exit point has been disestablished.
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Type Specifiers

In Common Lisp, types are named by Lisp objects, specifically symbols

and lists, called type specifiers. Symbols name predefined classes of objects,
whereas lists usually indicate combinations or specializations of simpler types.

Symbols or lists may also be abbreviations for types that could be specified

in other ways.

4.1. Type Specifier Symbols

The type symbols defined by the system include those shown in table 4-1. In

addition, when a structure type is defined using defstruct, the name of the
structure type becomes a valid type symbol.

Notice of correction. In the first edition, the type specifiers signed-byte

and unsigned-byte were inadvertently omitted from table 4-1.

X3J13 voted in March 1989 〈17〉 to eliminate the type common; this fact is

indicated by the brackets around the common type specifier in the table.
X3J13 voted in March 1989 〈11〉 to eliminate the type string-char; this

fact is indicated by the brackets around the string-char type specifier in the

table.

X3J13 voted in March 1989 〈11〉 to add the type extended-character and
the type base-character.

X3J13 voted in March 1989 〈151〉 to add the type specifier real.

X3J13 votes have also implicitly added many other type specifiers as names

of classes (see chapter 28) or of conditions (see chapter 29).

4.2. Type Specifier Lists

If a type specifier is a list, the car of the list is a symbol, and the rest of the

list is subsidiary type information. In many cases a subsidiary item may be

53
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Table 4-1: Standard Type Specifier Symbols

array fixnum package simple-string

atom float pathname simple-vector

bignum function random-state single-float

bit hash-table ratio standard-char

bit-vector integer rational stream

character keyword readtable string

[common] list sequence [string-char]
compiled-function long-float short-float symbol

complex nil signed-byte t

cons null simple-array unsigned-byte

double-float number simple-bit-vector vector

X3J13 voted in March 1989 〈17〉 to remove the type common.
X3J13 voted in March 1989 〈11〉 to remove the type string-char.
X3J13 voted in March 1989 〈11〉 to add base-character and extended-character.
X3J13 voted in March 1989 〈151〉 to add the type real.

unspecified. The unspecified subsidiary item is indicated by writing *. For
example, to completely specify a vector type, one must mention the type of

the elements and the length of the vector, as for example

(vector double-float 100)

To leave the length unspecified, one would write

(vector double-float *)

To leave the element type unspecified, one would write

(vector * 100)

One may also leave both length and element type unspecified:

(vector * *)

Suppose that two type specifiers are the same except that the first has a *

where the second has a more explicit specification. Then the second denotes

a subtype of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end,

such items may simply be dropped rather than writing an explicit * for each

one. If dropping all occurrences of * results in a singleton list, then the
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parentheses may be dropped as well (the list may be replaced by the sym-

bol in its car). For example, (vector double-float *) may be abbrevi-

ated to (vector double-float), and (vector * *) may be abbreviated to

(vector) and then to simply vector.

4.3. Predicating Type Specifiers

A type specifier list (satisfies predicate-name) denotes the set of all objects

that satisfy the predicate named by predicate-name, which must be a sym-
bol whose global function definition is a one-argument predicate. (A name is

required; lambda-expressions are disallowed in order to avoid scoping prob-

lems.) For example, the type (satisfies numberp) is the same as the type

number. The call (typep x ’(satisfies p)) results in applying p to x and

returning t if the result is true and nil if the result is false.
As an example, the type string-char could be defined as

........................................................................................................................................................................................................

(deftype string-char ()

’(and character (satisfies string-char-p)))

See deftype.

X3J13 voted in March 1989 〈17〉 to remove the type string-char and the
function string-char-p from the language.

It is not a good idea for a predicate appearing in a satisfies type specifier

to cause any side effects when invoked.

4.4. Type Specifiers That Combine

The following type specifier lists define a type in terms of other types or

objects.

(member object1 object2 ...)

This denotes the set containing precisely those objects named. An object is
of this type if and only if it is eql to one of the specified objects.

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s
memq.

(eql object)

X3J13 voted in June 1988 〈12〉 to add the eql type specifier. It may be used
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as a parameter specializer for CLOS methods (see section 28.1.6.2 and find-

method). It denotes the set of the one object named; an object is of this type

if and only if it is eql to object. While (eql object) denotes the same type

as (member object), only (eql object) may be used as a CLOS parameter

specializer.

(not type)

This denotes the set of all those objects that are not of the specified type.

(and type1 type2 ...)

This denotes the intersection of the specified types.

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s
allof.

When typep processes an and type specifier, it always tests each of the

component types in order from left to right and stops processing as soon

as one component of the intersection has been found to which the object in

question does not belong. In this respect an and type specifier is similar to an
executable and form. The purpose of this similarity is to allow a satisfies

type specifier to depend on filtering by previous type specifiers. For example,

suppose there were a function primep that takes an integer and says whether

it is prime. Suppose also that it is an error to give any object other than an
integer to primep. Then the type specifier

(and integer (satisfies primep))

is guaranteed never to result in an error because the function primep will not

be invoked unless the object in question has already been determined to be
an integer.

(or type1 type2 ...)

This denotes the union of the specified types. For example, the type list by

definition is the same as (or null cons). Also, the value returned by the
function position is always of type (or null (integer 0 *)) (either nil

or a non-negative integer).

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s
oneof.
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As for and, when typep processes an or type specifier, it always tests each

of the component types in order from left to right and stops processing as

soon as one component of the union has been found to which the object in

question belongs.

4.5. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by sym-
bols. These specializations may be reflected by more efficient representations

in the underlying implementation. As an example, consider the type (array

short-float). Implementation A may choose to provide a specialized rep-

resentation for arrays of short floating-point numbers, and implementation B

may choose not to.
If you should want to create an array for the express purpose of hold-

ing only short-float objects, you may optionally specify to make-array the

element type short-float. This does not require make-array to create an

object of type (array short-float); it merely permits it. The request is con-
strued to mean “Produce the most specialized array representation capable of

holding short-floats that the implementation can provide.” Implementation

A will then produce a specialized array of type (array short-float), and

implementation B will produce an ordinary array of type (array t).

If one were then to ask whether the array were actually of type (array

short-float), implementation A would say “yes,” but implementation B

would say “no.” This is a property of make-array and similar functions:

what you ask for is not necessarily what you get.

Types can therefore be used for two different purposes: declaration and
........................................................................................................................................................................................................

discrimination. Declaring to make-array that elements will always be of type

short-float permits optimization. Similarly, declaring that a variable takes

on values of type (array short-float) amounts to saying that the variable

will take on values that might be produced by specifying element type short-

float to make-array. On the other hand, if the predicate typep is used to
test whether an object is of type (array short-float), only objects actually

of that specialized type can satisfy the test; in implementation B no object

can pass that test.

X3J13 voted in January 1989 〈8〉 to eliminate the differing treatment of
types when used “for discrimination” rather than “for declaration” on the

grounds that implementors have not treated the distinction consistently and

(which is more important) users have found the distinction confusing.

As a consequence of this change, the behavior of typep and subtypep on

array and complex type specifiers must be modified. See the descriptions of
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those functions. In particular, under their new behavior, implementation B

would say “yes,” agreeing with implementation A, in the discussion above.

Note that the distinction between declaration and discrimination remains
useful, if only so that we may remark that the specialized (list) form of the

function type specifier may still be used only for declaration and not for

discrimination.

X3J13 voted in June 1988 〈90〉 to clarify that while the specialized form of

the function type specifier (a list of the symbol function possibly followed

by argument and value type specifiers) may be used only for declaration, the

symbol form (simply the name function) may be used for discrimination.

The valid list-format names for data types are as follows:

(array element-type dimensions)

This denotes the set of specialized arrays whose elements are all members of

the type element-type and whose dimensions match dimensions. For declara-

tion purposes, this type encompasses those arrays that can result by specifying

element-type as the element type to the function make-array; this may be dif-
ferent from what the type means for discrimination purposes. element-type

must be a valid type specifier or unspecified. dimensions may be a non-

negative integer, which is the number of dimensions, or it may be a list of

non-negative integers representing the length of each dimension (any dimen-
sion may be unspecified instead), or it may be unspecified. For example:

(array integer 3) ;Three-dimensional arrays of integers

(array integer (* * *)) ;Three-dimensional arrays of integers
(array * (4 5 6)) ;4-by-5-by-6 arrays

(array character (3 *)) ;Two-dimensional arrays of characters

; that have exactly three rows

(array short-float ()) ;Zero-rank arrays of short-format

; floating-point numbers

Note that (array t) is a proper subset of (array *). The reason is that

(array t) is the set of arrays that can hold any Common Lisp object (the ele-

ments are of type t, which includes all objects). On the other hand, (array *)

is the set of all arrays whatsoever, including, for example, arrays that can hold
only characters. Now (array character) is not a subset of (array t); the

two sets are in fact disjoint because (array character) is not the set of all

arrays that can hold characters but rather the set of arrays that are special-

ized to hold precisely characters and no other objects. To test whether an

array foo can hold a character, one should not use
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(typep foo ’(array character))

but rather

(subtypep ’character (array-element-type foo))

See array-element-type.

X3J13 voted in January 1989 〈8〉 to change typep and subtypep so that

the specialized array type specifier means the same thing for discrimination

as for declaration: it encompasses those arrays that can result by specifying
element-type as the element type to the function make-array. Under this

interpretation (array character) might be the same type as (array t) (al-

though it also might not be the same). See upgraded-array-element-type.

However,

(typep foo ’(array character))

is still not a legitimate test of whether the array foo can hold a character;

one must still say

(subtypep ’character (array-element-type foo))

to determine that question.

X3J13 also voted in January 1989 〈43〉 to specify that within the lexical

scope of an array type declaration, it is an error for an array element, when
referenced, not to be of the exact declared element type. A compiler may,

for example, treat every reference to an element of a declared array as if

the reference were surrounded by a the form mentioning the declared array

element type (not the upgraded array element type). Thus

(defun snarf-hex-digits (the-array)

(declare (type (array (unsigned-byte 4) 1) the-array))

(do ((j (- (length array) 1) (- j 1))

(val 0 (logior (ash val 4)

(aref the-array j))))

((< j 0) val)))

may be treated as
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(defun snarf-hex-digits (the-array)

(declare (type (array (unsigned-byte 4) 1) the-array))

(do ((j (- (length array) 1) (- j 1))

(val 0 (logior (ash val 4)

(the (unsigned-byte 4)

(aref the-array j)))))

((< j 0) val)))

The declaration amounts to a promise by the user that the aref will never
produce a value outside the interval 0 to 15, even if in that particular imple-

mentation the array element type (unsigned-byte 4) is upgraded to, say,

(unsigned-byte 8). If such upgrading does occur, then values outside that

range may in fact be stored in the-array, as long as the code in snarf-hex-

digits never sees them.

As a general rule, a compiler would be justified in transforming

(aref (the (array elt-type ...) a) ...)

into

(the elt-type (aref (the (array elt-type ...) a) ...)

It may also make inferences involving more complex functions, such as

position or find. For example, find applied to an array always returns
either nil or an object whose type is the element type of the array.

(simple-array element-type dimensions)

This is equivalent to (array element-type dimensions) except that it addi-

tionally specifies that objects of the type are simple arrays (see section 2.5).

(vector element-type size)

This denotes the set of specialized one-dimensional arrays whose elements

are all of type element-type and whose lengths match size. This is entirely

equivalent to (array element-type (size)). For example:

(vector double-float) ;Vectors of double-format

; floating-point numbers

(vector * 5) ;Vectors of length 5

(vector t 5) ;General vectors of length 5

(vector (mod 32) *) ;Vectors of integers between 0 and 31
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The specialized types (vector string-char) and (vector bit) are so
........................................................................................................................................................................................................

useful that they have the special names string and bit-vector. Every im-

plementation of Common Lisp must provide distinct representations for these

as distinct specialized data types.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and
to redefine the type string to be the union of one or more specialized vector

types, the types of whose elements are subtypes of the type character.

(simple-vector size)

This is the same as (vector t size) except that it additionally specifies that

its elements are simple general vectors.

(complex type)

Every element of this type is a complex number whose real part and imaginary

part are each of type type. For declaration purposes, this type encompasses

those complex numbers that can result by giving numbers of the specified type

to the function complex; this may be different from what the type means for

discrimination purposes. As an example, Gaussian integers might be described
as (complex integer), even in implementations where giving two integers to

the function complex results in an object of type (complex rational).

X3J13 voted in January 1989 〈8〉 to change typep and subtypep so that

the specialized complex type specifier means the same thing for discrimination
purposes as for declaration purposes. See upgraded-complex-part-type.

(function (arg1-type arg2-type ...) value-type)

This type may be used only for declaration and not for discrimination; typep
will signal an error if it encounters a specifier of this form. Every element of

this type is a function that accepts arguments at least of the types specified

by the argj-type forms and returns a value that is a member of the types

specified by the value-type form. The &optional, &rest, and &key markers

may appear in the list of argument types. The value-type may be a values

type specifier in order to indicate the types of multiple values.

X3J13 voted in January 1989 〈93〉 to specify that the arg-type that follows

a &rest marker indicates the type of each actual argument that would be

gathered into the list for a &rest parameter, and not the type of the &rest

parameter itself (which is always list). Thus one might declare the function

gcd to be of type (function (&rest integer) integer), or the function

aref to be of type (function (array &rest fixnum) t).

X3J13 voted in March 1988 〈92〉 to specify that, in a function type spec-

ifier, an argument type specifier following &key must be a list of two items,
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a keyword and a type specifier. The keyword must be a valid keyword-name

symbol that may be supplied in the actual arguments of a call to the function,

and the type specifier indicates the permitted type of the corresponding argu-

ment value. (The keyword-name symbol is typically a keyword, but another

X3J13 vote 〈105〉 allows it to be any symbol.) Furthermore, if &allow-other-
keys is not present, the set of keyword-names mentioned in the function type

specifier may be assumed to be exhaustive; for example, a compiler would be

justified in issuing a warning for a function call using a keyword argument

name not mentioned in the type declaration for the function being called. If
&allow-other-keys is present in the function type specifier, other keyword

arguments may be supplied when calling a function of the indicated type, and

if supplied such arguments may possibly be used.

As an example, the function cons is of type (function (t t) cons), be-
........................................................................................................................................................................................................

cause it can accept any two arguments and always returns a cons. The func-
tion cons is also of type (function (float string) list), because it can

certainly accept a floating-point number and a string (among other things),

and its result is always of type list (in fact a cons is never null, but that

does not matter for this type declaration). The function truncate is of type
(function (number number) (values number number)), as well as of type

(function (integer (mod 8)) integer).

X3J13 voted in January 1989 〈91〉 to alter the meaning of the function

type specifier when used in type and ftype declarations. While the preceding

formulation may be theoretically elegant, they have found that it is not useful
to compiler implementors and that it is not the interpretation that users

expect. X3J13 prescribed instead the following interpretation of declarations.

A declaration specifier of the form

(ftype (function (arg1-type arg2-type ... argn-type) value-type) fname)

implies that any function call of the form

(fname arg1 arg2 ...)

within the scope of the declaration can be treated as if it were rewritten to
use the-forms in the following manner:

(the value-type

(fname (the arg1-type arg1)

(the arg2-type arg2)

...

(the argn-type argn)))
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That is, it is an error for any of the actual arguments not to be of its specified

type arg-type or for the result not to be of the specified type value-type. (In

particular, if any argument is not of its specified type, then the result is not

guaranteed to be of the specified type—if indeed a result is returned at all.)

Similarly, a declaration specifier of the form

(type (function (arg1-type arg2-type ... argn-type) value-type) var)

is interpreted to mean that any reference to the variable var will find that its

value is a function, and that it is an error to call this function with any actual

argument not of its specified type arg-type. Also, it is an error for the result
not to be of the specified type value-type. For example, a function call of the

form

(funcall var arg1 arg2 ...)

could be rewritten to use the-forms as well. If any argument is not of its

specified type, then the result is not guaranteed to be of the specified type—if

indeed a result is returned at all.

Thus, a type or ftype declaration specifier describes type requirements

imposed on calls to a function as opposed to requirements imposed on the
definition of the function. This is analogous to the treatment of type decla-

rations of variables as imposing type requirements on references to variables,

rather than on the contents of variables. See the vote of X3J13 on type

declaration specifiers in general, discussed in section 9.2.
In the same manner as for variable type declarations in general, if two or

more of these declarations apply to the same function call (which can occur if

declaration scopes are suitably nested), then they all apply; in effect, the types

for each argument or result are intersected. For example, the code fragment

(locally (declare (ftype (function (biped) digit)

butcher-fudge))

(locally (declare (ftype (function (featherless) opposable)

butcher-fudge))

(butcher-fudge sam)))

may be regarded as equivalent to

(the opposable

(the digit (butcher-fudge (the featherless

(the biped sam)))))
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or to

(the (and opposable digit)

(butcher-fudge (the (and featherless biped) sam)))

That is, sam had better be both featherless and a biped, and the result

of butcher-fudge had better be both opposable and a digit; otherwise the

code is in error. Therefore a compiler may generate code that relies on these

type assumptions, for example.

(values value1-type value2-type ...)

This type specifier is extremely restricted: it may be used only as the value-

type in a function type specifier or in a the special form. It is used to specify

individual types when multiple values are involved. The &optional, &rest,
and &key markers may appear in the value-type list; they thereby indicate the

parameter list of a function that, when given to multiple-value-call along

with the values, would be suitable for receiving those values.

4.6. Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other

type specifiers that would be far too verbose to write out explicitly (using, for

example, member).

(integer low high)

Denotes the integers between low and high. The limits low and high must each

be an integer, a list of an integer, or unspecified. An integer is an inclusive
limit, a list of an integer is an exclusive limit, and * means that a limit does not

exist and so effectively denotes minus or plus infinity, respectively. The type

fixnum is simply a name for (integer smallest largest) for implementation-

dependent values of smallest and largest (see most-negative-fixnum and

most-positive-fixnum). The type (integer 0 1) is so useful that it has
the special name bit.

(mod n)

Denotes the set of non-negative integers less than n. This is equivalent to
(integer 0 n−1) or to (integer 0 (n)).

(signed-byte s)

Denotes the set of integers that can be represented in two’s-complement form
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in a byte of s bits. This is equivalent to (integer −2s−1 2s−1−1). Simply

signed-byte or (signed-byte *) is the same as integer.

(unsigned-byte s)

Denotes the set of non-negative integers that can be represented in a byte of

s bits. This is equivalent to (mod 2s), that is, (integer 0 2s−1). Simply

unsigned-byte or (unsigned-byte *) is the same as (integer 0 *), the

set of non-negative integers.

(rational low high)

Denotes the rationals between low and high. The limits low and high must

each be a rational, a list of a rational, or unspecified. A rational is an inclusive
limit, a list of a rational is an exclusive limit, and * means that a limit does

not exist and so effectively denotes minus or plus infinity, respectively.

(float low high)

Denotes the set of floating-point numbers between low and high. The limits

low and high must each be a floating-point number, a list of a floating-point

number, or unspecified; a floating-point number is an inclusive limit, a list of

a floating-point number is an exclusive limit, and * means that a limit does
not exist and so effectively denotes minus or plus infinity, respectively.

In a similar manner, one may use:

(short-float low high)

(single-float low high)

(double-float low high)

(long-float low high)

In this case, if a limit is a floating-point number (or a list of one), it must be

one of the appropriate format.

X3J13 voted in March 1989 〈151〉 to add a list form of the real type specifier

to denote an interval of real numbers.

(real low high)

Denotes the real numbers between low and high. The limits low and high must

each be a real, a list of a real, or unspecified. A real is an inclusive limit, a

list of a real is an exclusive limit, and * means that a limit does not exist and
so effectively denotes minus or plus infinity, respectively.
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(string size)........................................................................................................................................................................................................

Means the same as (array string-char (size)): the set of strings of the
indicated size.

(simple-string size)

Means the same as (simple-array string-char (size)): the set of simple

strings of the indicated size.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and

to redefine the type string to be the union of one or more specialized vector

types, the types of whose elements are subtypes of the type character. Sim-
ilarly, the type simple-string is redefined to be the union of one or more

specialized simple vector types, the types of whose elements are subtypes of

the type character.

(base-string size)

Means the same as (vector base-character size): the set of base strings

of the indicated size.

(simple-base-string size)

Means the same as (simple-array base-character (size)): the set of sim-

ple base strings of the indicated size.

(bit-vector size)

Means the same as (array bit (size)): the set of bit-vectors of the indicated

size.

(simple-bit-vector size)

This means the same as (simple-array bit (size)): the set of bit-vectors
of the indicated size.

4.7. Defining New Type Specifiers

New type specifiers can come into existence in two ways. First, defining a new

structure type with defstruct automatically causes the name of the structure

to be a new type specifier symbol. Second, the deftype special form can be

used to define new type-specifier abbreviations.
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[Macro]deftype name lambda-list [[ {declaration}∗ | doc-string ]] { form}∗

This is very similar to a defmacro form: name is the symbol that identifies

the type specifier being defined, lambda-list is a lambda-list (and may contain

&optional and &rest markers), and the forms constitute the body of the

expander function. If we view a type specifier list as a list containing the type

specifier name and some argument forms, the argument forms (unevaluated)
are bound to the corresponding parameters in lambda-list. Then the body

forms are evaluated as an implicit progn, and the value of the last form is

interpreted as a new type specifier for which the original specifier was an

abbreviation. The name is returned as the value of the deftype form.

deftype differs from defmacro in that if no initform is specified for an

&optional parameter, the default value is *, not nil.

If the optional documentation string doc-string is present, then it is attached

to the name as a documentation string of type type; see documentation.

Here are some examples of the use of deftype:

(deftype mod (n) ‘(integer 0 (,n)))

(deftype list () ’(or null cons))

(deftype square-matrix (&optional type size)

"SQUARE-MATRIX includes all square two-dimensional arrays."

‘(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))

(square-matrix bit) means (array bit (* *))

If the type name defined by deftype is used simply as a type specifier symbol,
it is interpreted as a type specifier list with no argument forms. Thus, in the

example above, square-matrixwould mean (array * (* *)), the set of two-

dimensional arrays. This would unfortunately fail to convey the constraint

that the two dimensions be the same; (square-matrix bit) has the same
problem. A better definition is

(defun equidimensional (a)

(or (< (array-rank a) 2)

(apply #--’UU (array-dimensions a))))

(deftype square-matrix (&optional type size)

‘(and (array ,type (,size ,size))
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(satisfies equidimensional)))

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander
function defined by deftype is implicitly enclosed in a block construct whose

name is the same as the name of the defined type. Therefore return-from

may be used to exit from the function.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms nor-

mally appear at top level, it is meaningful to place them in non-top-level

contexts; deftype must define the expander function within the enclosing

lexical environment, not within the global environment.

4.8. Type Conversion Function

The following function may be used to convert an object to an equivalent

object of another type.

[Function]coerce object result-type

The result-type must be a type specifier; the object is converted to an “equiv-

alent” object of the specified type. If the coercion cannot be performed, then
an error is signaled. In particular, (coerce x ’nil) always signals an error.

If object is already of the specified type, as determined by typep, then it is

simply returned. It is not generally possible to convert any object to be of

any type whatsoever; only certain conversions are permitted:

. Any sequence type may be converted to any other sequence type, provided
the new sequence can contain all actual elements of the old sequence (it is

an error if it cannot). If the result-type is specified as simply array, for

example, then (array t) is assumed. A specialized type such as string or

(vector (complex short-float)) may be specified; of course, the result
may be of either that type or some more general type, as determined by the

implementation. Elements of the new sequence will be eql to corresponding

elements of the old sequence. If the sequence is already of the specified

type, it may be returned without copying it; in this, (coerce sequence

type) differs from (concatenate type sequence), for the latter is required
to copy the argument sequence. In particular, if one specifies sequence,

then the argument may simply be returned if it already is a sequence.

(coerce ’(a b c) ’vector) ⇒ #--(a b c)
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X3J13 voted in June 1989 〈158〉 to specify that coerce should signal an

error if the new sequence type specifies the number of elements and the old

sequence has a different length.

X3J13 voted in March 1989 〈11〉 to specify that if the result-type is string

then it is understood to mean (vector character), and simple-string is

understood to mean (simple-array character (*)).

. Some strings, symbols, and integers may be converted to characters. If
........................................................................................................................................................................................................

object is a string of length 1, then the sole element of the string is returned.
If object is a symbol whose print name is of length 1, then the sole element

of the print name is returned. If object is an integer n, then (int-char n)

is returned. See character.

(coerce "a" ’character) ⇒ #--\a

X3J13 voted in March 1989 〈11〉 to eliminate int-char from Common Lisp.

Presumably this eliminates the possibility of coercing an integer to a character,
although the vote did not address this question directly.

. Any non-complex number can be converted to a short-float, single-
float, double-float, or long-float. If simply float is specified, and

object is not already a float of some kind, then the object is converted to

a single-float.

(coerce 0 ’short-float) ⇒ 0.0S0

(coerce 3.5L0 ’float) ⇒ 3.5L0

(coerce 7/2 ’float) ⇒ 3.5

. Any number can be converted to a complex number. If the number is not

already complex, then a zero imaginary part is provided by coercing the

integer zero to the type of the given real part. (If the given real part is

rational, however, then the rule of canonical representation for complex

rationals will result in the immediate re-conversion of the result from type
complex back to type rational.)

(coerce 4.5s0 ’complex) ⇒ #--C(4.5S0 0.0S0)

(coerce 7/2 ’complex) ⇒ 7/2

(coerce #--C(7/2 0) ’(complex double-float))

⇒ #--C(3.5D0 0.0D0)

. Any object may be coerced to type t.

(coerce x ’t) ≡ (identity x) ≡ x
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X3J13 voted in June 1988 〈90〉 to allow coercion of certain objects to the

type function:

. A symbol or lambda-expression can be converted to a function. A symbol

is coerced to type function as if by applying symbol-function to the

symbol; an error is signaled if the predicate fboundp is not true of the

symbol or if the symbol names a macro or special form. A list x whose car
is the symbol lambda is coerced to a function as if by execution of (eval

‘#--’,x), that is, of (eval (list ’function x)).

Coercions from floating-point numbers to rationals and from ratios to in-

tegers are purposely not provided because of rounding problems. The func-

tions rational, rationalize, floor, ceiling, truncate, and round may be
used for such purposes. Similarly, coercions from characters to integers are

purposely not provided; char-code or char-int may be used explicitly to

perform such conversions.

4.9. Determining the Type of an Object

The following function may be used to obtain a type specifier describing the

type of a given object.

[Function]type-of object

(type-of object) returns an implementation-dependent result: some type of
........................................................................................................................................................................................................

which the object is a member. Implementors are encouraged to arrange for

type-of to return the most specific type that can be conveniently computed

and is likely to be useful to the user. If the argument is a user-defined named
structure created by defstruct, then type-of will return the type name of

that structure. Because the result is implementation-dependent, it is usually

better to use type-of primarily for debugging purposes; however, in a few

situations portable code requires the use of type-of, such as when the result
is to be given to the coerce or map function. On the other hand, often the

typep function or the typecase construct is more appropriate than type-of.

Compatibility note: In MacLisp the function type-of is called typep, and anoma-
lously so, for it is not a predicate.

Many have observed (and rightly so) that this specification is totally wimpy

and therefore nearly useless. X3J13 voted in June 1989 〈179〉 to place the

following constraints on type-of:
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. Let x be an object such that (typep x type) is true and type is one of the

following:

array float package sequence

bit-vector function pathname short-float

character hash-table random-state single-float

complex integer ratio stream

condition long-float rational string

cons null readtable symbol

double-float number restart vector

Then (subtypep (type-of x) type)) must return the values t and t; that

is, type-of applied to x must return either type itself or a subtype of type
that subtypep can recognize in that implementation.

. For any object x, (subtypep (type-of x) (class-of x)) must produce

the values t and t.

. For every object x, (typep x (type-of x)) must be true. (This implies

that type-of can never return nil, for no object is of type nil.)

. type-of never returns t and never uses a satisfies, and, or, not, or

values type specifier in its result.

. For objects of CLOS metaclass structure-class or of standard-class,

type-of returns the proper name of the class returned by class-of if it has

a proper name, and otherwise returns the class itself. In particular, for any
object created by a defstruct constructor function, where the defstruct

had the name name and no :type option, type-of will return name.

As an example, (type-of "acetylcholinesterase") may return string

or simple-string or (simple-string 20), but not array or simple-

vector. As another example, it is permitted for (type-of 1729) to re-

turn integer or fixnum (if it is indeed a fixnum) or (signed-byte 16) or
(integer 1729 1729) or (integer 1685 1750) or even (mod 1730), but

not rational or number, because

(typep (+ (expt 9 3) (expt 10 3)) ’integer)

is true, integer is in the list of types mentioned above, and

(subtypep (type-of (+ (expt 1 3) (expt 12 3))) ’integer)

would be false if type-of were to return rational or number.
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4.10. Type Upgrading

X3J13 voted in January 1989 〈8〉 to add new functions by which a program can
determine, in a given Common Lisp implementation, how that implementation

will upgrade a type when constructing an array specialized to contain elements

of that type, or a complex number specialized to contain parts of that type.

[Function]upgraded-array-element-type type

A type specifier is returned, indicating the element type of the most specialized

array representation capable of holding items of the specified argument type.
The result is necessarily a supertype of the given type. Furthermore, if a

type A is a subtype of type B, then (upgraded-array-element-type A) is

a subtype of (upgraded-array-element-type B).

The manner in which an array element type is upgraded depends only on
the element type as such and not on any other property of the array such as

size, rank, adjustability, presence or absence of a fill pointer, or displacement.

Rationale: If upgrading were allowed to depend on any of these properties, all of
which can be referred to, directly or indirectly, in the language of type specifiers, then
it would not be possible to displace an array in a consistent and dependable manner
to another array created with the same :element-type argument but differing in
one of these properties.

Note that upgraded-array-element-type could be defined as

(defun upgraded-array-element-type (type)

(array-element-type (make-array 0 :element-type type)))

but this definition has the disadvantage of allocating an array and then im-

mediately discarding it. The clever implementor surely can conjure up a more

practical approach.

[Function]upgraded-complex-part-type type

A type specifier is returned, indicating the element type of the most special-

ized complex number representation capable of having parts of the specified

argument type. The result is necessarily a supertype of the given type. Further-

more, if a type A is a subtype of type B, then (upgraded-complex-part-type

A) is a subtype of (upgraded-complex-part-type B).
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Program Structure

In chapter 2 the syntax was sketched for notating data objects in Common

Lisp. The same syntax is used for notating programs because all Common

Lisp programs have a representation as Common Lisp data objects.

Lisp programs are organized as forms and functions. Forms are evaluated

(relative to some context) to produce values and side effects. Functions are
invoked by applying them to arguments. The most important kind of form

performs a function call; conversely, a function performs computation by eval-

uating forms.

In this chapter, forms are discussed first and then functions. Finally, certain

“top level” special forms are discussed; the most important of these is defun,

whose purpose is to define a named function.

5.1. Forms

The standard unit of interaction with a Common Lisp implementation is the
form, which is simply a data object meant to be evaluated as a program to

produce one or more values (which are also data objects). One may request

evaluation of any data object, but only certain ones are meaningful. For

instance, symbols and lists are meaningful forms, while arrays normally are

not. Examples of meaningful forms are 3, whose value is 3, and (+ 3 4),
whose value is 7. We write 3 ⇒ 3 and (+ 3 4) ⇒ 7 to indicate these facts.

(⇒ means “evaluates to.”)

Meaningful forms may be divided into three categories: self-evaluating

forms, such as numbers; symbols, which stand for variables; and lists. The

lists in turn may be divided into three categories: special forms, macro calls,

and function calls.

Any Common Lisp data object not explicitly defined here to be a valid form
........................................................................................................................................................................................................

is not a valid form. It is an error to evaluate anything but a valid form.
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Implementation note: An implementation is free to make implementation-
dependent extensions to the evaluator but is strongly encouraged to signal an error
on any attempt to evaluate anything but a valid form or an object for which a
meaningful evaluation extension has been purposely defined.

X3J13 voted in October 1988 〈72〉 to specify that all standard Common Lisp

data objects other than symbols and lists (including defstruct structures

defined without the :type option) are self-evaluating.

5.1.1. Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors are self-evaluating forms.

When such an object is evaluated, that object (or possibly a copy in the case

of numbers or characters) is returned as the value of the form. The empty list

(), which is also the false value nil, is also a self-evaluating form: the value

of nil is nil. Keywords (symbols written with a leading colon) also evaluate
to themselves: the value of :start is :start.

X3J13 voted in January 1989 〈36〉 to clarify that it is an error to de-
structively modify any object that appears as a constant in executable code,

whether as a self-evaluating form or within a quote special form.

5.1.2. Variables

Symbols are used as names of variables in Common Lisp programs. When a

symbol is evaluated as a form, the value of the variable it names is produced.
For example, after doing (setq items 3), which assigns the value 3 to the

variable named items, then items ⇒ 3. Variables can be assigned to, as

by setq, or bound, as by let. Any program construct that binds a variable

effectively saves the old value of the variable and causes it to have a new value,

and on exit from the construct the old value is reinstated.

There are actually two kinds of variables in Common Lisp, called lexical (or

static) variables and special (or dynamic) variables. At any given time either
or both kinds of variable with the same name may have a current value. Which

of the two kinds of variable is referred to when a symbol is evaluated depends

on the context of the evaluation. The general rule is that if the symbol occurs

textually within a program construct that creates a binding for a variable of

the same name, then the reference is to the variable specified by the binding;
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if no such program construct textually contains the reference, then it is taken

to refer to the special variable of that name.

The distinction between the two kinds of variable is one of scope and ex-

tent. A lexically bound variable can be referred to only by forms occurring

at any place textually within the program construct that binds the variable.

A dynamically bound (special) variable can be referred to at any time from

the time the binding is made until the time evaluation of the construct that
binds the variable terminates. Therefore lexical binding of variables imposes a

spatial limitation on occurrences of references (but no temporal limitation, for

the binding continues to exist as long as the possibility of reference remains).

Conversely, dynamic binding of variables imposes a temporal limitation on
occurrences of references (but no spatial limitation). For more information on

scope and extent, see chapter 3.

The value a special variable has when there are currently no bindings of that

variable is called the global value of the (special) variable. A global value can

be given to a variable only by assignment, because a value given by binding

is by definition not global.

It is possible for a special variable to have no value at all, in which case

it is said to be unbound. By default, every global variable is unbound unless

and until explicitly assigned a value, except for those global variables defined
in this book or by the implementation already to have values when the Lisp

system is first started. It is also possible to establish a binding of a special

variable and then cause that binding to be valueless by using the function

makunbound. In this situation the variable is also said to be “unbound,”
although this is a misnomer; precisely speaking, it is bound but valueless. It

is an error to refer to a variable that is unbound.

X3J13 voted in June 1989 〈180〉 to specify more precisely the effects of
referring to an unbound variable.

Reading an unbound variable or an undefined function must be detected in
the highest safety setting (see the safety quality of the optimize declaration

specifier) but the effect is undefined in any other safety setting. That is, read-

ing an unbound variable should signal an error and reading an undefined func-

tion should signal an error. (“Reading a function” includes both references
to the function using the function special form, such as f in (function f),

and references to the function in a call, such as f in (f x y).)

For the case of inline functions (in implementations where they are sup-

ported), a permitted point of view is that performing the inlining constitutes

the read of the function, so that an fboundp check need not be done at execu-

tion time. Put another way, the effect of the application of fmakunbound to a

function name on potentially inlined references to that function is undefined.
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When an unbound variable is detected an error of type unbound-variable

is signaled, and the name slot of the unbound-variable condition is initialized

to the name of the offending variable.

When an undefined function is detected an error of type undefined-

function is signaled, and the name slot of the undefined-function condition
is initialized to the name of the offending function.

The condition type unbound-slot, which inherits from cell-error, has

an additional slot instance, which can be initialized using the :instance

keyword to make-condition. The function unbound-slot-instance accesses
this slot.

The type of error signaled by the default primary method for the CLOS

slot-unbound generic function is unbound-slot. The instance slot of the

unbound-slot condition is initialized to the offending instance and the name

slot is initialized to the name of the offending variable.
Certain global variables are reserved as “named constants.” They have a

global value and may not be bound or assigned to. For example, the symbols

t and nil are reserved. One may not assign a value to t or nil, and one may

not bind t or nil. The global value of t is always t, and the global value of
nil is always nil. Constant symbols defined by defconstant also become

reserved and may not be further assigned to or bound (although they may

be redefined, if necessary, by using defconstant again). Keyword symbols,

which are notated with a leading colon, are reserved and may never be assigned

to or bound; a keyword always evaluates to itself.

5.1.3. Special Forms

If a list is to be evaluated as a form, the first step is to examine the first

element of the list. If the first element is one of the symbols appearing in

table 5-1, then the list is called a special form. (This use of the word “special”

is unrelated to its use in the phrase “special variable.”)

Special forms are generally environment and control constructs. Every spe-
cial form has its own idiosyncratic syntax. An example is the if special form:

(if p (+ x 4) 5) in Common Lisp means what “if p then x+4 else 5”

means in Algol.

The evaluation of a special form normally produces a value or values, but
the evaluation may instead call for a non-local exit; see return-from, go, and

throw.

The set of special forms is fixed in Common Lisp; no way is provided for the

user to define more. The user can create new syntactic constructs, however,

by defining macros.
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Table 5-1: Names of All Common Lisp Special Forms

block if progv

catch labels quote

[compiler-let] let return-from

declare let* setq

eval-when macrolet tagbody

flet multiple-value-call the

function multiple-value-prog1 throw

go progn unwind-protect

X3J13 voted in June 1989 〈25〉 to remove compiler-let from the language.
X3J13 voted in June 1988 〈12〉 to add the special forms generic-flet, generic-

labels, symbol-macrolet, and with-added-methods.
X3J13 voted in March 1989 〈113〉 to make locally a special form rather than a
macro.
X3J13 voted in March 1989 〈111〉 to add the special form load-time-eval.

The set of special forms in Common Lisp is purposely kept very small be-

cause any program-analyzing program must have special knowledge about

every type of special form. Such a program needs no special knowledge about

macros because it is simple to expand the macro and operate on the result-
ing expansion. (This is not to say that many such programs, particularly

compilers, will not have such special knowledge. A compiler may be able to

produce much better code if it recognizes such constructs as typecase and

multiple-value-bind and gives them customized treatment.)

An implementation is free to implement as a macro any construct described

herein as a special form. Conversely, an implementation is free to implement as

a special form any construct described herein as a macro if an equivalent macro

definition is also provided. The practical consequence is that the predicates
macro-function and special-form-p may both be true of the same symbol.

It is recommended that a program-analyzing program process a form that is

a list whose car is a symbol as follows:

1. If the program has particular knowledge about the symbol, process the form
using special-purpose code. All of the symbols listed in table 5-1 should fall

into this category.

2. Otherwise, if macro-function is true of the symbol, apply either

macroexpand or macroexpand-1, as appropriate, to the entire form and

then start over.
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3. Otherwise, assume it is a function call.

5.1.4. Macros

If a form is a list and the first element is not the name of a special form,

it may be the name of a macro; if so, the form is said to be a macro call.

A macro is essentially a function from forms to forms that will, given a call
to that macro, compute a new form to be evaluated in place of the macro

call. (This computation is sometimes referred to as macro expansion.) For

example, the macro named return will take a form such as (return x) and

from that form compute a new form (return-from nil x). We say that the
old form expands into the new form. The new form is then evaluated in place

of the original form; the value of the new form is returned as the value of the

original form.

X3J13 voted in January 1989 〈67〉 to clarify that macro calls, and subforms

of macro calls, need not be proper lists, but that use of dotted forms requires

the macro definition to use “. var” or “&rest var” in order to match them
properly. It is then the responsibility of the macro definition to recognize and

appropriately handle such dotted forms or subforms.

There are a number of standard macros in Common Lisp, and the user can

define more by using defmacro.

Macros provided by a Common Lisp implementation as described herein

may expand into code that is not portable among differing implementations.

That is, a macro call may be implementation-independent because the macro
is defined in this book, but the expansion need not be.

Implementation note: Implementors are encouraged to implement the macros
defined in this book, as far as is possible, in such a way that the expansion will
not contain any implementation-dependent special forms, nor contain as forms data
objects that are not considered to be forms in Common Lisp. The purpose of
this restriction is to ensure that the expansion can be processed by a program-
analyzing program in an implementation-independent manner. There is no problem
with a macro expansion containing calls to implementation-dependent functions.
This restriction is not a requirement of Common Lisp; it is recognized that certain
complex macros may be able to expand into significantly more efficient code in
certain implementations by using implementation-dependent special forms in the
macro expansion.
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5.1.5. Function Calls

If a list is to be evaluated as a form and the first element is not a symbol that

names a special form or macro, then the list is assumed to be a function call.

The first element of the list is taken to name a function. Any and all remaining

elements of the list are forms to be evaluated; one value is obtained from each

form, and these values become the arguments to the function. The function is
then applied to the arguments. The functional computation normally produces

a value, but it may instead call for a non-local exit; see throw. A function

that does return may produce no value or several values; see values. If and

when the function returns, whatever values it returns become the values of
the function-call form.

For example, consider the evaluation of the form (+ 3 (* 4 5)). The

symbol + names the addition function, not a special form or macro. Therefore

the two forms 3 and (* 4 5) are evaluated to produce arguments. The form

3 evaluates to 3, and the form (* 4 5) is a function call (to the multiplication
function). Therefore the forms 4 and 5 are evaluated, producing arguments

4 and 5 for the multiplication. The multiplication function calculates the

number 20 and returns it. The values 3 and 20 are then given as arguments to

the addition function, which calculates and returns the number 23. Therefore
we say (+ 3 (* 4 5)) ⇒ 23.

X3J13 voted in October 1988 〈86〉 to clarify that while the arguments in

a function call are always evaluated in strict left-to-right order, whether the

function to be called is determined before or after argument evaluation is

unspecified. Programs are in error that rely on a particular order of evaluation
of the first element of a function call relative to the argument forms.

5.2. Functions

There are two ways to indicate a function to be used in a function-call form.

One is to use a symbol that names the function. This use of symbols to
name functions is completely independent of their use in naming special and

lexical variables. The other way is to use a lambda-expression, which is a

list whose first element is the symbol lambda. A lambda-expression is not a

form; it cannot be meaningfully evaluated. Lambda-expressions and symbols,
when used in programs as names of functions, can appear only as the first

element of a function-call form, or as the second element of the function

special form. Note that symbols and lambda-expressions are treated as names

of functions in these two contexts. This should be distinguished from the

treatment of symbols and lambda-expressions as function objects, that is,
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objects that satisfy the predicate functionp, as when giving such an object

to apply or funcall to be invoked.

5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be

given to a function by using the defun construct. A local name can be given
to a function by using the flet or labels special form. When a function

is named, a lambda-expression is effectively associated with that name along

with information about the entities that are lexically apparent at that point.

If a symbol appears as the first element of a function-call form, then it refers

to the definition established by the innermost flet or labels construct that
textually contains the reference, or to the global definition (if any) if there is

no such containing construct.

5.2.2. Lambda-Expressions

A lambda-expression is a list with the following syntax:

(lambda lambda-list . body)

The first element must be the symbol lambda. The second element must be a

list. It is called the lambda-list, and specifies names for the parameters of the

function. When the function denoted by the lambda-expression is applied to

arguments, the arguments are matched with the parameters specified by the

lambda-list. The body may then refer to the arguments by using the parameter
names. The body consists of any number of forms (possibly zero). These forms

are evaluated in sequence, and the results of the last form only are returned

as the results of the application (the value nil is returned if there are zero

forms in the body). The complete syntax of a lambda-expression is:

(lambda ( {var}∗
[&optional {var | (var [initform [svar ] ] )}∗ ]
[&rest var ]

[&key {var | ( {var | (keyword var)} [initform [svar ] ] )}∗ ]

[&aux {var | (var [initform] )}∗ ] )

[[ {declaration}∗ | documentation-string ]]

{ form}∗ )
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Each element of a lambda-list is either a parameter specifier or a lambda-

list keyword; lambda-list keywords begin with &. (Note that lambda-list key-

words are not keywords in the usual sense; they do not belong to the keyword

package. They are ordinary symbols each of whose names begins with an

ampersand. This terminology is unfortunately confusing but is retained for
historical reasons.)

In all cases a var or svar must be a symbol, the name of a variable; each
........................................................................................................................................................................................................

keyword must be a keyword symbol, such as :start. An initform may be any

form.

X3J13 voted in March 1988 〈105〉 to allow a keyword in the preceding spec-

ification of a lambda-list to be any symbol whatsoever, not just a keyword

symbol in the keyword package. See below.

A lambda-list has five parts, any or all of which may be empty:

. Specifiers for the required parameters. These are all the parameter specifiers
up to the first lambda-list keyword; if there is no such lambda-list keyword,

then all the specifiers are for required parameters.

. Specifiers for optional parameters. If the lambda-list keyword &optional is

present, the optional parameter specifiers are those following the lambda-

list keyword &optional up to the next lambda-list keyword or the end of

the list.

. A specifier for a rest parameter. The lambda-list keyword &rest, if present,
must be followed by a single rest parameter specifier, which in turn must

be followed by another lambda-list keyword or the end of the lambda-list.

. Specifiers for keyword parameters. If the lambda-list keyword &key is

present, all specifiers up to the next lambda-list keyword or the end of the

list are keyword parameter specifiers. The keyword parameter specifiers may

optionally be followed by the lambda-list keyword &allow-other-keys.

. Specifiers for aux variables. These are not really parameters. If the lambda-
list keyword &key is present, all specifiers after it are auxiliary variable

specifiers.

When the function represented by the lambda-expression is applied to argu-

ments, the arguments and parameters are processed in order from left to right.
In the simplest case, only required parameters are present in the lambda-list;

each is specified simply by a name var for the parameter variable. When

the function is applied, there must be exactly as many arguments as there

are parameters, and each parameter is bound to one argument. Here, and in

general, the parameter is bound as a lexical variable unless a declaration has
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been made that it should be a special binding; see defvar, proclaim, and

declare.

In the more general case, if there are n required parameters (n may be zero),

there must be at least n arguments, and the required parameters are bound

to the first n arguments. The other parameters are then processed using any
remaining arguments.

If optional parameters are specified, then each one is processed as follows. If

any unprocessed arguments remain, then the parameter variable var is bound

to the next remaining argument, just as for a required parameter. If no
arguments remain, however, then the initform part of the parameter specifier

is evaluated, and the parameter variable is bound to the resulting value (or

to nil if no initform appears in the parameter specifier). If another variable

name svar appears in the specifier, it is bound to true if an argument was

available, and to false if no argument remained (and therefore initform had to
be evaluated). The variable svar is called a supplied-p parameter; it is bound

not to an argument but to a value indicating whether or not an argument had

been supplied for another parameter.

After all optional parameter specifiers have been processed, then there may
or may not be a rest parameter. If there is a rest parameter, it is bound to a list

of all as-yet-unprocessed arguments. (If no unprocessed arguments remain,

the rest parameter is bound to the empty list.) If there is no rest parameter

and there are no keyword parameters, then there should be no unprocessed

arguments (it is an error if there are).
X3J13 voted in January 1989 〈155〉 to clarify that if a function has a rest

parameter and is called using apply, then the list to which the rest parameter

is bound is permitted, but not required, to share top-level list structure with

the list that was the last argument to apply. Programmers should be careful
about performing side effects on the top-level list structure of a rest parameter.

This was the result of a rather long discussion within X3J13 and the wider

Lisp community. To set it in its historical context, I must remark that in Lisp

Machine Lisp the list to which a rest parameter was bound had only dynamic

extent; this in conjunction with the technique of “cdr-coding” permitted a
clever stack-allocation technique with very low overhead. However, the early

designers of Common Lisp, after a great deal of debate, concluded that it was

dangerous for cons cells to have dynamic extent; as an example, the “obvious”

definition of the function list

(defun list (&rest x) x)

could fail catastrophically. Therefore the first edition simply implied that

the list for a rest parameter, like all other lists, would have indefinite extent.
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This still left open the flip side of the question, namely, Is the list for a rest

parameter guaranteed fresh? This is the question addressed by the X3J13

vote. If it is always freshly consed, then it is permissible to destroy it, for

example by giving it to nconc. However, the requirement always to cons fresh

lists could impose an unacceptable overhead in many implementations. The
clarification approved by X3J13 specifies that the programmer may not rely

on the list being fresh; if the function was called using apply, there is no way

to know where the list came from.

Next, any keyword parameters are processed. For this purpose the same

arguments are processed that would be made into a list for a rest parameter.
(Indeed, it is permitted to specify both &rest and &key. In this case the

remaining arguments are used for both purposes; that is, all remaining argu-

ments are made into a list for the &rest parameter and are also processed

for the &key parameters. This is the only situation in which an argument is

used in the processing of more than one parameter specifier.) If &key is spec-
ified, there must remain an even number of arguments; these are considered

as pairs, the first argument in each pair being interpreted as a keyword name

and the second as the corresponding value.

It is an error for the first object of each pair to be anything but a keyword.
........................................................................................................................................................................................................

Rationale: This last restriction is imposed so that a compiler may issue warnings
about certain malformed calls to functions that take keyword arguments. It must
be remembered that the arguments in a function call that evaluate to keywords are
just like any other arguments and may be any evaluable forms. A compiler could
not, without additional context, issue a warning about the call

(fill seq item x y)

because in principle the variable x might have as its value a keyword such as :start.
However, a compiler would be justified in issuing a warning about the call

(fill seq item 0 10)

because the constant 0 is definitely not a keyword. Similarly, if in the first case the
variable x had been declared to be of type integer, then type analysis could enable
the compiler to justify a warning.

X3J13 voted in March 1988 〈105〉 to allow a keyword in a lambda-list to be

any symbol whatsoever, not just a keyword symbol in the keyword package.

If, after &key, a variable appears alone or within only one set of parentheses

(possibly with an initform and a svar), then the behavior is as before: a
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keyword symbol with the same name as the variable is used as the keyword-

name when matching arguments to parameter specifiers. Only a parameter

specifier of the form ((keyword var) ...) can cause the keyword-name not

to be a keyword symbol, by specifying a symbol not in the keyword package

as the keyword. For example:

(defun wager (&key ((secret password) nil) amount)

(format nil "You ~A $~D"

(if (eq password ’joe-sent-me) "win" "lose")

amount))

(wager :amount 100) ⇒ "You lose $100"

(wager :amount 100 ’secret ’joe-sent-me) ⇒ "You win $100"

The secret word could be made even more secret in this example by placing
it in some other obscure package, so that one would have to write

(wager :amount 100 ’obscure:secret ’joe-sent-me) ⇒ "You win $100"

to win anything.

In each keyword parameter specifier must be a name var for the parameter

variable. If an explicit keyword is specified, then that is the keyword name for
the parameter. Otherwise the name var serves to indicate the keyword name,

in that a keyword with the same name (in the keyword package) is used as

the keyword. Thus

(defun foo (&key radix (type ’integer)) ...)

means exactly the same as

(defun foo (&key ((:radix radix)) ((:type type) ’integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively

processed from left to right. For each keyword parameter specifier, if there is
an argument pair whose keyword name matches that specifier’s keyword name

(that is, the names are eq), then the parameter variable for that specifier is

bound to the second item (the value) of that argument pair. If more than one

such argument pair matches, it is not an error; the leftmost argument pair is
used. If no such argument pair exists, then the initform for that specifier is

evaluated and the parameter variable is bound to that value (or to nil if no

initform was specified). The variable svar is treated as for ordinary optional

parameters: it is bound to true if there was a matching argument pair, and

to false otherwise.



PROGRAM STRUCTURE 85

It is an error if an argument pair has a keyword name not matched by any

parameter specifier, unless at least one of the following two conditions is met:

. &allow-other-keys was specified in the lambda-list.

. Somewhere among the keyword argument pairs is a pair whose keyword is
:allow-other-keys and whose value is not nil.

If either condition obtains, then it is not an error for an argument pair to

match no parameter specified, and the argument pair is simply ignored (but
such an argument pair is accessible through the &rest parameter if one was

specified). The purpose of these mechanisms is to allow sharing of argument

lists among several functions and to allow either the caller or the called func-

tion to specify that such sharing may be taking place.

After all parameter specifiers have been processed, the auxiliary variable

specifiers (those following the lambda-list keyword &aux) are processed from

left to right. For each one, the initform is evaluated and the variable var
bound to that value (or to nil if no initform was specified). Nothing can be

done with &aux variables that cannot be done with the special form let*:

(lambda (x y &aux (a (car x)) (b 2) c) ...)

≡ (lambda (x y) (let* ((a (car x)) (b 2) c) ...))

Which to use is purely a matter of style.

Whenever any initform is evaluated for any parameter specifier, that form

may refer to any parameter variable to the left of the specifier in which the
initform appears, including any supplied-p variables, and may rely on the

fact that no other parameter variable has yet been bound (including its own

parameter variable).

Once the lambda-list has been processed, the forms in the body of the

lambda-expression are executed. These forms may refer to the arguments to

the function by using the names of the parameters. On exit from the function,

either by a normal return of the function’s value(s) or by a non-local exit, the
parameter bindings, whether lexical or special, are no longer in effect. (The

bindings are not necessarily permanently discarded, for a lexical binding can

later be reinstated if a “closure” over that binding was created, perhaps by

using function, and saved before the exit occurred.)

Examples of &optional and &rest parameters:

((lambda (a b) (+ a (* b 3))) 4 5) ⇒ 19

((lambda (a &optional (b 2)) (+ a (* b 3))) 4 5) ⇒ 19

((lambda (a &optional (b 2)) (+ a (* b 3))) 4) ⇒ 10
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((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)))

⇒ (2 nil 3 nil nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6)

⇒ (6 t 3 nil nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6 3)

⇒ (6 t 3 t nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6 3 8)

⇒ (6 t 3 t (8))

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6 3 8 9 10 11)

⇒ (6 t 3 t (8 9 10 11))

Examples of &key parameters:

((lambda (a b &key c d) (list a b c d)) 1 2)

⇒ (1 2 nil nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6)

⇒ (1 2 6 nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :d 8)

⇒ (1 2 nil 8)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6 :d 8)

⇒ (1 2 6 8)

((lambda (a b &key c d) (list a b c d)) 1 2 :d 8 :c 6)

⇒ (1 2 6 8)

((lambda (a b &key c d) (list a b c d)) :a 1 :d 8 :c 6)

⇒ (:a 1 6 8)

((lambda (a b &key c d) (list a b c d)) :a :b :c :d)

⇒ (:a :b :d nil)

Examples of mixtures:

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1) ⇒ (1 3 nil 1 ())
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((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1 2) ⇒ (1 2 nil 1 ())

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

:c 7) ⇒ (:c 7 nil :c ())

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1 6 :c 7) ⇒ (1 6 7 1 (:c 7))

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1 6 :d 8) ⇒ (1 6 nil 8 (:d 8))

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1 6 :d 8 :c 9 :d 10) ⇒ (1 6 9 8 (:d 8 :c 9 :d 10))

All lambda-list keywords are permitted, but not terribly useful, in lambda-
expressions appearing explicitly as the first element of a function-call form.

They are extremely useful, however, in functions given global names by defun.

All symbols whose names begin with & are conventionally reserved for use

as lambda-list keywords and should not be used as variable names. Implemen-

tations of Common Lisp are free to provide additional lambda-list keywords.

[Constant ]lambda-list-keywords

The value of lambda-list-keywords is a list of all the lambda-list key-

words used in the implementation, including the additional ones used only

by defmacro. This list must contain at least the symbols &optional, &rest,

&key, &allow-other-keys, &aux, &body, &whole, and &environment.

As an example of the use of &allow-other-keys and :allow-other-keys,

consider a function that takes two keyword arguments of its own and also

accepts additional keyword arguments to be passed to make-array:

(defun array-of-strings (str dims &rest keyword-pairs

&key (start 0) end &allow-other-keys)

(apply #--’make-array dims

:initial-element (subseq str start end)
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:allow-other-keys t

keyword-pairs))

This function takes a string and dimensioning information and returns an

array of the specified dimensions, each of whose elements is the specified string.

However, :start and :end keyword arguments may be used in the usual

manner (see chapter 14) to specify that a substring of the given string should

be used. In addition, the presence of &allow-other-keys in the lambda-list
indicates that the caller may specify additional keyword arguments; the &rest

argument provides access to them. These additional keyword arguments are

fed to make-array. Now, make-array normally does not allow the keywords

:start and :end to be used, and it would be an error to specify such keyword
arguments to make-array. However, the presence in the call to make-array of

the keyword argument :allow-other-keys with a non-nil value causes any

extraneous keyword arguments, including :start and :end, to be acceptable

and ignored.

[Constant ]lambda-parameters-limit

The value of lambda-parameters-limit is a positive integer that is the upper

exclusive bound on the number of distinct parameter names that may appear

in a single lambda-list. This bound depends on the implementation but will
not be smaller than 50. Implementors are encouraged to make this limit as

large as practicable without sacrificing performance. See call-arguments-

limit.

5.3. Top-Level Forms

The standard way for the user to interact with a Common Lisp implementation

is via a read-eval-print loop: the system repeatedly reads a form from some
input source (such as a keyboard or a disk file), evaluates it, and then prints

the value(s) to some output sink (such as a display screen or another disk file).

Any form (evaluable data object) is acceptable; however, certain special forms

are specifically designed to be convenient for use as top-level forms, rather than

as forms embedded within other forms in the way that (+ 3 4) is embedded
within (if p (+ 3 4) 6). These top-level special forms may be used to

define globally named functions, to define macros, to make declarations, and

to define global values for special variables.

It is not illegal to use these forms at other than top level, but whether it
........................................................................................................................................................................................................

is meaningful to do so depends on context. Compilers, for example, may not
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recognize these forms properly in other than top-level contexts. (As a special

case, however, if a progn form appears at top level, then all forms within that

progn are considered by the compiler to be top-level forms.)
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X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms nor-

mally appear at top level, it is meaningful to place them in non-top-level

contexts. All defining forms that create functional objects from code ap-

pearing as argument forms must ensure that such argument forms refer to the

enclosing lexical environment. Compilers must handle defining forms properly
in all situations, not just top-level contexts. However, certain compile-time

side effects of these defining forms are performed only when the defining forms

occur at top level (see section 25.1).

Compatibility note: In MacLisp, a top-level progn is considered to contain top-
level forms only if the first form is (quote compile). This odd marker is unnecessary
in Common Lisp.

Macros are usually defined by using the special form defmacro. This facility
is fairly complicated; it is described in chapter 8.

5.3.1. Defining Named Functions

The defun special form is the usual means of defining named functions.

[Macro]defun name lambda-list [[ {declaration}∗ | doc-string ]] { form}∗

Evaluating a defun form causes the symbol name to be a global name for the

function specified by the lambda-expression

(lambda lambda-list {declaration | doc-string}∗ { form}∗ )

defined in the lexical environment in which the defun form was executed.

Because defun forms normally appear at top level, this is normally the null
lexical environment.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms nor-

mally appear at top level, it is meaningful to place them in non-top-level

contexts; defun must define the function within the enclosing lexical environ-
ment, not within the null lexical environment.

X3J13 voted in March 1989 〈89〉 to extend defun to accept any function-

name (a symbol or a list whose car is setf—see section 7.1) as a name. Thus

one may write

(defun (setf cadr) ...)

to define a setf expansion function for cadr (although it may be much more

convenient to use defsetf or define-modify-macro).
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If the optional documentation string doc-string is present, then it is attached

to the name as a documentation string of type function; see documentation.

If doc-string is not followed by a declaration, it may be present only if at least

one form is also specified, as it is otherwise taken to be a form. It is an error

if more than one doc-string is present.

The forms constitute the body of the defined function; they are executed

as an implicit progn.

The body of the defined function is implicitly enclosed in a block construct

whose name is the same as the name of the function. Therefore return-from

may be used to exit from the function.

Other implementation-dependent bookkeeping actions may be taken as well

by defun. The name is returned as the value of the defun form. For example:

(defun discriminant (a b c)

(declare (number a b c))

"Compute the discriminant for a quadratic equation.

Given a, b, and c, the value b^2-4*a*c is calculated.

The quadratic equation a*x^2+b*x+cUU0 has real, multiple,

or complex roots depending on whether this calculated

value is positive, zero, or negative, respectively."

(- (* b b) (* 4 a c)))

⇒ discriminant

and now (discriminant 1 2/3 -2) ⇒ 76/9

The documentation string in this example neglects to mention that the
coefficients a, b, and c must be real for the discrimination criterion to hold.

Here is an improved version:

"Compute the discriminant for a quadratic equation.

Given a, b, and c, the value b^2-4*a*c is calculated.

If the coefficients a, b, and c are all real (that is,

not complex), then the quadratic equation a*x^2+b*x+cUU0

has real, multiple, or complex roots depending on

whether this calculated value is positive, zero, or

negative, respectively."

It is permissible to use defun to redefine a function, to install a corrected

version of an incorrect definition, for example. It is permissible to redefine

a macro as a function. It is an error to attempt to redefine the name of a

special form (see table 5-1) as a function.
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5.3.2. Declaring Global Variables and Named Constants

The defvar and defparameter special forms are the usual means of specifying
globally defined variables. The defconstant special form is used for defining

named constants.

[Macro]defvar name [initial-value [documentation] ]
[Macro]defparameter name initial-value [documentation]

[Macro]defconstant name initial-value [documentation]

defvar is the recommended way to declare the use of a special variable in a

program.

(defvar variable)

proclaims variable to be special (see proclaim), and may perform other

system-dependent bookkeeping actions.

X3J13 voted in June 1987 〈61〉 to clarify that if no initial-value form is
provided, defvar does not change the value of the variable; if no initial-value

form is provided and the variable has no value, defvar does not give it a

value.

If a second argument form is supplied,

(defvar variable initial-value)

then variable is initialized to the result of evaluating the form initial-value

unless it already has a value. The initial-value form is not evaluated unless it

is used; this fact is useful if evaluation of the initial-value form does something
expensive like creating a large data structure.

X3J13 voted in June 1987 〈60〉 to clarify that evaluation of the initial-value

and the initialization of the variable occur, if at all, at the time the defvar

form is executed, and that the initial-value form is evaluated if and only if

the variable does not already have a value.
The initialization is performed by assignment and thus assigns a global value

to the variable unless there are currently special bindings of that variable.

Normally there should not be any such special bindings.

defvar also provides a good place to put a comment describing the meaning
of the variable, whereas an ordinary special proclamation offers the tempta-

tion to declare several variables at once and not have room to describe them

all.

(defvar *visible-windows* 0

"Number of windows at least partially visible on the screen")
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defparameter is similar to defvar, but defparameter requires an initial-

value form, always evaluates the form, and assigns the result to the vari-

able. The semantic distinction is that defvar is intended to declare a vari-

able changed by the program, whereas defparameter is intended to declare a

variable that is normally constant but can be changed (possibly at run time),
where such a change is considered a change to the program. defparameter

therefore does not indicate that the quantity never changes; in particular,

it does not license the compiler to build assumptions about the value into

programs being compiled.

defconstant is like defparameter but does assert that the value of the vari-

able name is fixed and does license the compiler to build assumptions about
the value into programs being compiled. (However, if the compiler chooses to

replace references to the name of the constant by the value of the constant

in code to be compiled, perhaps in order to allow further optimization, the

compiler must take care that such “copies” appear to be eql to the object

that is the actual value of the constant. For example, the compiler may freely
make copies of numbers but must exercise care when the value is a list.)

It is an error if there are any special bindings of the variable at the time the
defconstant form is executed (but implementations may or may not check

for this).

Once a name has been declared by defconstant to be constant, any further

assignment to or binding of that special variable is an error. This is the case for

such system-supplied constants as t and most-positive-fixnum. A compiler

may also choose to issue warnings about bindings of the lexical variable of the
same name.

X3J13 voted in January 1989 〈48〉 to clarify the preceding paragraph by
specifying that it is an error to rebind constant symbols as either lexical or

special variables. Consequently, a valid reference to a symbol declared with

defconstant always refers to its global value. (Unfortunately, this violates

the principle of referential transparency, for one cannot always choose names
for lexical variables without regard to surrounding context.)

For any of these constructs, the documentation should be a string. The
string is attached to the name of the variable, parameter, or constant under

the variable documentation type; see the documentation function.

X3J13 voted in March 1988 〈59〉 to clarify that the documentation-string

is not evaluated but must appear as a literal string when the defvar,

defparameter, or defconstant form is evaluated.

For example, the form

(defvar *avoid-registers* nil "Compilation control switch #--43")
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is legitimate, but

(defvar *avoid-registers* nil

(format nil "Compilation control switch #--~D"

(incf *compiler-switch-number*)))

is erroneous because the call to format is not a literal string.
(On the other hand, the form

(defvar *avoid-registers* nil

#--.(format nil "Compilation control switch #--~D"

(incf *compiler-switch-number*)))

might be used to accomplish the same purpose, because the call to format is
evaluated at read time; when the defvar form is evaluated, only the result

of the call to format, a string, appears in the defvar form.)

These constructs are normally used only as top-level forms. The value

returned by each of these constructs is the name declared.

5.3.3. Control of Time of Evaluation

The eval-when special form allows pieces of code to be executed only at
........................................................................................................................................................................................................

compile time, only at load time, or when interpreted but not compiled. Its

uses are relatively esoteric.

........................................................................................................................................................................................................

[Special form]eval-when ( {situation}∗ ) { form}∗

The body of an eval-when form is processed as an implicit progn, but only in
the situations listed. Each situation must be a symbol, either compile, load,

or eval.

eval specifies that the interpreter should process the body. compile spec-

ifies that the compiler should evaluate the body at compile time in the com-

pilation context. load specifies that the compiler should arrange to evaluate
the forms in the body when the compiled file containing the eval-when form

is loaded.

The eval-when construct may be more precisely understood in terms of a

model of how the compiler processes forms in a file to be compiled. Successive
forms are read from the file using the function read. These top-level forms

are normally processed in what we shall call not-compile-time mode. There

is another mode called compile-time-too mode. The eval-when special form

controls which of these two modes to use.

Every form is processed as follows:
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. If the form is an eval-when form:

– If the situation load is specified:

If the situation compile is specified, or if the current processing mode

is compile-time-too and the situation eval is specified, then process

each of the forms in the body in compile-time-too mode.

Otherwise, process each of the forms in the body in not-compile-time

mode.

– If the situation load is not specified:

If the situation compile is specified, or if the current processing mode

is compile-time-too and the situation eval is specified, then evaluate
each of the forms in the body in the compiler’s executing environment.

Otherwise, ignore the eval-when form entirely.

. If the form is not an eval-when form, then do two things. First, if the

current processing mode is compile-time-too mode, evaluate the form in

the compiler’s executing environment. Second, perform normal compiler

processing of the form (compiling functions defined by defun forms, and so
on).

One example of the use of eval-when is that if the compiler is to be able
to properly read a file that uses user-defined reader macro characters, it is

necessary to write

(eval-when (compile load eval)

(set-macro-character #--\$ #--’(lambda (stream char)

(declare (ignore char))

(list ’dollar (read stream)))))

This causes the call to set-macro-character to be executed in the compiler’s
execution environment, thereby modifying its reader syntax table.

X3J13 voted in March 1989 〈73〉 to completely redesign the eval-when con-

struct to solve some problems concerning its treatment in other than top-level

contexts. The new definition is upward compatible with the old definition,

but the old keywords are deprecated.
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[Special form]eval-when ( {situation}∗ ) { form}∗

The body of an eval-when form is processed as an implicit progn, but only

in the situations listed. Each situation must be a symbol, either :compile-

toplevel, :load-toplevel, or :execute.

The use of :compile-toplevel and :load-toplevel controls whether and
when processing occurs for top-level forms. The use of :execute controls

whether processing occurs for non-top-level forms.

The eval-when construct may be more precisely understood in terms of a

model of how the file compiler, compile-file, processes forms in a file to be

compiled.

Successive forms are read from the file by the file compiler using read.
These top-level forms are normally processed in what we call “not-compile-

time” mode. There is one other mode, called “compile-time-too” mode, which

can come into play for top-level forms. The eval-when special form is used

to annotate a program in a way that allows the program doing the processing
to select the appropriate mode.

Processing of top-level forms in the file compiler works as follows:

. If the form is a macro call, it is expanded and the result is processed as

a top-level form in the same processing mode (compile-time-too or not-

compile-time).

. If the form is a progn (or locally 〈113〉) form, each of its body forms is

sequentially processed as top-level forms in the same processing mode.

. If the form is a compiler-let, macrolet, or symbol-macrolet, the file
compiler makes the appropriate bindings and recursively processes the body

forms as an implicit top-level progn with those bindings in effect, in the

same processing mode.

. If the form is an eval-when form, it is handled according to the following
table:

LT CT EX CTTM Action

yes yes – – process body in compile-time-too mode

yes no yes yes process body in compile-time-too mode
yes no – no process body in not-compile-time mode

yes no no – process body in not-compile-time mode

no yes – – evaluate body

no no yes yes evaluate body

no no – no do nothing
no no no – do nothing
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In the preceding table the column LT asks whether :load-toplevel is

one of the situations specified in the eval-when form; CT similarly refers

to :compile-toplevel and EX to :execute. The column CTTM asks

whether the eval-when form was encountered while in compile-time-too

mode. The phrase “process body” means to process the body as an im-
plicit top-level progn in the indicated mode, and “evaluate body” means to

evaluate the body forms sequentially as an implicit progn in the dynamic

execution context of the compiler and in the lexical environment in which

the eval-when appears.

. Otherwise, the form is a top-level form that is not one of the special cases.

If in compile-time-too mode, the compiler first evaluates the form and then
performs normal compiler processing on it. If in not-compile-time mode,

only normal compiler processing is performed (see section 25.1). Any sub-

forms are treated as non-top-level forms.

Note that top-level forms are guaranteed to be processed in the order in

which they textually appear in the file, and that each top-level form read

by the compiler is processed before the next is read. However, the order of

processing (including, in particular, macro expansion) of subforms that are

not top-level forms is unspecified.

For an eval-when form that is not a top-level form in the file compiler (that

is, either in the interpreter, in compile, or in the file compiler but not at top
level), if the :execute situation is specified, its body is treated as an implicit

progn. Otherwise, the body is ignored and the eval-when form has the value

nil.

For the sake of backward compatibility, a situation may also be compile,

load, or eval. Within a top-level eval-when form these have the same mean-

ing as :compile-toplevel, :load-toplevel, and :execute, respectively;
but their effect is undefined when used in an eval-when form that is not at

top level.

The following effects are logical consequences of the preceding specification:

. It is never the case that the execution of a single eval-when expression will

execute the body code more than once.

. The old keyword eval was a misnomer because execution of the body need

not be done by eval. For example, when the function definition

(defun foo () (eval-when (:execute) (print ’foo)))

is compiled the call to print should be compiled, not evaluated at compile

time.
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. Macros intended for use in top-level forms should arrange for all side-effects

to be done by the forms in the macro expansion. The macro-expander itself

should not perform the side-effects.

(defmacro foo ()

(really-foo) ;Wrong

‘(really-foo))

(defmacro foo ()

‘(eval-when (:compile-toplevel

:load-toplevel :execute) ;Right

(really-foo)))

Adherence to this convention will mean that such macros will behave intu-

itively when called in non-top-level positions.

. Placing a variable binding around an eval-when reliably captures the bind-

ing because the “compile-time-too” mode cannot occur (because the eval-

when could not be a top-level form). For example,

(let ((x 3))

(eval-when (:compile-toplevel :load-toplevel :execute)

(print x)))

will print 3 at execution (that is, load) time and will not print anything at

compile time. This is important so that expansions of defun and defmacro

can be done in terms of eval-when and can correctly capture the lexical

environment. For example, an implementation might expand a defun form

such as

(defun bar (x) (defun foo () (+ x 3)))

into
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(progn (eval-when (:compile-toplevel)

(compiler::notice-function ’bar ’(x)))

(eval-when (:load-toplevel :execute)

(setf (symbol-function ’bar)

#--’(lambda (x)

(progn (eval-when (:compile-toplevel)

(compiler::notice-function ’foo

’()))

(eval-when (:load-toplevel :execute)

(setf (symbol-function ’foo)

#--’(lambda () (+ x 3)))))))))

which by the preceding rules would be treated the same as

(progn (eval-when (:compile-toplevel)

(compiler::notice-function ’bar ’(x)))

(eval-when (:load-toplevel :execute)

(setf (symbol-function ’bar)

#--’(lambda (x)

(progn (eval-when (:load-toplevel :execute)

(setf (symbol-function ’foo)

#--’(lambda () (+ x 3)))))))))

Here are some additional examples.

(let ((x 1))

(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ’foo1) #--’(lambda () x))))

The eval-when in the preceding expression is not at top level, so only the

:execute keyword is considered. At compile time, this has no effect. At load

time (if the let is at top level), or at execution time (if the let is embedded

in some other form which does not execute until later), this sets (symbol-

function ’foo1) to a function that returns 1.

(eval-when (:execute :load-toplevel :compile-toplevel)

(let ((x 2))

(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ’foo2) #--’(lambda () x)))))

If the preceding expression occurs at the top level of a file to be compiled, it

has both a compile time and a load-time effect of setting (symbol-function

’foo2) to a function that returns 2.
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(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ’foo3) #--’(lambda () 3)))

If the preceding expression occurs at the top level of a file to be compiled, it

has both a compile time and a load-time effect of setting the function cell of

foo3 to a function that returns 3.

(eval-when (:compile-toplevel)

(eval-when (:compile-toplevel)

(print ’foo4)))

The preceding expression always does nothing; it simply returns nil.

(eval-when (:compile-toplevel)

(eval-when (:execute)

(print ’foo5)))

If the preceding form occurs at the top level of a file to be compiled, foo5

is printed at compile time. If this form occurs in a non-top-level position,
nothing is printed at compile time. Regardless of context, nothing is ever

printed at load time or execution time.

(eval-when (:execute :load-toplevel)

(eval-when (:compile-toplevel)

(print ’foo6)))

If the preceding form occurs at the top level of a file to be compiled, foo6

is printed at compile time. If this form occurs in a non-top-level position,

nothing is printed at compile time. Regardless of context, nothing is ever
printed at load time or execution time.
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Predicates

A predicate is a function that tests for some condition involving its arguments

and returns nil if the condition is false, or some non-nil value if the condition

is true. One may think of a predicate as producing a Boolean value, where
nil stands for false and anything else stands for true. Conditional control

structures such as cond, if, when, and unless test such Boolean values. We

say that a predicate is true when it returns a non-nil value, and is false when

it returns nil; that is, it is true or false according to whether the condition
being tested is true or false.

By convention, the names of predicates usually end in the letter p (which
stands for “predicate”). Common Lisp uses a uniform convention in hyphen-

ating names of predicates. If the name of the predicate is formed by adding

a p to an existing name, such as the name of a data type, a hyphen is placed

before the final p if and only if there is a hyphen in the existing name. For ex-
ample, number begets numberp but standard-char begets standard-char-p.

On the other hand, if the name of a predicate is formed by adding a prefix-

ing qualifier to the front of an existing predicate name, the two names are

joined with a hyphen and the presence or absence of a hyphen before the final

p is not changed. For example, the predicate string-lessp has no hyphen
before the p because it is the string version of lessp (a MacLisp function

that has been renamed < in Common Lisp). The name string-less-p would

incorrectly imply that it is a predicate that tests for a kind of object called

a string-less, and the name stringlessp would connote a predicate that
tests whether something has no strings (is “stringless”)!

The control structures that test Boolean values only test for whether or not

the value is nil, which is considered to be false. Any other value is considered

to be true. Often a predicate will return nil if it “fails” and some useful value

if it “succeeds”; such a function can be used not only as a test but also for

the useful value provided in case of success. An example is member.

101
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If no better non-nil value is available for the purpose of indicating success,

by convention the symbol t is used as the “standard” true value.

6.1. Logical Values

The names nil and t are constants in Common Lisp. Although they are

symbols like any other symbols, and appear to be treated as variables when

evaluated, it is not permitted to modify their values. See defconstant.

[Constant ]nil

The value of nil is always nil. This object represents the logical false value

and also the empty list. It can also be written ().

[Constant ]t

The value of t is always t.

6.2. Data Type Predicates

Perhaps the most important predicates in Lisp are those that deal with data

types; that is, given a data object one can determine whether or not it belongs

to a given type, or one can compare two type specifiers.

6.2.1. General Type Predicates

If a data type is viewed as the set of all objects belonging to the type, then
the typep function is a set membership test, while subtypep is a subset test.

[Function]typep object type

typep is a predicate that is true if object is of type type, and is false otherwise.

Note that an object can be “of” more than one type, since one type can
include another. The type may be any of the type specifiers mentioned in

chapter 4 except that it may not be or contain a type specifier list whose first

element is function or values. A specifier of the form (satisfies fn) is

handled simply by applying the function fn to object (see funcall); the object

is considered to be of the specified type if the result is not nil.
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X3J13 voted in January 1989 〈8〉 to change typep to give specialized array

and complex type specifiers the same meaning for purposes of type discrimi-

nation as they have for declaration purposes. Of course, this also applies to

such type specifiers as vector and simple-array (see section 4.5). Thus

(typep foo ’(array bignum))

in the first edition asked the question, Is foo an array specialized to hold
bignums? but under the new interpretation asks the question, Could the

array foo have resulted from giving bignum as the :element-type argument

to make-array?

[Function]subtypep type1 type2

The arguments must be type specifiers that are acceptable to typep. The

two type specifiers are compared; this predicate is true if type1 is definitely a

(not necessarily proper) subtype of type2. If the result is nil, however, then

type1 may or may not be a subtype of type2 (sometimes it is impossible to tell,
especially when satisfies type specifiers are involved). A second returned

value indicates the certainty of the result; if it is true, then the first value is an

accurate indication of the subtype relationship. Thus there are three possible

result combinations:

t t type1 is definitely a subtype of type2

nil t type1 is definitely not a subtype of type2

nil nil subtypep could not determine the relationship

X3J13 voted in January 1989 〈171〉 to place certain requirements upon the

implementation of subtypep, for it noted that implementations in many cases

simply “give up” and return the two values nil and nil when in fact it would
have been possible to determine the relationship between the given types.

The requirements are as follows, where it is understood that a type specifier

s involves a type specifier u if either s contains an occurrence of u directly or

s contains a type specifier w defined by deftype whose expansion involves u.

. subtypep is not permitted to return a second value of nil unless one or

both of its arguments involves satisfies, and, or, not, or member.

. subtypep should signal an error when one or both of its arguments involves

values or the list form of the function type specifier.

. subtypep must always return the two values t and t in the case where its

arguments, after expansion of specifiers defined by deftype, are equal.
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In addition, X3J13 voted to clarify that in some cases the relationships be-

tween types as reflected by subtypep may be implementation-specific. For

example, in an implementation supporting only one type of floating-point

number, (subtypep ’float ’long-float) would return t and t, since the

two types would be identical.
Note that satisfies is an exception because relationships between types

involving satisfies are undecidable in general, but (as X3J13 noted) and,

or, not, and member are merely very messy to deal with. In all likelihood

these will not be addressed unless and until someone is willing to write a
careful specification that covers all the cases for the processing of these type

specifiers by subtypep. The requirements stated above were easy to state and

probably suffice for most cases of interest.

X3J13 voted in January 1989 〈8〉 to change subtypep to give specialized

array and complex type specifiers the same meaning for purposes of type
discrimination as they have for declaration purposes. Of course, this also

applies to such type specifiers as vector and simple-array (see section 4.5).

If A and B are type specifiers (other than *, which technically is not a

type specifier anyway), then (array A) and (array B) represent the same
type in a given implementation if and only if they denote arrays of the same

specialized representation in that implementation; otherwise they are dis-

joint. To put it another way, they represent the same type if and only

if (upgraded-array-element-type ’A) and (upgraded-array-element-

type ’B) are the same type. Therefore

(subtypep ’(array A) ’(array B))

is true if and only if (upgraded-array-element-type ’A) is the same type
as (upgraded-array-element-type ’B).

The complex type specifier is treated in a similar but subtly different man-

ner. If A and B are two type specifiers (but not *, which technically is

not a type specifier anyway), then (complex A) and (complex B) represent

the same type in a given implementation if and only if they refer to com-
plex numbers of the same specialized representation in that implementation;

otherwise they are disjoint. Note, however, that there is no function called

make-complex that allows one to specify a particular element type (then to be

upgraded); instead, one must describe specialized complex numbers in terms
of the actual types of the parts from which they were constructed. There is

no number of type (or rather, representation) float as such; there are only

numbers of type single-float, numbers of type double-float, and so on.

Therefore we want (complex single-float) to be a subtype of (complex

float).
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The rule, then, is that (complex A) and (complex B) represent the same

type (and otherwise are disjoint) in a given implementation if and only if

either the type A is a subtype of B, or (upgraded-complex-part-type ’A)

and (upgraded-complex-part-type ’B) are the same type. In the latter

case (complex A) and (complex B) in fact refer to the same specialized
representation. Therefore

(subtypep ’(complex A) ’(complex B))

is true if and only if the results of (upgraded-complex-part-type ’A) and

(upgraded-complex-part-type ’B) are the same type.

Under this interpretation

(subtypep ’(complex single-float) ’(complex float))

must be true in all implementations; but

(subtypep ’(array single-float) ’(array float))

is true only in implementations that do not have a specialized array represen-

tation for single-float elements distinct from that for float elements in
general.

6.2.2. Specific Data Type Predicates

The following predicates test for individual data types.

[Function]null object

null is true if its argument is (), and otherwise is false. This is the same
operation performed by the function not; however, not is normally used to

invert a Boolean value, whereas null is normally used to test for an empty

list. The programmer can therefore express intent by the choice of function

name.

(null x) ≡ (typep x ’null) ≡ (eq x ’())

[Function]symbolp object

symbolp is true if its argument is a symbol, and otherwise is false.

(symbolp x) ≡ (typep x ’symbol)
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Compatibility note: The Interlisp equivalent of symbolp is called litatom.

[Function]atom object

The predicate atom is true if its argument is not a cons, and otherwise is false.

Note that (atom ’()) is true, because () ≡ nil.

(atom x) ≡ (typep x ’atom) ≡ (not (typep x ’cons))

Compatibility note: In some Lisp dialects, notably Interlisp, only symbols and
numbers are considered to be atoms; arrays and strings are considered to be neither
atoms nor lists (conses).

[Function]consp object

The predicate consp is true if its argument is a cons, and otherwise is false.
Note that the empty list is not a cons, so (consp ’()) ≡ (consp ’nil) ⇒
nil.

(consp x) ≡ (typep x ’cons) ≡ (not (typep x ’atom))

Compatibility note: Some Lisp implementations call this function pairp or listp.
The name pairp was rejected for Common Lisp because it emphasizes too strongly
the dotted-pair notion rather than the usual usage of conses in lists. On the other
hand, listp too strongly implies that the cons is in fact part of a list, which after
all it might not be; moreover, () is a list, though not a cons. The name consp seems
to be the appropriate compromise.

[Function]listp object

listp is true if its argument is a cons or the empty list (), and otherwise is
false. It does not check for whether the list is a “true list” (one terminated

by nil) or a “dotted list” (one terminated by a non-null atom).

(listp x) ≡ (typep x ’list) ≡ (typep x ’(or cons null))

[Function]numberp object

numberp is true if its argument is any kind of number, and otherwise is false.
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(numberp x) ≡ (typep x ’number)

[Function]integerp object

integerp is true if its argument is an integer, and otherwise is false.

(integerp x) ≡ (typep x ’integer)

Compatibility note: In MacLisp this is called fixp. Users have been confused as
to whether this meant integerp or fixnump, and so the name integerp has been
adopted here.

[Function]rationalp object

rationalp is true if its argument is a rational number (a ratio or an integer),

and otherwise is false.

(rationalp x) ≡ (typep x ’rational)

[Function]floatp object

floatp is true if its argument is a floating-point number, and otherwise is

false.

(floatp x) ≡ (typep x ’float)

[Function]realp object

X3J13 voted in March 1989 〈151〉 to add the function realp. realp is true if

its argument is a real number, and otherwise is false.

(realp x) ≡ (typep x ’real)

[Function]complexp object

complexp is true if its argument is a complex number, and otherwise is false.

(complexp x) ≡ (typep x ’complex)

[Function]characterp object

characterp is true if its argument is a character, and otherwise is false.
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(characterp x) ≡ (typep x ’character)

[Function]stringp object

stringp is true if its argument is a string, and otherwise is false.

(stringp x) ≡ (typep x ’string)

[Function]bit-vector-p object

bit-vector-p is true if its argument is a bit-vector, and otherwise is false.

(bit-vector-p x) ≡ (typep x ’bit-vector)

[Function]vectorp object

vectorp is true if its argument is a vector, and otherwise is false.

(vectorp x) ≡ (typep x ’vector)

[Function]simple-vector-p object

vectorp is true if its argument is a simple general vector, and otherwise is

false.

(simple-vector-p x) ≡ (typep x ’simple-vector)

[Function]simple-string-p object

simple-string-p is true if its argument is a simple string, and otherwise is
false.

(simple-string-p x) ≡ (typep x ’simple-string)

[Function]simple-bit-vector-p object

simple-bit-vector-p is true if its argument is a simple bit-vector, and oth-

erwise is false.

(simple-bit-vector-p x) ≡ (typep x ’simple-bit-vector)

[Function]arrayp object

arrayp is true if its argument is an array, and otherwise is false.
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(arrayp x) ≡ (typep x ’array)

[Function]packagep object

packagep is true if its argument is a package, and otherwise is false.

(packagep x) ≡ (typep x ’package)

[Function]functionp object

functionp is true if its argument is suitable for applying to arguments,
........................................................................................................................................................................................................

using for example the funcall or apply function. Otherwise functionp is
false.

functionp is always true of symbols, lists whose car is the symbol lambda,

any value returned by the function special form, and any values returned by

the function compile when the first argument is nil.

X3J13 voted in June 1988 〈90〉 to define

(functionp x) ≡ (typep x ’function)

Because the vote also specifies that types cons and symbol are disjoint from

the type function, this is an incompatible change; now functionp is in fact

always false of symbols and lists.

[Function]compiled-function-p object

compiled-function-p is true if its argument is any compiled code object,
and otherwise is false.

(compiled-function-p x) ≡ (typep x ’compiled-function)

[Function]commonp object
........................................................................................................................................................................................................

commonp is true if its argument is any standard Common Lisp data type, and

otherwise is false.

(commonp x) ≡ (typep x ’common)

X3J13 voted in March 1989 〈17〉 to remove the predicate commonp (and the
type common) from the language.

See also standard-char-p, string-char-p, streamp, random-state-p,

readtablep, hash-table-p, and pathnamep.
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6.3. Equality Predicates

Common Lisp provides a spectrum of predicates for testing for equality of two

objects: eq (the most specific), eql, equal, and equalp (the most general).

eq and equal have the meanings traditional in Lisp. eql was added because

it is frequently needed, and equalp was added primarily in order to have a
version of equal that would ignore type differences when comparing numbers

and case differences when comparing characters. If two objects satisfy any

one of these equality predicates, then they also satisfy all those that are more

general.

[Function]eq x y

(eq x y) is true if and only if x and y are the same identical object. (Im-

plementationally, x and y are usually eq if and only if they address the same
identical memory location.)

It should be noted that things that print the same are not necessarily eq to

each other. Symbols with the same print name usually are eq to each other

because of the use of the intern function. However, numbers with the same
value need not be eq, and two similar lists are usually not eq. For example:

(eq ’a ’b) is false.

(eq ’a ’a) is true.

(eq 3 3) might be true or false, depending on the implementation.
(eq 3 3.0) is false.

(eq 3.0 3.0) might be true or false, depending on the implementation.

(eq #--c(3 -4) #--c(3 -4))

might be true or false, depending on the implementation.
(eq #--c(3 -4.0) #--c(3 -4)) is false.

(eq (cons ’a ’b) (cons ’a ’c)) is false.

(eq (cons ’a ’b) (cons ’a ’b)) is false.

(eq ’(a . b) ’(a . b)) might be true or false.

(progn (setq x (cons ’a ’b)) (eq x x)) is true.
(progn (setq x ’(a . b)) (eq x x)) is true.

(eq #--\A #--\A) might be true or false, depending on the implementation.

(eq "Foo" "Foo") might be true or false.

(eq "Foo" (copy-seq "Foo")) is false.
(eq "FOO" "foo") is false.

In Common Lisp, unlike some other Lisp dialects, the implementation is per-

mitted to make “copies” of characters and numbers at any time. (This per-

mission is granted because it allows tremendous performance improvements
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in many common situations.) The net effect is that Common Lisp makes no

guarantee that eq will be true even when both its arguments are “the same

thing” if that thing is a character or number. For example:

(let ((x 5)) (eq x x)) might be true or false.

The predicate eql is the same as eq, except that if the arguments are charac-

ters or numbers of the same type then their values are compared. Thus eql

tells whether two objects are conceptually the same, whereas eq tells whether

two objects are implementationally identical. It is for this reason that eql,

not eq, is the default comparison predicate for the sequence functions defined

in chapter 14.

Implementation note: eq simply compares the two given pointers, so any kind
of object that is represented in an “immediate” fashion will indeed have like-valued
instances satisfy eq. In some implementations, for example, fixnums and characters
happen to “work.” However, no program should depend on this, as other implemen-
tations of Common Lisp might not use an immediate representation for these data
types.

An additional problem with eq is that the implementation is permitted to
........................................................................................................................................................................................................

“collapse” constants (or portions thereof) appearing in code to be compiled
if they are equal. An object is considered to be a constant in code to be

compiled if it is a self-evaluating form or is contained in a quote form. This

is why (eq "Foo" "Foo") might be true or false; in interpreted code it would

normally be false, because reading in the form (eq "Foo" "Foo") would con-

struct distinct strings for the two arguments to eq, but the compiler might
choose to use the same identical string or two distinct copies as the two ar-

guments in the call to eq. Similarly, (eq ’(a . b) ’(a . b)) might be true

or false, depending on whether the constant conses appearing in the quote

forms were collapsed by the compiler. However, (eq (cons ’a ’b) (cons

’a ’b)) is always false, because every distinct call to the cons function nec-

essarily produces a new and distinct cons.

X3J13 voted in March 1989 〈147〉 to clarify that eval and compile are
not permitted either to copy or to coalesce (“collapse”) constants (see eq)

appearing in the code they process; the resulting program behavior must refer

to objects that are eql to the corresponding objects in the source code. Only

the compile-file/load process is permitted to copy or coalesce constants

(see section 25.1).
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[Function]eql x y

The eql predicate is true if its arguments are eq, or if they are numbers of the

same type with the same value, or if they are character objects that represent

the same character. For example:

(eql ’a ’b) is false.
(eql ’a ’a) is true.

(eql 3 3) is true.

(eql 3 3.0) is false.

(eql 3.0 3.0) is true.

(eql #--c(3 -4) #--c(3 -4)) is true.
(eql #--c(3 -4.0) #--c(3 -4)) is false.

(eql (cons ’a ’b) (cons ’a ’c)) is false.

(eql (cons ’a ’b) (cons ’a ’b)) is false.

(eql ’(a . b) ’(a . b)) might be true or false.
(progn (setq x (cons ’a ’b)) (eql x x)) is true.

(progn (setq x ’(a . b)) (eql x x)) is true.

(eql #--\A #--\A) is true.

(eql "Foo" "Foo") might be true or false.

(eql "Foo" (copy-seq "Foo")) is false.
(eql "FOO" "foo") is false.

Normally (eql 1.0s0 1.0d0) would be false, under the assumption that

1.0s0 and 1.0d0 are of distinct data types. However, implementations that

do not provide four distinct floating-point formats are permitted to “collapse”
the four formats into some smaller number of them; in such an implementa-

tion (eql 1.0s0 1.0d0) might be true. The predicate UU will compare the

values of two numbers even if the numbers are of different types.

If an implementation supports positive and negative zeros as distinct val-

ues (as in the IEEE proposed standard floating-point format), then (eql 0.0

-0.0) will be false. Otherwise, when the syntax -0.0 is read it will be inter-

preted as the value 0.0, and so (eql 0.0 -0.0) will be true. The predicate
UU differs from eql in that (UU 0.0 -0.0) will always be true, because UU com-

pares the mathematical values of its operands, whereas eql compares the

representational values, so to speak.

Two complex numbers are considered to be eql if their real parts are eql

and their imaginary parts are eql. For example, (eql #--C(4 5) #--C(4 5)) is

true and (eql #--C(4 5) #--C(4.0 5.0)) is false. Note that while (eql #--C(5.0

0.0) 5.0) is false, (eql #--C(5 0) 5) is true. In the case of (eql #--C(5.0

0.0) 5.0) the two arguments are of different types and so cannot satisfy
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eql; that’s all there is to it. In the case of (eql #--C(5 0) 5), however, #--C(5

0) is not a complex number but is always automatically reduced by the rule

of complex canonicalization to the integer 5, just as the apparent ratio 20/4

is always simplified to 5.

The case of (eql "Foo" "Foo") is discussed above in the description of

eq. While eql compares the values of numbers and characters, it does not

compare the contents of strings. To compare the characters of two strings,

one should use equal, equalp, stringUU, or string-equal.

Compatibility note: The Common Lisp function eql is similar to the Interlisp
function eqp. However, eql considers 3 and 3.0 to be different, whereas eqp con-
siders them to be the same; eqp behaves like the Common Lisp UU function, not like
eql, when both arguments are numbers.

[Function]equal x y

The equal predicate is true if its arguments are structurally similar (isomor-

phic) objects. A rough rule of thumb is that two objects are equal if and
only if their printed representations are the same.

Numbers and characters are compared as for eql. Symbols are compared

as for eq. This method of comparing symbols can violate the rule of thumb
for equal and printed representations, but only in the infrequently occurring

case of two distinct symbols with the same print name.

Certain objects that have components are equal if they are of the same
type and corresponding components are equal. This test is implemented in

a recursive manner and may fail to terminate for circular structures.

For conses, equal is defined recursively as the two car’s being equal and
the two cdr’s being equal.

Two arrays are equal only if they are eq, with one exception: strings and

bit-vectors are compared element-by-element. If either argument has a fill

pointer, the fill pointer limits the number of elements examined by equal.
Uppercase and lowercase letters in strings are considered by equal to be

distinct. (In contrast, equalp ignores case distinctions in strings.)

Compatibility note: In Lisp Machine Lisp, equal ignores the difference between
uppercase and lowercase letters in strings. This violates the rule of thumb about
printed representations, however, which is very useful, especially to novices. It is
also inconsistent with the treatment of single characters, which in Lisp Machine Lisp
are represented as fixnums.
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Two pathname objects are equal if and only if all the corresponding com-

ponents (host, device, and so on) are equivalent. (Whether or not uppercase

and lowercase letters are considered equivalent in strings appearing in com-

ponents depends on the file name conventions of the file system.) Pathnames

that are equal should be functionally equivalent.

X3J13 voted in June 1989 〈71〉 to clarify that equal never recursively de-

scends any structure or data type other than the ones explicitly described
above: conses, bit-vectors, strings, and pathnames. Numbers and characters

are compared as if by eql, and all other data objects are compared as if by

eq.

(equal ’a ’b) is false.

(equal ’a ’a) is true.
(equal 3 3) is true.

(equal 3 3.0) is false.

(equal 3.0 3.0) is true.

(equal #--c(3 -4) #--c(3 -4)) is true.
(equal #--c(3 -4.0) #--c(3 -4)) is false.

(equal (cons ’a ’b) (cons ’a ’c)) is false.

(equal (cons ’a ’b) (cons ’a ’b)) is true.

(equal ’(a . b) ’(a . b)) is true.

(progn (setq x (cons ’a ’b)) (equal x x)) is true.
(progn (setq x ’(a . b)) (equal x x)) is true.

(equal #--\A #--\A) is true.

(equal "Foo" "Foo") is true.

(equal "Foo" (copy-seq "Foo")) is true.
(equal "FOO" "foo") is false.

To compare a tree of conses using eql (or any other desired predicate) on the

leaves, use tree-equal.

[Function]equalp x y

Two objects are equalp if they are equal; if they are characters and satisfy

char-equal, which ignores alphabetic case and certain other attributes of

characters; if they are numbers and have the same numerical value, even if

they are of different types; or if they have components that are all equalp.

Objects that have components are equalp if they are of the same type and

corresponding components are equalp. This test is implemented in a recursive

manner and may fail to terminate for circular structures. For conses, equalp
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is defined recursively as the two car’s being equalp and the two cdr’s being

equalp.

Two arrays are equalp if and only if they have the same number of dimen-

sions, the dimensions match, and the corresponding components are equalp.

The specializations need not match; for example, a string and a general array

that happens to contain the same characters will be equalp (though defi-
nitely not equal). If either argument has a fill pointer, the fill pointer lim-

its the number of elements examined by equalp. Because equalp performs

element-by-element comparisons of strings and ignores the alphabetic case of

characters, case distinctions are therefore also ignored when equalp compares

strings.

Two symbols can be equalp only if they are eq, that is, the same identical

object.

X3J13 voted in June 1989 〈71〉 to specify that equalp compares compo-
nents of hash tables (see below), and to clarify that otherwise equalp never

recursively descends any structure or data type other than the ones explicitly

described above: conses, arrays (including bit-vectors and strings), and path-

names. Numbers are compared for numerical equality (see UU), characters are

compared as if by char-equal, and all other data objects are compared as if
by eq.

Two hash tables are considered the same by equalp if and only if they

satisfy a four-part test:

. They must be of the same kind; that is, equivalent :test arguments were

given to make-hash-table when the two hash tables were created.

. They must have the same number of entries (see hash-table-count).

. For every entry (key1, value1 ) in one hash table there must be a corre-

sponding entry (key2, value2 ) in the other, such that key1 and key2 are

considered to be the same by the :test function associated with the hash

tables.

. For every entry (key1, value1 ) in one hash table and its corresponding entry

(key2, value2 ) in the other, such that key1 and key2 are the same, equalp
must be true of value1 and value2.

The four parts of this test are carried out in the order shown, and if some

part of the test fails, equalp returns nil and the other parts of the test are

not attempted.

If equalp must compare two structures and the defstruct definition for

one used the :type option and the other did not, then equalp returns nil.
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If equalp must compare two structures and neither defstruct definition

used the :type option, then equalp returns t if and only if the structures

have the same type (that is, the same defstruct name) and the values of all

corresponding slots (slots having the same name) are equalp.

As part of the X3J13 discussion of this issue the following observations
were made. Object equality is not a concept for which there is a uniquely

determined correct algorithm. The appropriateness of an equality predicate

can be judged only in the context of the needs of some particular program.

Although these functions take any type of argument and their names sound

very generic, equal and equalp are not appropriate for every application.
Any decision to use or not use them should be determined by what they

are documented to do rather than by any abstract characterization of their

function. If neither equal nor equalp is found to be appropriate in a particu-

lar situation, programmers are encouraged to create another operator that is
appropriate rather than blame equal or equalp for “doing the wrong thing.”

Note that one consequence of the vote to change the rules of floating-point

contagion 〈37〉 (described in section 12.1) is to make equalp a true equivalence

relation on numbers.

(equalp ’a ’b) is false.
(equalp ’a ’a) is true.

(equalp 3 3) is true.

(equalp 3 3.0) is true.

(equalp 3.0 3.0) is true.

(equalp #--c(3 -4) #--c(3 -4)) is true.
(equalp #--c(3 -4.0) #--c(3 -4)) is true.

(equalp (cons ’a ’b) (cons ’a ’c)) is false.

(equalp (cons ’a ’b) (cons ’a ’b)) is true.

(equalp ’(a . b) ’(a . b)) is true.
(progn (setq x (cons ’a ’b)) (equalp x x)) is true.

(progn (setq x ’(a . b)) (equalp x x)) is true.

(equalp #--\A #--\A) is true.

(equalp "Foo" "Foo") is true.

(equalp "Foo" (copy-seq "Foo")) is true.
(equalp "FOO" "foo") is true.

6.4. Logical Operators

Common Lisp provides three operators on Boolean values: and, or, and not.

Of these, and and or are also control structures because their arguments
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are evaluated conditionally. The function not necessarily examines its single

argument, and so is a simple function.

[Function]not x

not returns t if x is nil, and otherwise returns nil. It therefore inverts its

argument considered as a Boolean value.

null is the same as not; both functions are included for the sake of clarity.

As a matter of style, it is customary to use null to check whether something

is the empty list and to use not to invert the sense of a logical value.

[Macro]and { form}∗

(and form1 form2 ... ) evaluates each form, one at a time, from left to

right. If any form evaluates to nil, the value nil is immediately returned
without evaluating the remaining forms. If every form but the last evaluates

to a non-nil value, and returns whatever the last form returns. Therefore

in general and can be used both for logical operations, where nil stands for

false and non-nil values stand for true, and as a conditional expression. An

example follows.

(if (and (>UU n 0)

(< n (length a-simple-vector))

(eq (elt a-simple-vector n) ’foo))

(princ "Foo!"))

The above expression prints Foo! if element n of a-simple-vector is the

symbol foo, provided also that n is indeed a valid index for a-simple-vector.
Because and guarantees left-to-right testing of its parts, elt is not called if n

is out of range.

To put it another way, the and special form does short-circuit Boolean

evaluation, like the and then operator in Ada and what in some Pascal-

like languages is called cand (for “conditional and”); the Lisp and special

form is unlike the Pascal or Ada and operator, which always evaluates both
arguments.

In the previous example writing

(and (>UU n 0)

(< n (length a-simple-vector))

(eq (elt a-simple-vector n) ’foo)

(princ "Foo!"))
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would accomplish the same thing. The difference is purely stylistic. Some pro-

grammers never use expressions containing side effects within and, preferring

to use if or when for that purpose.

From the general definition, one can deduce that (and x) ≡ x. Also, (and)

evaluates to t, which is an identity for this operation.
One can define and in terms of cond in this way:

(and x y z ... w) ≡ (cond ((not x) nil)

((not y) nil)

((not z) nil)

. . .

(t w))

See if and when, which are sometimes stylistically more appropriate than

and for conditional purposes. If it is necessary to test whether a predicate is
true of all elements of a list or vector (element 0 and element 1 and element

2 and . . .), then the function every may be useful.

[Macro]or { form}∗

(or form1 form2 ... ) evaluates each form, one at a time, from left to

right. If any form other than the last evaluates to something other than nil,

or immediately returns that non-nil value without evaluating the remaining
forms. If every form but the last evaluates to nil, or returns whatever

evaluation of the last of the forms returns. Therefore in general or can be

used both for logical operations, where nil stands for false and non-nil values

stand for true, and as a conditional expression.
To put it another way, the or special form does short-circuit Boolean evalua-

tion, like the or else operator in Ada and what in some Pascal-like languages

is called cor (for “conditional or”); the Lisp or special form is unlike the

Pascal or Ada or operator, which always evaluates both arguments.

From the general definition, one can deduce that (or x) ≡ x. Also, (or)
evaluates to nil, which is the identity for this operation.

One can define or in terms of cond in this way:

(or x y z ... w) ≡ (cond (x) (y) (z) ... (t w))

See if and unless, which are sometimes stylistically more appropriate than

or for conditional purposes. If it is necessary to test whether a predicate is

true of one or more elements of a list or vector (element 0 or element 1 or

element 2 or . . .), then the function some may be useful.
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Control Structure

Common Lisp provides a variety of special structures for organizing programs.

Some have to do with flow of control (control structures), while others con-
trol access to variables (environment structures). Some of these features are

implemented as special forms; others are implemented as macros, which typ-

ically expand into complex program fragments expressed in terms of special

forms or other macros.

Function application is the primary method for construction of Lisp pro-
grams. Operations are written as the application of a function to its ar-

guments. Usually, Lisp programs are written as a large collection of small

functions, each of which implements a simple operation. These functions op-

erate by calling one another, and so larger operations are defined in terms
of smaller ones. Lisp functions may call upon themselves recursively, either

directly or indirectly.

Locally defined functions (flet, labels) and macros (macrolet) are quite

versatile. The new symbol macro facility allows even more syntactic flexibility.

While the Lisp language is more applicative in style than statement-

oriented, it nevertheless provides many operations that produce side effects

and consequently requires constructs for controlling the sequencing of side

effects. The construct progn, which is roughly equivalent to an Algol begin-
end block with all its semicolons, executes a number of forms sequentially,

discarding the values of all but the last. Many Lisp control constructs include

sequencing implicitly, in which case they are said to provide an “implicit

progn.” Other sequencing constructs include prog1 and prog2.

For looping, Common Lisp provides the general iteration facility do as well
as a variety of special-purpose iteration facilities for iterating or mapping over

various data structures.

Common Lisp provides the simple one-way conditionals when and unless,

the simple two-way conditional if, and the more general multi-way condition-
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als such as cond and case. The choice of which form to use in any particular

situation is a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplines

are provided: block, return, return-from, catch, and throw.

The multiple-value constructs provide an efficient way for a function to

return more than one value; see values.

7.1. Constants and Variables

Because some Lisp data objects are used to represent programs, one cannot
always notate a constant data object in a program simply by writing the

notation for the object unadorned; it would be ambiguous whether a constant

object or a program fragment was intended. The quote special form resolves

this ambiguity.

There are two kinds of variables in Common Lisp, in effect: ordinary vari-
ables and function names. There are some similarities between the two kinds,

and in a few cases there are similar functions for dealing with them, for ex-

ample boundp and fboundp. However, for the most part the two kinds of

variables are used for very different purposes: one to name defined functions,
macros, and special forms, and the other to name data objects.

X3J13 voted in March 1989 〈89〉 to introduce the concept of a function-

name, which may be either a symbol or a two-element list whose first element

is the symbol setf and whose second element is a symbol. The primary pur-

pose of this is to allow setf expander functions to be CLOS generic functions

with user-defined methods. Many places in Common Lisp that used to re-
quire a symbol for a function name are changed to allow 2-lists as well; for

example, defun is changed so that one may write (defun (setf foo) ...),

and the function special form is changed to accept any function-name. See

also fdefinition.

By convention, any function named (setf f ) should return its first argu-
ment as its only value, in order to preserve the specification that setf returns

its newvalue. See setf.

Implementations are free to extend the syntax of function-names to include

lists beginning with additional symbols other than setf or lambda.

7.1.1. Reference

The value of an ordinary variable may be obtained simply by writing the

name of the variable as a form to be executed. Whether this is treated as the
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name of a special variable or a lexical variable is determined by the presence

or absence of an applicable special declaration; see chapter 9.

The following functions and special forms allow reference to the values of

constants and variables in other ways.

[Special form]quote object

(quote x) simply returns x. The object is not evaluated and may be any Lisp
object whatsoever. This construct allows any Lisp object to be written as a

constant value in a program. For example:

(setq a 43)

(list a (cons a 3)) ⇒ (43 (43 . 3))

(list (quote a) (quote (cons a 3)) ⇒ (a (cons a 3))

Since quote forms are so frequently useful but somewhat cumbersome to type,

a standard abbreviation is defined for them: any form f preceded by a single

quote ( ’ ) character is assumed to have (quote ) wrapped around it to

make (quote f). For example:

(setq x ’(the magic quote hack))

is normally interpreted by read to mean

(setq x (quote (the magic quote hack)))

See section 22.1.3.

X3J13 voted in January 1989 〈36〉 to clarify that it is an error to de-
structively modify any object that appears as a constant in executable code,

whether within a quote special form or as a self-evaluating form.

See section 25.1 for a discussion of how quoted constants are treated by the

compiler.

X3J13 voted in March 1989 〈147〉 to clarify that eval and compile are

not permitted either to copy or to coalesce (“collapse”) constants (see eq)
appearing in the code they process; the resulting program behavior must

refer to objects that are eql to the corresponding objects in the source code.

Moreover, the constraints introduced by the votes on issues 〈34〉 and 〈32〉 on

what kinds of objects may appear as constants apply only to compile-file

(see section 25.1).
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[Special form]function fn

The value of function is always the functional interpretation of fn; fn is inter-

preted as if it had appeared in the functional position of a function invocation.

In particular, if fn is a symbol, the functional definition associated with that
symbol is returned; see symbol-function. If fn is a lambda-expression, then

a “lexical closure” is returned, that is, a function that when invoked will exe-

cute the body of the lambda-expression in such a way as to observe the rules

of lexical scoping properly.

X3J13 voted in June 1988 〈90〉 to specify that the result of a function spe-

cial form is always of type function. This implies that a form (function fn)

may be interpreted as (the (function fn)).

It is an error to use the function special form on a symbol that does not

denote a function in the lexical or global environment in which the special
form appears. Specifically, it is an error to use the function special form on

a symbol that denotes a macro or special form. Some implementations may

choose not to signal this error for performance reasons, but implementations

are forbidden to extend the semantics of function in this respect; that is, an
implementation is not allowed to define the failure to signal an error to be a

“useful” behavior.

X3J13 voted in March 1989 〈89〉 to extend function to accept any function-

name (a symbol or a list whose car is setf—see section 7.1) as well as lambda-

expressions. Thus one may write (function (setf cadr)) to refer to the
setf expansion function for cadr.

For example:

(defun adder (x) (function (lambda (y) (+ x y))))

The result of (adder 3) is a function that will add 3 to its argument:

(setq add3 (adder 3))

(funcall add3 5) ⇒ 8

This works because function creates a closure of the inner lambda-expression
that is able to refer to the value 3 of the variable x even after control has

returned from the function adder.

More generally, a lexical closure in effect retains the ability to refer to

lexically visible bindings, not just values. Consider this code:

(defun two-funs (x)

(list (function (lambda () x))

(function (lambda (y) (setq x y)))))
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(setq funs (two-funs 6))

(funcall (car funs)) ⇒ 6

(funcall (cadr funs) 43) ⇒ 43

(funcall (car funs)) ⇒ 43

The function two-funs returns a list of two functions, each of which refers to

the binding of the variable x created on entry to the function two-funs when

it was called with argument 6. This binding has the value 6 initially, but setq
can alter a binding. The lexical closure created for the first lambda-expression

does not “snapshot” the value 6 for x when the closure is created. The second

function can be used to alter the binding (to 43, in the example), and this

altered value then becomes accessible to the first function.

In situations where a closure of a lambda-expression over the same set of
bindings may be produced more than once, the various resulting closures may

or may not be eq, at the discretion of the implementation. For example:

(let ((x 5) (funs ’()))

(dotimes (j 10)

(push #--’(lambda (z)

(if (null z) (setq x 0) (+ x z)))

funs))

funs)

The result of the above expression is a list of ten closures. Each logically
requires only the binding of x. It is the same binding in each case, so the

ten closures may or may not be the same identical (eq) object. On the other

hand, the result of the expression

(let ((funs ’()))

(dotimes (j 10)

(let ((x 5))

(push (function (lambda (z)

(if (null z) (setq x 0) (+ x z))))

funs)))

funs)

is also a list of ten closures. However, in this case no two of the closures may

be eq, because each closure is over a distinct binding of x, and these bindings

can be behaviorally distinguished because of the use of setq.

The question of distinguishable behavior is important; the result of the

simpler expression
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(let ((funs ’()))

(dotimes (j 10)

(let ((x 5))

(push (function (lambda (z) (+ x z)))

funs)))

funs)

is a list of ten closures that may be pairwise eq. Although one might think
that a different binding of x is involved for each closure (which is indeed the

case), the bindings cannot be distinguished because their values are identical

and immutable, there being no occurrence of setq on x. A compiler would

therefore be justified in transforming the expression to

(let ((funs ’()))

(dotimes (j 10)

(push (function (lambda (z) (+ 5 z)))

funs))

funs)

where clearly the closures may be the same after all. The general rule, then,

is that the implementation is free to have two distinct evaluations of the same

function form produce identical (eq) closures if it can prove that the two
conceptually distinct resulting closures must in fact be behaviorally identical

with respect to invocation. This is merely a permitted optimization; a per-

fectly valid implementation might simply cause every distinct evaluation of a

function form to produce a new closure object not eq to any other.

Frequently a compiler can deduce that a closure in fact does not need to
close over any variable bindings. For example, in the code fragment

(mapcar (function (lambda (x) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside

entity. In this important special case, the same “closure” may be used as
the value for all evaluations of the function special form. Indeed, this value

need not be a closure object at all; it may be a simple compiled function

containing no environment information. This example is simply a special case

of the foregoing discussion and is included as a hint to implementors familiar
with previous methods of implementing Lisp. The distinction between closures

and other kinds of functions is somewhat pointless, actually, as Common Lisp

defines no particular representation for closures and no way to distinguish

between closures and non-closure functions. All that matters is that the rules

of lexical scoping be obeyed.
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Since function forms are so frequently useful but somewhat cumbersome

to type, a standard abbreviation is defined for them: any form f preceded by

#--’ (#-- followed by an apostrophe) is assumed to have (function ) wrapped

around it to make (function f). For example,

(remove-if #--’numberp ’(1 a b 3))

is normally interpreted by read to mean

(remove-if (function numberp) ’(1 a b 3))

See section 22.1.4.

[Function]symbol-value symbol

symbol-value returns the current value of the dynamic (special) variable

named by symbol. An error occurs if the symbol has no value; see boundp

and makunbound. Note that constant symbols are really variables that cannot

be changed, and so symbol-value may be used to get the value of a named

constant. In particular, symbol-value of a keyword will return that keyword.
symbol-value cannot access the value of a lexical variable.

This function is particularly useful for implementing interpreters for lan-

guages embedded in Lisp. The corresponding assignment primitive is set;

alternatively, symbol-value may be used with setf.

[Function]symbol-function symbol

symbol-function returns the current global function definition named by
symbol. An error is signalled if the symbol has no function definition; see

fboundp. Note that the definition may be a function or may be an object

representing a special form or macro. In the latter case, however, it is an error

to attempt to invoke the object as a function. If it is desired to process macros,

special forms, and functions equally well, as when writing an interpreter, it is
best first to test the symbol with macro-function and special-form-p and

then to invoke the functional value only if these two tests both yield false.

This function is particularly useful for implementing interpreters for lan-

guages embedded in Lisp.
symbol-function cannot access the value of a lexical function name pro-

duced by flet or labels; it can access only the global function value.

The global function definition of a symbol may be altered by using setf

with symbol-function. Performing this operation causes the symbol to have

only the specified definition as its global function definition; any previous
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definition, whether as a macro or as a function, is lost. It is an error to

attempt to redefine the name of a special form (see table 5-1).

X3J13 voted in June 1988 〈90〉 to clarify the behavior of symbol-function

in the light of the redefinition of the type function.

. It is permissible to call symbol-function on any symbol for which fboundp

returns true. Note that fboundp must return true for a symbol naming a
macro or a special form.

. If fboundp returns true for a symbol but the symbol denotes a macro or

special form, then the value returned by symbol-function is not well-

defined but symbol-function will not signal an error.

. When symbol-function is used with setf the new value must be of type
function. It is an error to set the symbol-function of a symbol to a

symbol, a list, or the value returned by symbol-function on the name of

a macro or a special form.

[Function]fdefinition function-name

X3J13 voted in March 1989 〈89〉 to add the function fdefinition to the

language. It is exactly like symbol-function except that its argument may
be any function-name (a symbol or a list whose car is setf—see section 7.1); it

returns the current global function definition named by the argument function-

name. One may use fdefinition with setf to change the current global

function definition associated with a function-name.

[Function]boundp symbol

boundp is true if the dynamic (special) variable named by symbol has a value;
otherwise, it returns nil.

See also set and makunbound.

[Function]fboundp symbol

fboundp is true if the symbol has a global function definition. Note that

fboundp is true when the symbol names a special form or macro. macro-

function and special-form-p may be used to test for these cases.

X3J13 voted in June 1988 〈90〉 to emphasize that, despite the tightening

of the definition of the type function, fboundp must return true when the

argument names a special form or macro.

See also symbol-function and fmakunbound.
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X3J13 voted in March 1989 〈89〉 to extend fboundp to accept any function-

name (a symbol or a list whose car is setf—see section 7.1). Thus one

may write (fboundp ’(setf cadr)) to determine whether a setf expansion

function has been globally defined for cadr.

[Function]special-form-p symbol

The function special-form-p takes a symbol. If the symbol globally names

a special form, then a non-nil value is returned; otherwise nil is returned. A

returned non-nil value is typically a function of implementation-dependent

nature that can be used to interpret (evaluate) the special form.

It is possible for both special-form-p and macro-function to be true of a

symbol. This is possible because an implementation is permitted to implement
any macro also as a special form for speed. On the other hand, the macro

definition must be available for use by programs that understand only the

standard special forms listed in table 5-1.

7.1.2. Assignment

The following facilities allow the value of a variable (more specifically, the

value associated with the current binding of the variable) to be altered. Such

alteration is different from establishing a new binding. Constructs for estab-

lishing new bindings of variables are described in section 7.5.

[Special form]setq {var form}∗

The special form (setq var1 form1 var2 form2 ...) is the “simple variable

assignment statement” of Lisp. First form1 is evaluated and the result is

stored in the variable var1, then form2 is evaluated and the result stored in

var2, and so forth. The variables are represented as symbols, of course, and
are interpreted as referring to static or dynamic instances according to the

usual rules. Therefore setq may be used for assignment of both lexical and

special variables.

setq returns the last value assigned, that is, the result of the evaluation of

its last argument. As a boundary case, the form (setq) is legal and returns

nil. There must be an even number of argument forms. For example, in

(setq x (+ 3 2 1) y (cons x nil))
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x is set to 6, y is set to (6), and the setq returns (6). Note that the first

assignment is performed before the second form is evaluated, allowing that

form to use the new value of x.

See also the description of setf, the Common Lisp “general assignment

statement” that is capable of assigning to variables, array elements, and other
locations.

Some programmers choose to avoid setq as a matter of style, always using

setf for any kind of structure modification. Others use setq with simple

variable names and setf with all other generalized variables.

X3J13 voted in March 1989 〈173〉 to specify that if any var refers not to an
ordinary variable but to a binding made by symbol-macrolet, then that var

is handled as if setf had been used instead of setq.

[Macro]psetq {var form}∗

A psetq form is just like a setq form, except that the assignments happen in

parallel. First all of the forms are evaluated, and then the variables are set to

the resulting values. The value of the psetq form is nil. For example:

(setq a 1)

(setq b 2)

(psetq a b b a)

a ⇒ 2

b ⇒ 1

In this example, the values of a and b are exchanged by using parallel assign-
ment. (If several variables are to be assigned in parallel in the context of a

loop, the do construct may be appropriate.)

See also the description of psetf, the Common Lisp “general parallel as-

signment statement” that is capable of assigning to variables, array elements,

and other locations.
X3J13 voted in March 1989 〈173〉 to specify that if any var refers not to an

ordinary variable but to a binding made by symbol-macrolet, then that var

is handled as if psetf had been used instead of psetq.

[Function]set symbol value

set allows alteration of the value of a dynamic (special) variable. set causes

the dynamic variable named by symbol to take on value as its value.

X3J13 voted in January 1989 〈7〉 to clarify that the value may be any Lisp

datum whatsoever.
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Only the value of the current dynamic binding is altered; if there are no

bindings in effect, the most global value is altered. For example,

(set (if (eq a b) ’c ’d) ’foo)

will either set c to foo or set d to foo, depending on the outcome of the test

(eq a b).

set returns value as its result.

set cannot alter the value of a local (lexically bound) variable. The special

form setq is usually used for altering the values of variables (lexical or dy-

namic) in programs. set is particularly useful for implementing interpreters
for languages embedded in Lisp. See also progv, a construct that performs

binding rather than assignment of dynamic variables.

[Function]makunbound symbol

[Function]fmakunbound symbol

makunbound causes the dynamic (special) variable named by symbol to become

unbound (have no value). fmakunbound does the analogous thing for the
global function definition named by symbol. For example:

(setq a 1)

a ⇒ 1

(makunbound ’a)

a ⇒ causes an error

(defun foo (x) (+ x 1))

(foo 4) ⇒ 5

(fmakunbound ’foo)

(foo 4) ⇒ causes an error

Both functions return symbol as the result value.

X3J13 voted in March 1989 〈89〉 to extend fmakunbound to accept any
function-name (a symbol or a list whose car is setf—see section 7.1). Thus

one may write (fmakunbound ’(setf cadr)) to remove any global definition

of a setf expansion function for cadr.

7.2. Generalized Variables

In Lisp, a variable can remember one piece of data, that is, one Lisp object.

The main operations on a variable are to recover that object and to alter the
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variable to remember a new object; these operations are often called access

and update operations. The concept of variables named by symbols can be

generalized to any storage location that can remember one piece of data, no

matter how that location is named. Examples of such storage locations are

the car and cdr of a cons, elements of an array, and components of a structure.

For each kind of generalized variable, typically there are two functions that

implement the conceptual access and update operations. For a variable, merely

mentioning the name of the variable accesses it, while the setq special form

can be used to update it. The function car accesses the car of a cons, and the
function rplaca updates it. The function symbol-value accesses the dynamic

value of a variable named by a given symbol, and the function set updates

it.

Rather than thinking about two distinct functions that respectively access
and update a storage location somehow deduced from their arguments, we

can instead simply think of a call to the access function with given arguments

as a name for the storage location. Thus, just as x may be considered a name

for a storage location (a variable), so (car x) is a name for the car of some
cons (which is in turn named by x). Now, rather than having to remember

two functions for each kind of generalized variable (having to remember, for

example, that rplaca corresponds to car), we adopt a uniform syntax for

updating storage locations named in this way, using the setf macro. This is

analogous to the way we use the setq special form to convert the name of a
variable (which is also a form that accesses it) into a form that updates it.

The uniformity of this approach is illustrated in the following table.

Access Function Update Function Update Using setf

x (setq x datum) (setf x datum)

(car x) (rplaca x datum) (setf (car x) datum)

(symbol-value x) (set x datum) (setf (symbol-value x) datum)

setf is actually a macro that examines an access form and produces a call to

the corresponding update function.

Given the existence of setf in Common Lisp, it is not necessary to have
setq, rplaca, and set; they are redundant. They are retained in Common

Lisp because of their historical importance in Lisp. However, most other

update functions (such as putprop, the update function for get) have been

eliminated from Common Lisp in the expectation that setf will be uniformly

used in their place.
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[Macro]setf {place newvalue}∗

(setf place newvalue) takes a form place that when evaluated accesses a

data object in some location and “inverts” it to produce a corresponding

form to update the location. A call to the setf macro therefore expands into
an update form that stores the result of evaluating the form newvalue into

the place referred to by the access form.

If more than one place-newvalue pair is specified, the pairs are processed

sequentially; that is,

(setf place1 newvalue1

place2 newvalue2)
...

placen newvaluen)

is precisely equivalent to

(progn (setf place1 newvalue1)

(setf place2 newvalue2)

...

(setf placen newvaluen))

For consistency, it is legal to write (setf), which simply returns nil.

The form place may be any one of the following:

. The name of a variable (either lexical or dynamic).

. A function call form whose first element is the name of any one of the
following functions:

aref car svref

nth cdr get

elt caar getf symbol-value

rest cadr gethash symbol-function

first cdar documentation symbol-plist

second cddr fill-pointer macro-function

third caaar caaaar cdaaar

fourth caadr caaadr cdaadr

fifth cadar caadar cdadar

sixth caddr caaddr cdaddr

seventh cdaar cadaar cddaar

eighth cdadr cadadr cddadr

ninth cddar caddar cdddar

tenth cdddr cadddr cddddr
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X3J13 voted in March 1988 〈6〉 to add row-major-aref to this list.

X3J13 voted in June 1989 〈49〉 to add compiler-macro-function to this

list.

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when
the function name refers to a global function definition and not to a locally

defined function or macro.

. A function call form whose first element is the name of a selector function

constructed by defstruct.

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when

the function name refers to a global function definition and not to a locally

defined function or macro.

. A function call form whose first element is the name of any one of the

following functions, provided that the new value is of the specified type so
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that it can be used to replace the specified “location” (which is in each of

these cases not truly a generalized variable):

Function Name Required Type

char string-char

schar string-char

bit bit

sbit bit

subseq sequence
........................................................................................................................................................................................................

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and

to redefine string to be the union of one or more specialized vector types,

the types of whose elements are subtypes of the type character. In the

preceding table, the type string-char should be replaced by some such
phrase as “the element-type of the argument vector.”

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when

the function name refers to a global function definition and not to a locally

defined function or macro.

In the case of subseq, the replacement value must be a sequence whose

elements may be contained by the sequence argument to subseq. (Note

that this is not so stringent as to require that the replacement value be

a sequence of the same type as the sequence of which the subsequence is

specified.) If the length of the replacement value does not equal the length
of the subsequence to be replaced, then the shorter length determines the

number of elements to be stored, as for the function replace.

. A function call form whose first element is the name of any one of the

following functions, provided that the specified argument to that function

is in turn a place form; in this case the new place has stored back into it

the result of applying the specified “update” function (which is in each of
these cases not a true update function):

Function Name Argument That Is a place Update Function Used

char-bit first set-char-bit

ldb second dpb

mask-field second deposit-field

X3J13 voted in March 1989 〈11〉 to eliminate char-bit and set-char-bit.

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when

the function name refers to a global function definition and not to a locally
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defined function or macro.

. A the type declaration form, in which case the declaration is transferred to

the newvalue form, and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))

is processed as if it were

(setf (cadr x) (the integer (+ y 3)))

. A call to apply where the first argument form is of the form #--’name, that
is, (function name), where name is the name of a function, calls to which

are recognized as places by setf. Suppose that the use of setf with apply

looks like this:

(setf (apply #--’name x1 x2 ... xn rest) x0)

The setf method for the function name must be such that

(setf (name z1 z2 ... zm) z0)

expands into a store form

(storefn zi1 zi2 ... zik zm)

That is, it must expand into a function call such that all arguments but

the last may be any permutation or subset of the new value z0 and the

arguments of the access form, but the last argument of the storing call
must be the same as the last argument of the access call. See define-

setf-method for more details on accessing and storing forms.

Given this, the setf-of-apply form shown above expands into

(apply #--’storefn xi1 xi2 ... xik rest)

As an example, suppose that the variable indexes contains a list of sub-
scripts for a multidimensional array foo whose rank is not known until run

time. One may access the indicated element of the array by writing

(apply #--’aref foo indexes)

and one may alter the value of the indicated element to that of newvalue

by writing

(setf (apply #--’aref foo indexes) newvalue)
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X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when

the function name apply refers to the global function definition and not to

a locally defined function or macro named apply.

. A macro call, in which case setf expands the macro call and then analyzes

the resulting form.

X3J13 voted in March 1989 〈89〉 to clarify that this step uses macroexpand-

1, not macroexpand. This allows the chance to apply any of the rules
preceding this one to any of the intermediate expansions.

. Any form for which a defsetf or define-setf-method declaration has

been made.

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when

the function name in the form refers to a global function definition and not

to a locally defined function or macro.

X3J13 voted in March 1989 〈89〉 to add one more rule to the preceding list,
coming after all those listed above:

. Any other list whose first element is a symbol (call it f ). In this case, the

call to setf expands into a call to the function named by the list (setf f )

(see section 7.1). The first argument is the new value and the remaining

arguments are the values of the remaining elements of place. This expansion
occurs regardless of whether either f or (setf f ) is defined as a function

locally, globally, or not at all. For example,

(setf (f arg1 arg2 ...) newvalue)

expands into a form with the same effect and value as

(let ((#--:temp1 arg1) ;Force correct order of evaluation

(#--:temp2 arg2)

...

(#--:temp0 newvalue))

(funcall (function (setf f ))

#--:temp0

#--:temp1

#--:temp2 ...))

By convention, any function named (setf f ) should return its first ar-

gument as its only value, in order to preserve the specification that setf

returns its newvalue.

X3J13 voted in March 1989 〈173〉 to add this case as well:
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. A variable reference that refers to a symbol macro definition made by

symbol-macrolet, in which case setf expands the reference and then an-

alyzes the resulting form.
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setf carefully arranges to preserve the usual left-to-right order in which

the various subforms are evaluated. On the other hand, the exact expansion

for any particular form is not guaranteed and may even be implementation-

dependent; all that is guaranteed is that the expansion of a setf form will be

an update form that works for that particular implementation, and that the
left-to-right evaluation of subforms is preserved.

The ultimate result of evaluating a setf form is the value of newvalue.

Therefore (setf (car x) y) does not expand into precisely (rplaca x y),

but into something more like

(let ((G1 x) (G2 y)) (rplaca G1 G2) G2)

the precise expansion being implementation-dependent.

The user can define new setf expansions by using defsetf.

X3J13 voted in June 1989 〈159〉 to extend the specification of setf to allow

a place whose setf method has more than one store variable (see define-

setf-method). In such a case as many values are accepted from the newvalue

form as there are store variables; extra values are ignored and missing values

default to nil, as is usual in situations involving multiple values.

A proposal was submitted to X3J13 in September 1989 to add a setf

method for values so that one could in fact write, for example,

(setf (values quotient remainder)

(truncate linewidth tabstop))

but unless this proposal is accepted users will have to define a setf method

for values themselves (not a difficult task).

[Macro]psetf {place newvalue}∗

psetf is like setf except that if more than one place-newvalue pair is specified,

then the assignments of new values to places are done in parallel. More

precisely, all subforms that are to be evaluated are evaluated from left to
right; after all evaluations have been performed, all of the assignments are

performed in an unpredictable order. (The unpredictability matters only if

more than one place form refers to the same place.) psetf always returns

nil.
X3J13 voted in June 1989 〈159〉 to extend the specification of psetf to allow

a place whose setf method has more than one store variable (see define-

setf-method). In such a case as many values are accepted from the newvalue

form as there are store variables; extra values are ignored and missing values

default to nil, as is usual in situations involving multiple values.
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[Macro]shiftf {place}+ newvalue

Each place form may be any form acceptable as a generalized variable to

setf. In the form (shiftf place1 place2 ... placen newvalue), the values
in place1 through placen are accessed and saved, and newvalue is evaluated,

for a total of n + 1 values in all. Values 2 through n + 1 are then stored into

place1 through placen, and value 1 (the original value of place1) is returned.

It is as if all the places form a shift register; the newvalue is shifted in from

the right, all values shift over to the left one place, and the value shifted out
of place1 is returned. For example:

(setq x (list ’a ’b ’c)) ⇒ (a b c)

(shiftf (cadr x) ’z) ⇒ b

and now x ⇒ (a z c)

(shiftf (cadr x) (cddr x) ’q) ⇒ z

and now x ⇒ (a (c) . q)

The effect of (shiftf place1 place2 ... placen newvalue) is equivalent to

(let ((var1 place1)
(var2 place2)

...

(varn placen))

(setf place1 var2)

(setf place2 var3)
...

(setf placen newvalue)

var1)

except that the latter would evaluate any subforms of each place twice,

whereas shiftf takes care to evaluate them only once. For example:

(setq n 0)

(setq x ’(a b c d))

(shiftf (nth (setq n (+ n 1)) x) ’z) ⇒ b

and now x ⇒ (a z c d)

but

(setq n 0)

(setq x ’(a b c d))
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(prog1 (nth (setq n (+ n 1)) x)

(setf (nth (setq n (+ n 1)) x) ’z)) ⇒ b

and now x ⇒ (a b z d)

Moreover, for certain place forms shiftf may be significantly more efficient

than the prog1 version.

X3J13 voted in June 1989 〈159〉 to extend the specification of shiftf to al-

low a place whose setf method has more than one store variable (see define-

setf-method). In such a case as many values are accepted from the newvalue
form as there are store variables; extra values are ignored and missing values

default to nil, as is usual in situations involving multiple values.

Rationale: shiftf and rotatef have been included in Common Lisp as generaliza-
tions of two-argument versions formerly called swapf and exchf. The two-argument
versions have been found to be very useful, but the names were easily confused. The
generalization to many argument forms and the change of names were both inspired
by the work of Suzuki [47], which indicates that use of these primitives can make
certain complex pointer-manipulation programs clearer and easier to prove correct.

[Macro]rotatef {place}∗

Each place form may be any form acceptable as a generalized variable to

setf. In the form (rotatef place1 place2 ... placen), the values in place1

through placen are accessed and saved. Values 2 through n and value 1 are

then stored into place1 through placen. It is as if all the places form an end-
around shift register that is rotated one place to the left, with the value of

place1 being shifted around the end to placen. Note that (rotatef place1

place2) exchanges the contents of place1 and place2.

The effect of (rotatef place1 place2 ... placen) is roughly equivalent to

(psetf place1 place2
place2 place3

...

placen place1)

except that the latter would evaluate any subforms of each place twice,

whereas rotatef takes care to evaluate them only once. Moreover, for certain

place forms rotatef may be significantly more efficient.

rotatef always returns nil.

X3J13 voted in June 1989 〈159〉 to extend the specification of rotatef

to allow a place whose setf method has more than one store variable (see
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define-setf-method). In such a case as many values are accepted from

the newvalue form as there are store variables; extra values are ignored and

missing values default to nil, as is usual in situations involving multiple

values.

Other macros that manipulate generalized variables include getf, remf,

incf, decf, push, pop, assert, ctypecase, and ccase.

Macros that manipulate generalized variables must guarantee the “obvious”
semantics: subforms of generalized-variable references are evaluated exactly

as many times as they appear in the source program, and they are evaluated

in exactly the same order as they appear in the source program.

In generalized-variable references such as shiftf, incf, push, and setf of

ldb, the generalized variables are both read and written in the same refer-

ence. Preserving the source program order of evaluation and the number of
evaluations is particularly important.

As an example of these semantic rules, in the generalized-variable refer-
ence (setf reference value) the value form must be evaluated after all the

subforms of the reference because the value form appears to the right of them.

The expansion of these macros must consist of code that follows these rules

or has the same effect as such code. This is accomplished by introducing tem-

porary variables bound to the subforms of the reference. As an optimization

in the implementation, temporary variables may be eliminated whenever it
can be proved that removing them has no effect on the semantics of the pro-

gram. For example, a constant need never be saved in a temporary variable.

A variable, or for that matter any form that does not have side effects, need

not be saved in a temporary variable if it can be proved that its value will not
change within the scope of the generalized-variable reference.

Common Lisp provides built-in facilities to take care of these semantic com-
plications and optimizations. Since the required semantics can be guaranteed

by these facilities, the user does not have to worry about writing correct code

for them, especially in complex cases. Even experts can become confused and

make mistakes while writing this sort of code.

X3J13 voted in March 1988 〈146〉 to clarify the preceding discussion about

the order of evaluation of subforms in calls to setf and related macros. The
general intent is clear: evaluation proceeds from left to right whenever possi-

ble. However, the left-to-right rule does not remove the obligation on writers

of macros and define-setf-method to work to ensure left-to-right order of

evaluation.

Let it be emphasized that, in the following discussion, a form is something

whose syntactic use is such that it will be evaluated. A subform means a form
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that is nested inside another form, not merely any Lisp object nested inside

a form regardless of syntactic context.

The evaluation ordering of subforms within a generalized variable reference
is determined by the order specified by the second value returned by get-

setf-method. For all predefined generalized variable references (getf, ldb),

this order of evaluation is exactly left-to-right. When a generalized variable

reference is derived from a macro expansion, this rule is applied after the
macro is expanded to find the appropriate generalized variable reference.

This is intended to make it clear that if the user writes a defmacro or

define-setf-method macro that doesn’t preserve left-to-right evaluation or-
der, the order specified in the user’s code holds. For example, given

(defmacro wrong-order (x y) ‘(getf ,y ,x))

then

(push value (wrong-order place1 place2))

will evaluate place2 first and then place1 because that is the order they are

evaluated in the macro expansion.

For the macros that manipulate generalized variables (push, pushnew, getf,

remf, incf, decf, shiftf, rotatef, psetf, setf, pop, and those defined with
define-modify-macro) the subforms of the macro call are evaluated exactly

once in left-to-right order, with the subforms of the generalized variable ref-

erences evaluated in the order specified above.

Each of push, pushnew, getf, remf, incf, decf, shiftf, rotatef, psetf,

and pop evaluates all subforms before modifying any of the generalized vari-

able locations. Moreover, setf itself, in the case when a call on it has more

than two arguments, performs its operation on each pair in sequence. That
is, in

(setf place1 value1 place2 value2 ...)

the subforms of place1 and value1 are evaluated, the location specified by

place1 is modified to contain the value returned by value1, and then the rest

of the setf form is processed in a like manner.

For the macros check-type, ctypecase, and ccase, subforms of the gener-

alized variable reference are evaluated once per test of a generalized variable,

but they may be evaluated again if the type check fails (in the case of check-
type) or if none of the cases holds (in ctypecase or ccase).

For the macro assert, the order of evaluation of the generalized variable

references is not specified.
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Another reason for building in these functions is that the appropriate opti-

mizations will differ from implementation to implementation. In some imple-

mentations most of the optimization is performed by the compiler, while in

others a simpler compiler is used and most of the optimization is performed

in the macros. The cost of binding a temporary variable relative to the cost of
other Lisp operations may differ greatly between one implementation and an-

other, and some implementations may find it best never to remove temporary

variables except in the simplest cases.

A good example of the issues involved can be seen in the following

generalized-variable reference:

(incf (ldb byte-field variable))

This ought to expand into something like

(setq variable

(dpb (1+ (ldb byte-field variable))

byte-field

variable))

In this expansion example we have ignored the further complexity of return-
ing the correct value, which is the incremented byte, not the new value of

variable. Note that the variable byte-field is evaluated twice, and the

variable variable is referred to three times: once as the location in which to

store a value, and twice during the computation of that value.

Now consider this expression:

(incf (ldb (aref byte-fields (incf i))

(aref (determine-words-array) i)))

It ought to expand into something like this:

(let ((temp1 (aref byte-fields (incf i)))

(temp2 (determine-words-array)))

(setf (aref temp2 i)

(dpb (1+ (ldb temp1 (aref temp2 i)))

temp1

(aref temp2 i))))

Again we have ignored the complexity of returning the correct value. What

is important here is that the expressions (incf i) and (determine-words-

array) must not be duplicated because each may have a side effect or be

affected by side effects.



CONTROL STRUCTURE 143

X3J13 voted in January 1989 〈160〉 to specify more precisely the order of

evaluation of subforms when setf is used with an access function that itself

takes a place as an argument, for example, ldb, mask-field, and getf. (The

vote also discussed the function char-bit, but another vote 〈11〉 removed that

function from the language.) The setf methods for such accessors produce
expansions that effectively require explicit calls to get-setf-method.

The code produced as the macro expansion of a setf form that itself admits

a generalized variable as an argument must essentially do the following major

steps:

. It evaluates the value-producing subforms, in left-to-right order, and binds

the temporary variables to them; this is called binding the temporaries.

. It reads the value from the generalized variable, using the supplied accessing

form, to get the old value; this is called doing the access. Note that this

is done after all the evaluations of the preceding step, including any side
effects they may have.

. It binds the store variable to a new value, and then installs this new value

into the generalized variable using the supplied storing form; this is called

doing the store.

Doing the access for a generalized variable reference is not part of the series

of evaluations that must be done in left-to-right order.

The place-specifier forms ldb, mask-field, and getf admit (other) place

specifiers as arguments. During the setf expansion of these forms, it is neces-

sary to call get-setf-method to determine how the inner, nested generalized
variable must be treated.

In a form such as

(setf (ldb byte-spec place-form) newvalue-form)

the place referred to by the place-form must always be both accessed and

updated; note that the update is to the generalized variable specified by place-

form, not to any object of type integer.

Thus this call to setf should generate code to do the following:

. Evaluate byte-spec and bind into a temporary

. Bind the temporaries for place-form

. Evaluate newvalue-form and bind into the store variable

. Do the access to place-form
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. Do the store into place-form with the given bit-field of the accessed integer

replaced with the value in the store variable

If the evaluation of newvalue-form alters what is found in the given place—

such as setting a different bit-field of the integer—then the change of the bit-

field denoted by byte-spec will be to that altered integer, because the access
step must be done after the newvalue-form evaluation. Nevertheless, the eval-

uations required for binding the temporaries are done before the evaluation

of the newvalue-form, thereby preserving the required left-to-right evaluation

order.

The treatment of mask-field is similar to that of ldb.

In a form such as:

(setf (getf place-form ind-form) newvalue-form)

the place referred to by the place-form must always be both accessed and

updated; note that the update is to the generalized variable specified by
place-form, not necessarily to the particular list which is the property list

in question.

Thus this call to setf should generate code to do the following:

. Bind the temporaries for place-form

. Evaluate ind-form and bind into a temporary

. Evaluate the newvalue-form and bind into the store variable

. Do the access to place-form

. Do the store into place-form with a possibly new property list obtained by
combining the results of the evaluations and the access

If the evaluation of newvalue-form alters what is found in the given place—

such as setting a different named property in the list—then the change of the

property denoted by ind-form will be to that altered list, because the access

step is done after the newvalue-form evaluation. Nevertheless, the evaluations
required for binding the temporaries are done before the evaluation of the

newvalue-form, thereby preserving the required left-to-right evaluation order.

Note that the phrase “possibly new property list” treats the implementation
of property lists as a “black box”; it can mean that the former property list

is somehow destructively re-used, or it can mean partial or full copying of it.

A side effect may or may not occur; therefore setf must proceed as if the

resultant property list were a different copy needing to be stored back into

the generalized variable.
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The Common Lisp facilities provided to deal with these semantic issues

include:

. Built-in macros such as setf and push that follow the semantic rules.

. The define-modify-macro macro, which allows new generalized-variable

manipulating macros (of a certain restricted kind) to be defined easily. It

takes care of the semantic rules automatically.

. The defsetf macro, which allows new types of generalized-variable refer-

ences to be defined easily. It takes care of the semantic rules automatically.

. The define-setf-method macro and the get-setf-method function,

which provide access to the internal mechanisms when it is necessary to de-

fine a complicated new type of generalized-variable reference or generalized-

variable-manipulating macro.

Also important are the changes that allow lexical environments to be used

in appropriate ways in setf methods.

[Macro]define-modify-macro name lambda-list function [doc-string]

This macro defines a read-modify-write macro named name. An example of
such a macro is incf. The first subform of the macro will be a generalized-

variable reference. The function is literally the function to apply to the old

contents of the generalized-variable to get the new contents; it is not evaluated.

lambda-list describes the remaining arguments for the function; these argu-
ments come from the remaining subforms of the macro after the generalized-

variable reference. lambda-list may contain &optional and &rest markers.

(The &key marker is not permitted here; &rest suffices for the purposes of

define-modify-macro.) doc-string is documentation for the macro name be-

ing defined.

The expansion of a define-modify-macro is equivalent to the following,

except that it generates code that follows the semantic rules outlined above.

(defmacro name (reference . lambda-list)

doc-string

‘(setf ,reference
(function ,reference ,arg1 ,arg2 ...)))

where arg1, arg2, ..., are the parameters appearing in lambda-list; appropriate

provision is made for a &rest parameter.

As an example, incf could have been defined by:
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(define-modify-macro incf (&optional (delta 1)) +)

An example of a possibly useful macro not predefined in Common Lisp is

(define-modify-macro unionf (other-set &rest keywords) union)

X3J13 voted in March 1988 〈96〉 to specify that define-modify-macro

creates macros that take &environment arguments and perform the equivalent
of correctly passing such lexical environments to get-setf-method in order

to correctly maintain lexical references.

[Macro]defsetf access-fn {update-fn [doc-string] |
lambda-list (store-variable)
[[ {declaration}∗ | doc-string ]] { form}∗ }

This defines how to setf a generalized-variable reference of the form (access-

fn ...). The value of a generalized-variable reference can always be obtained

simply by evaluating it, so access-fn should be the name of a function or a

macro.

The user of defsetf provides a description of how to store into the

generalized-variable reference and return the value that was stored (because
setf is defined to return this value). The implementation of defsetf takes

care of ensuring that subforms of the reference are evaluated exactly once and

in the proper left-to-right order. In order to do this, defsetf requires that

access-fn be a function or a macro that evaluates its arguments, behaving like

a function. Furthermore, a setf of a call on access-fn will also evaluate all of
access-fn’s arguments; it cannot treat any of them specially. This means that

defsetf cannot be used to describe how to store into a generalized variable

that is a byte, such as (ldb field reference). To handle situations that do

not fit the restrictions imposed by defsetf, use define-setf-method, which
gives the user additional control at the cost of increased complexity.

A defsetf declaration may take one of two forms. The simple form is

(defsetf access-fn update-fn [doc-string ] )

The update-fn must name a function (or macro) that takes one more argument

than access-fn takes. When setf is given a place that is a call on access-fn, it

expands into a call on update-fn that is given all the arguments to access-fn
and also, as its last argument, the new value (which must be returned by

update-fn as its value). For example, the effect of

(defsetf symbol-value set)
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is built into the Common Lisp system. This causes the expansion

(setf (symbol-value foo) fu) → (set foo fu)

for example. Note that

(defsetf car rplaca)

would be incorrect because rplaca does not return its last argument.

The complex form of defsetf looks like

(defsetf access-fn lambda-list (store-variable) . body)

and resembles defmacro. The body must compute the expansion of a setf of

a call on access-fn.

The lambda-list describes the arguments of access-fn. &optional, &rest,

and &key markers are permitted in lambda-list. Optional arguments may have
defaults and “supplied-p” flags. The store-variable describes the value to be

stored into the generalized-variable reference.

Rationale: The store-variable is enclosed in parentheses to provide for an exten-
sion to multiple store variables that would receive multiple values from the second
subform of setf. The rules given below for coding setf methods discuss the proper
handling of multiple store variables to allow for the possibility that this extension
may be incorporated into Common Lisp in the future.

The body forms can be written as if the variables in the lambda-list were

bound to subforms of the call on access-fn and the store-variable were bound to

the second subform of setf. However, this is not actually the case. During the
evaluation of the body forms, these variables are bound to names of temporary

variables, generated as if by gensym or gentemp, that will be bound by the

expansion of setf to the values of those subforms. This binding permits

the body forms to be written without regard for order-of-evaluation issues.
defsetf arranges for the temporary variables to be optimized out of the final

result in cases where that is possible. In other words, an attempt is made by

defsetf to generate the best code possible in a particular implementation.

Note that the code generated by the body forms must include provision for

returning the correct value (the value of store-variable). This is handled by

the body forms rather than by defsetf because in many cases this value can

be returned at no extra cost, by calling a function that simultaneously stores
into the generalized variable and returns the correct value.

An example of the use of the complex form of defsetf:
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(defsetf subseq (sequence start &optional end) (new-sequence)

‘(progn (replace ,sequence ,new-sequence

:start1 ,start :end1 ,end)

,new-sequence))

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander

function defined by the complex form of defsetf is implicitly enclosed in

a block construct whose name is the same as the name of the access-fn.

Therefore return-from may be used to exit from the function.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms nor-

mally appear at top level, it is meaningful to place them in non-top-level
contexts; the complex form of defsetf must define the expander function

within the enclosing lexical environment, not within the global environment.

The underlying theory by which setf and related macros arrange to con-

form to the semantic rules given above is that from any generalized-variable

reference one may derive its “setf method,” which describes how to store

into that reference and which subforms of it are evaluated.

Compatibility note: To avoid confusion, it should be noted that the use of the
word “method” here in connection with setf has nothing to do with its use in Lisp
Machine Lisp in connection with message-passing and the Lisp Machine Lisp “flavor
system.”

And of course it also has nothing to do with the methods in the Common Lisp
Object System 〈12〉.

Given knowledge of the subforms of the reference, it is possible to avoid

evaluating them multiple times or in the wrong order. A setf method for a

given access form can be expressed as five values:

. A list of temporary variables

. A list of value forms (subforms of the given form) to whose values the
temporary variables are to be bound

. A second list of temporary variables, called store variables

. A storing form

. An accessing form

The temporary variables will be bound to the values of the value forms as if

by let*; that is, the value forms will be evaluated in the order given and may

refer to the values of earlier value forms by using the corresponding variables.
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The store variables are to be bound to the values of the newvalue form, that

is, the values to be stored into the generalized variable. In almost all cases

only a single value is to be stored, and there is only one store variable.

The storing form and the accessing form may contain references to the

temporary variables (and also, in the case of the storing form, to the store
variables). The accessing form returns the value of the generalized variable.

The storing form modifies the value of the generalized variable and guarantees

to return the values of the store variables as its values; these are the correct

values for setf to return. (Again, in most cases there is a single store variable

and thus a single value to be returned.) The value returned by the accessing
form is, of course, affected by execution of the storing form, but either of these

forms may be evaluated any number of times and therefore should be free of

side effects (other than the storing action of the storing form).

The temporary variables and the store variables are generated names, as if

by gensym or gentemp, so that there is never any problem of name clashes
among them, or between them and other variables in the program. This is

necessary to make the special forms that do more than one setf in parallel

work properly; these are psetf, shiftf, and rotatef. Computation of the

setf method must always create new variable names; it may not return the
same ones every time.

Some examples of setf methods for particular forms:

. For a variable x:

()

()

(g0001)

(setq x g0001)

x

. For (car exp):

(g0002)

(exp)

(g0003)

(progn (rplaca g0002 g0003) g0003)

(car g0002)

. For (subseq seq s e):

(g0004 g0005 g0006)

(seq s e)

(g0007)
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(progn (replace g0004 g0007 :start1 g0005 :end1 g0006)

g0007)

(subseq g0004 g0005 g0006)

[Macro]define-setf-method access-fn lambda-list

[[ {declaration}∗ | doc-string ]] { form}∗

This defines how to setf a generalized-variable reference that is of the form
(access-fn...). The value of a generalized-variable reference can always be

obtained simply by evaluating it, so access-fn should be the name of a function

or a macro.

The lambda-list describes the subforms of the generalized-variable reference,

as with defmacro. The result of evaluating the forms in the body must be

five values representing the setf method, as described above. Note that
define-setf-method differs from the complex form of defsetf in that while

the body is being executed the variables in lambda-list are bound to parts

of the generalized-variable reference, not to temporary variables that will be

bound to the values of such parts. In addition, define-setf-method does not

have defsetf’s restriction that access-fn must be a function or a function-like
macro; an arbitrary defmacro destructuring pattern is permitted in lambda-

list.

By definition there are no good small examples of define-setf-method

because the easy cases can all be handled by defsetf. A typical use is to

define the setf method for ldb:

;;; SETF method for the form (LDB bytespec int).

;;; Recall that the int form must itself be suitable for SETF.

(define-setf-method ldb (bytespec int)

(multiple-value-bind (temps vals stores

store-form access-form)

(get-setf-method int) ;Get SETF method for int

(let ((btemp (gensym)) ;Temp var for byte specifier

(store (gensym)) ;Temp var for byte to store

(stemp (first stores))) ;Temp var for int to store

;; Return the SETF method for LDB as five values.

(values (cons btemp temps) ;Temporary variables

(cons bytespec vals) ;Value forms

(list store) ;Store variables
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‘(let ((,stemp (dpb ,store ,btemp ,access-form)))

,store-form

,store) ;Storing form

‘(ldb ,btemp ,access-form) ;Accessing form

))))

X3J13 voted in March 1988 〈96〉 to specify that the &environment lambda-

list keyword may appear in the lambda-list in the same manner as for defmacro

in order to obtain the lexical environment of the call to the setf macro. The
preceding example should be modified to take advantage of this new feature.

The setf method must accept an &environment parameter, which will receive

the lexical environment of the call to setf; this environment must then be

given to get-setf-method in order that it may correctly use any locally bound

setf method that might be applicable to the place form that appears as the
second argument to ldb in the call to setf.

;;; SETF method for the form (LDB bytespec int).

;;; Recall that the int form must itself be suitable for SETF.

;;; Note the use of an &environment parameter to receive the

;;; lexical environment of the call for use with GET-SETF-METHOD.

(define-setf-method ldb (bytespec int &environment env)

(multiple-value-bind (temps vals stores

store-form access-form)

(get-setf-method int env) ;Get SETF method for int

(let ((btemp (gensym)) ;Temp var for byte specifier

(store (gensym)) ;Temp var for byte to store

(stemp (first stores))) ;Temp var for int to store

;; Return the SETF method for LDB as five values.

(values (cons btemp temps) ;Temporary variables

(cons bytespec vals) ;Value forms

(list store) ;Store variables

‘(let ((,stemp (dpb ,store ,btemp ,access-form)))

,store-form

,store) ;Storing form

‘(ldb ,btemp ,access-form) ;Accessing form

))))

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander

function defined by define-setf-method is implicitly enclosed in a block

construct whose name is the same as the name of the access-fn. Therefore

return-from may be used to exit from the function.
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X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms nor-

mally appear at top level, it is meaningful to place them in non-top-level

contexts; define-setf-method must define the expander function within the

enclosing lexical environment, not within the global environment.

[Function]get-setf-method form
........................................................................................................................................................................................................

get-setf-method returns five values constituting the setf method for form.

The form must be a generalized-variable reference. get-setf-method takes
care of error-checking and macro expansion and guarantees to return exactly

one store variable.

As an example, an extremely simplified version of setf, allowing no more

and no fewer than two subforms, containing no optimization to remove unnec-

essary variables, and not allowing storing of multiple values, could be defined
by:

(defmacro setf (reference value)

(multiple-value-bind (vars vals stores store-form access-form)

(get-setf-method reference)

(declare (ignore access-form))

‘(let* ,(mapcar #--’list

(append vars stores)

(append vals (list value)))

,store-form)))

X3J13 voted in March 1988 〈96〉 to add an optional environment argument
to get-setf-method. The revised definition and example are as follows.

[Function]get-setf-method form &optional env

get-setf-method returns five values constituting the setf method for form.
The form must be a generalized-variable reference. The env must be an envi-

ronment of the sort obtained through the &environment lambda-list keyword;

if env is nil or omitted, the null lexical environment is assumed. get-setf-

method takes care of error checking and macro expansion and guarantees to
return exactly one store variable.

As an example, an extremely simplified version of setf, allowing no more

and no fewer than two subforms, containing no optimization to remove unnec-

essary variables, and not allowing storing of multiple values, could be defined

by:
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(defmacro setf (reference value &environment env)

(multiple-value-bind (vars vals stores store-form access-form)

(get-setf-method reference env) ;Note use of environment

(declare (ignore access-form))

‘(let* ,(mapcar #--’list

(append vars stores)

(append vals (list value)))

,store-form)))

[Function]get-setf-method-multiple-value form
........................................................................................................................................................................................................

get-setf-method-multiple-value returns five values constituting the setf

method for form. The form must be a generalized-variable reference. This

is the same as get-setf-method except that it does not check the number

of store variables; use this in cases that allow storing multiple values into a
generalized variable. There are no such cases in standard Common Lisp, but

this function is provided to allow for possible extensions.

X3J13 voted in March 1988 〈96〉 to add an optional environment argument
to get-setf-method. The revised definition is as follows.

[Function]get-setf-method-multiple-value form &optional env

get-setf-method-multiple-value returns five values constituting the setf

method for form. The form must be a generalized-variable reference. The
env must be an environment of the sort obtained through the &environment

lambda-list keyword; if env is nil or omitted, the null lexical environment is

assumed.

This is the same as get-setf-method except that it does not check the

number of store variables; use this in cases that allow storing multiple values

into a generalized variable. There are no such cases in standard Common

Lisp, but this function is provided to allow for possible extensions.

X3J13 voted in March 1988 〈96〉 to clarify that a setf method for a func-

tional name is applicable only when the global binding of that name is lexically
visible. If such a name has a local binding introduced by flet, labels, or

macrolet, then global definitions of setf methods for that name do not apply

and are not visible. All of the standard Common Lisp macros that modify a

setf place (for example, incf, decf, pop, and rotatef) obey this convention.
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7.3. Function Invocation

The most primitive form for function invocation in Lisp of course has no

name; any list that has no other interpretation as a macro call or special form
is taken to be a function call. Other constructs are provided for less common

but nevertheless frequently useful situations.

[Function]apply function arg &rest more-args

This applies function to a list of arguments.

The function may be a compiled-code object, or a lambda-expression, or a
........................................................................................................................................................................................................

symbol; in the latter case the global functional value of that symbol is used

(but it is illegal for the symbol to be the name of a macro or special form).

X3J13 voted in June 1988 〈90〉 to allow the function to be only of type

symbol or function; a lambda-expression is no longer acceptable as a func-
tional argument. One must use the function special form or the abbreviation

#--’ before a lambda-expression that appears as an explicit argument form.

The arguments for the function consist of the last argument to apply ap-

pended to the end of a list of all the other arguments to apply but the function

itself; it is as if all the arguments to apply except the function were given to

list* to create the argument list. For example:

(setq f ’+) (apply f ’(1 2)) ⇒ 3

(setq f #--’-) (apply f ’(1 2)) ⇒ -1

(apply #--’max 3 5 ’(2 7 3)) ⇒ 7

(apply ’cons ’((+ 2 3) 4)) ⇒
((+ 2 3) . 4) not (5 . 4)

(apply #--’+ ’()) ⇒ 0

Note that if the function takes keyword arguments, the keywords as well as
the corresponding values must appear in the argument list:

(apply #--’(lambda (&key a b) (list a b)) ’(:b 3)) ⇒ (nil 3)

This can be very useful in conjunction with the &allow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other-keys)

(let ((v (apply #--’make-array size :allow-other-keys t keys)))

(if double (concatenate (type-of v) v v) v)))

(foo 4 :initial-contents ’(a b c d) :double t)

⇒ #--(a b c d a b c d)
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[Function]funcall fn &rest arguments

(funcall fn a1 a2 ... an) applies the function fn to the arguments a1,

a2, ..., an. The fn may not be a special form or a macro; this would not be

meaningful.
X3J13 voted in June 1988 〈90〉 to allow the fn to be only of type symbol

or function; a lambda-expression is no longer acceptable as a functional

argument. One must use the function special form or the abbreviation #--’

before a lambda-expression that appears as an explicit argument form.
For example:

(cons 1 2) ⇒ (1 . 2)

(setq cons (symbol-function ’+))

(funcall cons 1 2) ⇒ 3

The difference between funcall and an ordinary function call is that the

function is obtained by ordinary Lisp evaluation rather than by the special

interpretation of the function position that normally occurs.

Compatibility note: The Common Lisp function funcall corresponds roughly to
the Interlisp primitive apply*.

[Constant ]call-arguments-limit

The value of call-arguments-limit is a positive integer that is the upper

exclusive bound on the number of arguments that may be passed to a function.

This bound depends on the implementation but will not be smaller than

50. (Implementors are encouraged to make this limit as large as practicable
without sacrificing performance.) The value of call-arguments-limit must

be at least as great as that of lambda-parameters-limit. See also multiple-

values-limit.

7.4. Simple Sequencing

Each of the constructs in this section simply evaluates all the argument forms

in order. They differ only in what results are returned.

[Special form]progn { form}∗

The progn construct takes a number of forms and evaluates them sequentially,

in order, from left to right. The values of all the forms but the last are
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discarded; whatever the last form returns is returned by the progn form.

One says that all the forms but the last are evaluated for effect, because

their execution is useful only for the side effects caused, but the last form is

executed for value.

progn is the primitive control structure construct for “compound state-
ments,” such as begin-end blocks in Algol-like languages. Many Lisp con-

structs are “implicit progn” forms: as part of their syntax each allows many

forms to be written that are to be evaluated sequentially, discarding the results

of all forms but the last and returning the results of the last form.

If the last form of the progn returns multiple values, then those multiple
values are returned by the progn form. If there are no forms for the progn,

then the result is nil. These rules generally hold for implicit progn forms as

well.

[Macro]prog1 first { form}∗

prog1 is similar to progn, but it returns the value of its first form. All the

argument forms are executed sequentially; the value of the first form is saved

while all the others are executed and is then returned.

prog1 is most commonly used to evaluate an expression with side effects

and to return a value that must be computed before the side effects happen.

For example:

(prog1 (car x) (rplaca x ’foo))

alters the car of x to be foo and returns the old car of x.

prog1 always returns a single value, even if the first form tries to return
multiple values. As a consequence, (prog1 x) and (progn x) may behave

differently if x can produce multiple values. See multiple-value-prog1. A

point of style: although prog1 can be used to force exactly a single value to

be returned, it is conventional to use the function values for this purpose.

[Macro]prog2 first second { form}∗

prog2 is similar to prog1, but it returns the value of its second form. All

the argument forms are executed sequentially; the value of the second form is
saved while all the other forms are executed and is then returned. prog2 is

provided mostly for historical compatibility.

(prog2 a b c ... z) ≡ (progn a (prog1 b c ... z))
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Occasionally it is desirable to perform one side effect, then a value-producing

operation, then another side effect. In such a peculiar case, prog2 is fairly

perspicuous. For example:

(prog2 (open-a-file) (process-the-file) (close-the-file))

;value is that of process-the-file

prog2, like prog1, always returns a single value, even if the second form

tries to return multiple values. As a consequence of this, (prog2 x y) and

(progn x y) may behave differently if y can produce multiple values.

7.5. Establishing New Variable Bindings

During the invocation of a function represented by a lambda-expression (or a

closure of a lambda-expression, as produced by function), new bindings are

established for the variables that are the parameters of the lambda-expression.
These bindings initially have values determined by the parameter-binding

protocol discussed in section 5.2.2.

The following constructs may also be used to establish bindings of variables,

both ordinary and functional.

[Special form]let ( {var | (var value)}∗ ) {declaration}∗ { form}∗

A let form can be used to execute a series of forms with specified variables
bound to specified values.

More precisely, the form

(let ((var1 value1)

(var2 value2)

...

(varm valuem))

declaration1

declaration2

...

declarationp

body1

body2

...

bodyn)
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first evaluates the expressions value1, value2, and so on, in that order, saving

the resulting values. Then all of the variables varj are bound to the corre-

sponding values in parallel; each binding will be a lexical binding unless there

is a special declaration to the contrary. The expressions bodyk are then eval-

uated in order; the values of all but the last are discarded (that is, the body
of a let form is an implicit progn). The let form returns what evaluating

bodyn produces (if the body is empty, which is fairly useless, let returns nil

as its value). The bindings of the variables have lexical scope and indefinite

extent.
Instead of a list (varj valuej), one may write simply varj. In this case varj

is initialized to nil. As a matter of style, it is recommended that varj be

written only when that variable will be stored into (such as by setq) before

its first use. If it is important that the initial value be nil rather than some

undefined value, then it is clearer to write out (varj nil) if the initial value
is intended to mean “false,” or (varj ’()) if the initial value is intended to

be an empty list. Note that the code

(let (x)

(declare (integer x))

(setq x (gcd y z))

...)

is incorrect; although x is indeed set before it is used, and is set to a value

of the declared type integer, nevertheless x momentarily takes on the value

nil in violation of the type declaration.

Declarations may appear at the beginning of the body of a let. See
declare.

See also destructuring-bind.

X3J13 voted in January 1989 〈182〉 to regularize the binding formats for

do, do*, let, let*, prog, prog*, and compiler-let. The new syntactic
definition for let makes the value optional:

[Macro]let ( {var | (var [value] )}∗ ) {declaration}∗ { form}∗

This changes let to allow a list (var) to appear, meaning the same as simply

var.

[Special form]let* ( {var | (var value)}∗ ) {declaration}∗ { form}∗

let* is similar to let, but the bindings of variables are performed sequentially

rather than in parallel. This allows the expression for the value of a variable

to refer to variables previously bound in the let* form.
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More precisely, the form

(let* ((var1 value1)

(var2 value2)

...

(varm valuem))

declaration1
declaration2

...

declarationp

body1
body2

...

bodyn)

first evaluates the expression value1, then binds the variable var1 to that

value; then it evaluates value2 and binds var2; and so on. The expressions

bodyj are then evaluated in order; the values of all but the last are discarded

(that is, the body of a let* form is an implicit progn). The let* form returns
the results of evaluating bodyn (if the body is empty, which is fairly useless,

let* returns nil as its value). The bindings of the variables have lexical

scope and indefinite extent.

Instead of a list (varj valuej), one may write simply varj. In this case varj

is initialized to nil. As a matter of style, it is recommended that varj be

written only when that variable will be stored into (such as by setq) before

its first use. If it is important that the initial value be nil rather than some

undefined value, then it is clearer to write out (varj nil) if the initial value
is intended to mean “false,” or (varj ’()) if the initial value is intended to

be an empty list.

Declarations may appear at the beginning of the body of a let*. See

declare.

X3J13 voted in January 1989 〈182〉 to regularize the binding formats for

do, do*, let, let*, prog, prog*, and compiler-let. The new syntactic

definition for let* makes the value optional:

[Macro]let* ( {var | (var [value] )}∗ ) {declaration}∗ { form}∗

This changes let* to allow a list (var) to appear, meaning the same as simply

var.
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[Special form]compiler-let ( {var | (var value)}∗ ) { form}∗

When executed by the Lisp interpreter, compiler-let behaves exactly like

let with all the variable bindings implicitly declared special. When the

compiler processes this form, however, no code is compiled for the bindings;

instead, the processing of the body by the compiler (including, in particular,
the expansion of any macro calls within the body) is done with the special

variables bound to the indicated values in the execution context of the com-

piler. This is primarily useful for communication among complicated macros.

Declarations may not appear at the beginning of the body of a compiler-

let.

Rationale: Because of the unorthodox handling by compiler-let of its variable
bindings, it would be complicated and confusing to permit declarations that appar-
ently referred to the variables bound by compiler-let. Disallowing declarations
eliminates the problem.

X3J13 voted in January 1989 〈182〉 to regularize the binding formats for

do, do*, let, let*, prog, prog*, and compiler-let. The new syntactic

definition for compiler-let makes the value optional:

........................................................................................................................................................................................................

[Macro]compiler-let ( {var | (var [value] )}∗ ) { form}∗

This changes compiler-let to allow a list (var) to appear, meaning the same

as simply var.

X3J13 voted in June 1989 〈25〉 to remove compiler-let from the language.

Many uses of compiler-let can be replaced with more portable code that

uses macrolet or symbol-macrolet.

[Special form]progv symbols values { form}∗

progv is a special form that allows binding one or more dynamic variables

whose names may be determined at run time. The sequence of forms (an

implicit progn) is evaluated with the dynamic variables whose names are in

the list symbols bound to corresponding values from the list values. (If too few
values are supplied, the remaining symbols are bound and then made to have

no value; see makunbound. If too many values are supplied, the excess values

are ignored.) The results of the progv form are those of the last form. The

bindings of the dynamic variables are undone on exit from the progv form.

The lists of symbols and values are computed quantities; this is what makes
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progv different from, for example, let, where the variable names are stated

explicitly in the program text.

progv is particularly useful for writing interpreters for languages embedded

in Lisp; it provides a handle on the mechanism for binding dynamic variables.

[Special form]flet ( {(name lambda-list

[[ {declaration}∗ | doc-string ]] { form}∗ )}∗ )
{ form}∗

[Special form]labels ( {(name lambda-list

[[ {declaration}∗ | doc-string ]] { form}∗ )}∗ )
{ form}∗

[Special form]macrolet ( {(name varlist

[[ {declaration}∗ | doc-string ]] { form}∗ )}∗ )
{ form}∗

flet may be used to define locally named functions. Within the body of the
flet form, function names matching those defined by the flet refer to the

locally defined functions rather than to the global function definitions of the

same name.

Any number of functions may be simultaneously defined. Each definition
is similar in format to a defun form: first a name, then a parameter list

(which may contain &optional, &rest, or &key parameters), then optional

declarations and documentation string, and finally a body.

(flet ((safesqrt (x) (sqrt (abs x))))

;; The safesqrt function is used in two places.

(safesqrt (apply #--’+ (map ’list #--’safesqrt longlist))))

The labels construct is identical in form to the flet construct. These

constructs differ in that the scope of the defined function names for flet

encompasses only the body, whereas for labels it encompasses the function

definitions themselves. That is, labels can be used to define mutually recur-

sive functions, but flet cannot. This distinction is useful. Using flet one

can locally redefine a global function name, and the new definition can refer

to the global definition; the same construction using labels would not have
that effect.

(defun integer-power (n k) ;A highly "bummed" integer

(declare (integer n)) ; exponentiation routine

(declare (type (integer 0 *) k))
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(labels ((expt0 (x k a)

(declare (integer x a) (type (integer 0 *) k))

(cond ((zerop k) a)

((evenp k) (expt1 (* x x) (floor k 2) a))

(t (expt0 (* x x) (floor k 2) (* x a)))))

(expt1 (x k a)

(declare (integer x a) (type (integer 1 *) k))

(cond ((evenp k) (expt1 (* x x) (floor k 2) a))

(t (expt0 (* x x) (floor k 2) (* x a))))))

(expt0 n k 1)))

macrolet is similar in form to flet but defines local macros, using the same

format used by defmacro. The names established by macrolet as names for

macros are lexically scoped.

I have observed that, while most Common Lisp users pronounce macrolet

to rhyme with “silhouette,” a small but vocal minority pronounce it to rhyme

with “Chevrolet.” A very few extremists furthermore adjust their pronuncia-

tion of flet similarly: they say “flay.” Hey, hey! Très outré.

Macros often must be expanded at “compile time” (more generally, at a

time before the program itself is executed), and so the run-time values of

variables are not available to macros defined by macrolet.

The precise rule is that the macro-expansion functions defined by macrolet
........................................................................................................................................................................................................

are defined in the global environment; lexically scoped entities that would

ordinarily be lexically apparent are not visible within the expansion functions.

X3J13 voted in March 1989 〈50〉 to retract the previous sentence and specify

that the macro-expansion functions created by macrolet are defined in the
lexical environment in which the macrolet form appears, not in the null lex-

ical environment. Declarations, macrolet definitions, and symbol-macrolet

definitions affect code within the expansion functions in a macrolet, but the

consequences are undefined if such code attempts to refer to any local variable

or function bindings that are visible in that lexical environment.

However, lexically scoped entities are visible within the body of the

macrolet form and are visible to the code that is the expansion of a macro

call. The following example should make this clear:
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;;; Example of scoping in macrolet.

(defun foo (x flag)

(macrolet ((fudge (z)

;;The parameters x and flag are not accessible
;; at this point; a reference to flag would be to

;; the global variable of that name.

‘(if flag

(* ,z ,z)

,z)))

;;The parameters x and flag are accessible here.

(+ x

(fudge x)

(fudge (+ x 1)))))

The body of the macrolet becomes

(+ x

(if flag

(* x x)

x))

(if flag

(* (+ x 1) (+ x 1))

(+ x 1)))

after macro expansion. The occurrences of x and flag legitimately refer to

the parameters of the function foo because those parameters are visible at
the site of the macro call which produced the expansion.

X3J13 voted in March 1988 〈78〉 to specify that the body of each function or

expander function defined by flet, labels, or macrolet is implicitly enclosed

in a block construct whose name is the same as the name of the function.

Therefore return-from may be used to exit from the function.

X3J13 voted in March 1989 〈89〉 to extend flet and labels to accept any

function-name (a symbol or a list whose car is setf—see section 7.1) as a
name for a function to be locally defined. In this way one can create local

definitions for setf expansion functions. (X3J13 explicitly declined to extend

macrolet in the same manner.)

X3J13 voted in March 1988 〈77〉 to change flet, labels, and macrolet

to allow declarations to appear before the body. The new descriptions are

therefore as follows:
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[Macro]flet ( {(name lambda-list

[[ {declaration}∗ | doc-string ]] { form}∗ )}∗ )
{declaration}∗ { form}∗

[Macro]labels ( {(name lambda-list

[[ {declaration}∗ | doc-string ]] { form}∗ )}∗ )
{declaration}∗ { form}∗

[Macro]macrolet ( {(name varlist

[[ {declaration}∗ | doc-string ]] { form}∗ )}∗ )
{declaration}∗ { form}∗

These are now syntactically more similar to such other binding forms as let.

For flet and labels, the bodies of the locally defined functions are part of

the scope of pervasive declarations appearing before the main body. (This is

consistent with the treatment of initialization forms in let.) For macrolet,
however, the bodies of the locally defined macro expander functions are not

included in the scope of pervasive declarations appearing before the main

body. (This is consistent with the rule, stated below, that the bodies of

macro expander functions are in the global environment, not the local lexical
environment.) Here is an example:

(flet ((stretch (x) (* x *stretch-factor*))

(chop (x) (- x *chop-margin*)))

(declare (inline stretch chop)) ;Illegal in original Common Lisp

(if (> x *chop-margin*) (stretch (chop x)) (chop (stretch x))))

X3J13 voted to permit declarations of the sort noted above.

[Special form]symbol-macrolet ( {(var expansion)}∗ )
{declaration}∗ { form}∗

X3J13 voted in June 1988 〈12〉 to adopt the Common Lisp Object System.

Part of this proposal is a general mechanism, symbol-macrolet, for treating

certain variable names as if they were parameterless macro calls. This facility
may be useful independent of CLOS. X3J13 voted in March 1989 〈173〉 to

modify the definition of symbol-macrolet substantially and also voted 〈172〉
to allow declarations before the body of symbol-macrolet but with peculiar

treatment of special and type declarations.
The forms are executed as an implicit progn in a lexical environment that

causes every reference to any defined var to be replaced by the corresponding

expansion. It is as if the reference to the var were a parameterless macro call;

the expansion is evaluated or otherwise processed in place of the reference

(in particular, the expansion form is itself subject to further expansion—
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this is one of the changes 〈173〉 from the original definition in the CLOS

proposal). Note, however, that the names of such symbol macros occupy

the name space of variables, not the name space of functions; just as one

may have a function (or macro, or special form) and a variable with the

same name without interference, so one may have an ordinary macro (or
function, or special form) and a symbol macro with the same name. The use

of symbol-macrolet can therefore be shadowed by let or other constructs

that bind variables; symbol-macrolet does not substitute for all occurrences

of a var as a variable but only for those occurrences that would be construed
as references in the scope of a lexical binding of var as a variable. For example:

(symbol-macrolet ((pollyanna ’goody))

(list pollyanna (let ((pollyanna ’two-shoes)) pollyanna)))

⇒ (goody two-shoes), not (goody goody)

One might think that ’goody simply replaces all occurrences of pollyanna,

and so the value of the let would be goody; but this is not so. A little

reflection shows that under this incorrect interpretation the body in expanded

form would be

(list ’goody (let ((’goody ’two-shoes)) ’goody))

which is syntactically malformed. The correct expanded form is

(list ’goody (let ((pollyanna ’two-shoes)) pollyanna))

because the rebinding of pollyanna by the let form shadows the symbol

macro definition.

The expansion for each var is not evaluated at binding time but only after

it has replaced a reference to the var. The setf macro allows a symbol macro
to be used as a place, in which case its expansion is used; moreover, setq of

a variable that is really a symbol macro will be treated as if setf had been

used. The values of the last form are returned, or nil if there is no value.

See macroexpand and macroexpand-1; they will expand symbol macros as

well as ordinary macros.
Certain declarations before the body are handled in a peculiar manner; see

section 9.1.

7.6. Conditionals

The traditional conditional construct in Lisp is cond. However, if is much

simpler and is directly comparable to conditional constructs in other program-

ming languages, so it is considered to be primitive in Common Lisp and is
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described first. Common Lisp also provides the dispatching constructs case

and typecase, which are often more convenient than cond.

[Special form]if test then [else]

The if special form corresponds to the if-then-else construct found in most
algebraic programming languages. First the form test is evaluated. If the

result is not nil, then the form then is selected; otherwise the form else

is selected. Whichever form is selected is then evaluated, and if returns

whatever is returned by evaluation of the selected form.

(if test then else) ≡ (cond (test then) (t else))

but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of test is nil then

nothing is done and the value of the if form is nil. If the value of the if

form is important in this situation, then the and construct may be stylistically

preferable, depending on the context. If the value is not important, but only

the effect, then the when construct may be stylistically preferable.

[Macro]when test { form}∗

(when test form1 form2 ... ) first evaluates test. If the result is nil, then

no form is evaluated, and nil is returned. Otherwise the forms constitute an

implicit progn and are evaluated sequentially from left to right, and the value

of the last one is returned.

(when p a b c) ≡ (and p (progn a b c))

(when p a b c) ≡ (cond (p a b c))

(when p a b c) ≡ (if p (progn a b c) nil)

(when p a b c) ≡ (unless (not p) a b c)

As a matter of style, when is normally used to conditionally produce some

side effects, and the value of the when form is normally not used. If the value

is relevant, then it may be stylistically more appropriate to use and or if.

[Macro]unless test { form}∗

(unless test form1 form2 ... ) first evaluates test. If the result is not nil,

then the forms are not evaluated, and nil is returned. Otherwise the forms

constitute an implicit progn and are evaluated sequentially from left to right,

and the value of the last one is returned.
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(unless p a b c) ≡ (cond ((not p) a b c))

(unless p a b c) ≡ (if p nil (progn a b c))

(unless p a b c) ≡ (when (not p) a b c)

As a matter of style, unless is normally used to conditionally produce some

side effects, and the value of the unless form is normally not used. If the

value is relevant, then it may be stylistically more appropriate to use if.

[Macro]cond {(test { form}∗ )}∗

A cond form has a number (possibly zero) of clauses, which are lists of forms.

Each clause consists of a test followed by zero or more consequents. For

example:

(cond (test-1 consequent-1-1 consequent-1-2 ...)

(test-2)

(test-3 consequent-3-1 ...)

... )

The first clause whose test evaluates to non-nil is selected; all other clauses

are ignored, and the consequents of the selected clause are evaluated in order

(as an implicit progn).

More specifically, cond processes its clauses in order from left to right.

For each clause, the test is evaluated. If the result is nil, cond advances

to the next clause. Otherwise, the cdr of the clause is treated as a list of
forms, or consequents; these forms are evaluated in order from left to right,

as an implicit progn. After evaluating the consequents, cond returns without

inspecting any remaining clauses. The cond special form returns the results

of evaluating the last of the selected consequents; if there were no consequents

in the selected clause, then the single (and necessarily non-null) value of the
test is returned. If cond runs out of clauses (every test produced nil, and

therefore no clause was selected), the value of the cond form is nil.

If it is desired to select the last clause unconditionally if all others fail, the

standard convention is to use t for the test. As a matter of style, it is desirable

to write a last clause (t nil) if the value of the cond form is to be used for

something. Similarly, it is in questionable taste to let the last clause of a cond

be a “singleton clause”; an explicit t should be provided. (Note moreover that

(cond ... (x)) may behave differently from (cond ... (t x)) if x might

produce multiple values; the former always returns a single value, whereas the

latter returns whatever values x returns. However, as a matter of style it is

preferable to obtain this behavior by writing (cond ... (t (values x))),
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using the values function explicitly to indicate the discarding of any excess

values.) For example:

(setq z (cond (a ’foo) (b ’bar))) ;Possibly confusing

(setq z (cond (a ’foo) (b ’bar) (t nil))) ;Better
(cond (a b) (c d) (e)) ;Possibly confusing

(cond (a b) (c d) (t e)) ;Better

(cond (a b) (c d) (t (values e))) ;Better (if one value

; needed)
(cond (a b) (c)) ;Possibly confusing

(cond (a b) (t c)) ;Better

(if a b c) ;Also better

A Lisp cond form may be compared to a continued if-then-else as found in

many algebraic programming languages:

(cond (p ...) if p then ...

(q ...) roughly else if q then ...

(r ...) corresponds else if r then ...

... to ...

(t ...)) else ...

[Macro]case keyform {( {( {key}∗ ) | key} { form}∗ )}∗

case is a conditional that chooses one of its clauses to execute by comparing

a value to various constants, which are typically keyword symbols, integers,

or characters (but may be any objects). Its form is as follows:

(case keyform

(keylist-1 consequent-1-1 consequent-1-2 ...)

(keylist-2 consequent-2-1 ...)

(keylist-3 consequent-3-1 ...)

...)

Structurally case is much like cond, and it behaves like cond in selecting

one clause and then executing all consequents of that clause. However, case
differs in the mechanism of clause selection.

The first thing case does is to evaluate the form keyform to produce an

object called the key object. Then case considers each of the clauses in turn.

If key is in the keylist (that is, is eql to any item in the keylist) of a clause, the

consequents of that clause are evaluated as an implicit progn; case returns
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what was returned by the last consequent (or nil if there are no consequents

in that clause). If no clause is satisfied, case returns nil.

The keys in the keylists are not evaluated; literal key values must appear in

the keylists. It is an error for the same key to appear in more than one clause;

a consequence is that the order of the clauses does not affect the behavior of
the case construct.

Instead of a keylist, one may write one of the symbols t and otherwise. A

clause with such a symbol always succeeds and must be the last clause (this

is an exception to the order-independence of clauses). See also ecase and
ccase, each of which provides an implicit otherwise clause to signal an error

if no clause is satisfied.

If there is only one key for a clause, then that key may be written in place of

a list of that key, provided that no ambiguity results. Such a “singleton key”

may not be nil (which is confusable with (), a list of no keys), t, otherwise,
or a cons.

Compatibility note: The Lisp Machine Lisp caseq construct uses eq for the com-
parison. In Lisp Machine Lisp caseq therefore works for fixnums but not bignums.
The MacLisp caseq construct simply prohibits the use of bignums; indeed, it permits
only fixnums and symbols as clause keys. In the interest of hiding the fixnum-bignum
distinction, and for general language consistency, case uses eql in Common Lisp.

The Interlisp selectq construct is similar to case.

[Macro]typecase keyform {(type { form}∗ )}∗

typecase is a conditional that chooses one of its clauses by examining the
type of an object. Its form is as follows:

(typecase keyform
(type-1 consequent-1-1 consequent-1-2 ...)

(type-2 consequent-2-1 ...)

(type-3 consequent-3-1 ...)

...)

Structurally typecase is much like cond or case, and it behaves like them

in selecting one clause and then executing all consequents of that clause. It
differs in the mechanism of clause selection.

The first thing typecase does is to evaluate the form keyform to produce

an object called the key object. Then typecase considers each of the clauses

in turn. The type that appears in each clause is a type specifier; it is not

evaluated but is a literal type specifier. The first clause for which the key is
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of that clause’s specified type is selected, the consequents of this clause are

evaluated as an implicit progn, and typecase returns what was returned by

the last consequent (or nil if there are no consequents in that clause). If no

clause is satisfied, typecase returns nil.

As for case, the symbol t or otherwise may be written for type to indicate

that the clause should always be selected. See also etypecase and ctypecase,

each of which provides an implicit otherwise clause to signal an error if no
clause is satisfied.

It is permissible for more than one clause to specify a given type, partic-

ularly if one is a subtype of another; the earliest applicable clause is chosen.

Thus for typecase, unlike case, the order of the clauses may affect the be-

havior of the construct. For example:

(typecase an-object

(string ...) ;This clause handles strings

((array t) ...) ;This clause handles general arrays
((array bit) ...) ;This clause handles bit arrays

(array ...) ;This handles all other arrays

((or list number) ...) ;This handles lists and numbers

(t ...)) ;This handles all other objects

A Common Lisp compiler may choose to issue a warning if a clause cannot

be selected because it is completely shadowed by earlier clauses.

7.7. Blocks and Exits

The block and return-from constructs provide a structured lexical non-local

exit facility. At any point lexically within a block construct, a return-from

with the same name may be used to perform an immediate transfer of control

that exits from the block. In the most common cases this mechanism is

more efficient than the dynamic non-local exit facility provided by catch and

throw, described in section 7.11.

[Special form]block name { form}∗

The block construct executes each form from left to right, returning whatever

is returned by the last form. If, however, a return or return-from form that

specifies the same name is executed during the execution of some form, then

the results specified by the return or return-from are immediately returned

as the value of the block construct, and execution proceeds as if the block had
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terminated normally. In this, block differs from progn; the progn construct

has nothing to do with return.

The name is not evaluated; it must be a symbol. The scope of the name

is lexical; only a return or return-from textually contained in some form

can exit from the block. The extent of the name is dynamic. Therefore it is

only possible to exit from a given run-time incarnation of a block once, either

normally or by explicit return.

The defun form implicitly puts a block around the body of the function

defined; the block has the same name as the function. Therefore one may
use return-from to return prematurely from a function defined by defun.

The lexical scoping of the block name is fully general and has consequences

that may be surprising to users and implementors of other Lisp systems. For

example, the return-from in the following example actually does work in

Common Lisp as one might expect:

(block loser

(catch ’stuff

(mapcar #--’(lambda (x) (if (numberp x)

(hairyfun x)

(return-from loser nil)))

items)))

Depending on the situation, a return in Common Lisp may not be simple.

A return can break up catchers if necessary to get to the block in question.

It is possible for a “closure” created by function for a lambda-expression to
refer to a block name as long as the name is lexically apparent.

[Special form]return-from name [result]

return-from is used to return from a block or from such constructs as do and

prog that implicitly establish a block. The name is not evaluated and must

be a symbol. A block construct with the same name must lexically enclose

the occurrence of return-from; whatever the evaluation of result produces is
immediately returned from the block. (If the result form is omitted, it defaults

to nil. As a matter of style, this form ought to be used to indicate that the

particular value returned doesn’t matter.)

The return-from form itself never returns and cannot have a value; it

causes results to be returned from a block construct. If the evaluation of

result produces multiple values, those multiple values are returned by the

construct exited.
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[Macro]return [result]

(return form) is identical in meaning to (return-from nil form); it re-

turns from a block named nil. Blocks established implicitly by iteration

constructs such as do are named nil, so that return will exit properly from
such a construct.

7.8. Iteration

Common Lisp provides a number of iteration constructs. The loop construct

provides a trivial iteration facility; it is little more than a progn with a branch

from the bottom back to the top. The do and do* constructs provide a general

iteration facility for controlling the variation of several variables on each cycle.

For specialized iterations over the elements of a list or n consecutive integers,
dolist and dotimes are provided. The tagbody construct is the most general,

permitting arbitrary go statements within it. (The traditional prog construct

is a synthesis of tagbody, block, and let.) Most of the iteration constructs

permit statically defined non-local exits (see return-from and return).

7.8.1. Indefinite Iteration

The loop construct is the simplest iteration facility. It controls no variables,
and simply executes its body repeatedly.

[Macro]loop { form}∗

Each form is evaluated in turn from left to right. When the last form has

been evaluated, then the first form is evaluated again, and so on, in a never-

ending cycle. The loop construct never returns a value. Its execution must

be terminated explicitly, using return or throw, for example.
loop, like most iteration constructs, establishes an implicit block named

nil. Thus return may be used to exit from a loop with specified results.

A loop construct has this meaning only if every form is non-atomic (a list).
........................................................................................................................................................................................................

The case where some form is atomic is reserved for future extensions.

Implementation note: There have been several proposals for a powerful iteration
mechanism to be called loop. One version is provided in Lisp Machine Lisp. Im-
plementors are encouraged to experiment with extensions to the loop syntax, but
users should be advised that in all likelihood some specific set of extensions to loop

will be adopted in a future revision of Common Lisp.
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X3J13 voted in January 1989 〈115〉 to include just such an extension of

loop. See chapter 26.

7.8.2. General Iteration

In contrast to loop, do and do* provide a powerful and general mechanism
for repetitively recalculating many variables.

[Macro]do ( {(var [init [step] ] )}∗ )
(end-test {result}∗ )
{declaration}∗ {tag | statement}∗

[Macro]do* ( {(var [init [step] ] )}∗ )
(end-test {result}∗ )
{declaration}∗ {tag | statement}∗

The do special form provides a generalized iteration facility, with an arbitrary
number of “index variables.” These variables are bound within the iteration

and stepped in parallel in specified ways. They may be used both to generate

successive values of interest (such as successive integers) or to accumulate re-

sults. When an end condition is met, the iteration terminates with a specified
value.

In general, a do loop looks like this:

(do ((var1 init1 step1)

(var2 init2 step2)
...

(varn initn stepn))

(end-test . result)

{declaration}∗
. tagbody)

A do* loop looks exactly the same except that the name do is replaced by

do*.

The first item in the form is a list of zero or more index-variable specifiers.
Each index-variable specifier is a list of the name of a variable var, an initial

value init, and a stepping form step. If init is omitted, it defaults to nil. If

step is omitted, the var is not changed by the do construct between repetitions

(though code within the do is free to alter the value of the variable by using

setq).
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An index-variable specifier can also be just the name of a variable. In this

case, the variable has an initial value of nil and is not changed between rep-

etitions. As a matter of style, it is recommended that an unadorned variable

name be written only when that variable will be stored into (such as by setq)

before its first use. If it is important that the initial value be nil rather than
some undefined value, then it is clearer to write out (varj nil) if the initial

value is intended to mean “false,” or (varj ’()) if the initial value is intended

to be an empty list.

X3J13 voted in January 1989 〈182〉 to regularize the binding formats for
do, do*, let, let*, prog, prog*, and compiler-let. In the case of do and

do* the first edition was inconsistent; the formal syntax fails to reflect the

fact that a simple variable name may appear, as described in the preceding

paragraph. The definitions should read

[Macro]do ( {var | (var [init [step] ] )}∗ )
(end-test {result}∗ )
{declaration}∗ {tag | statement}∗

[Macro]do* ( {var | (var [init [step] ] )}∗ )
(end-test {result}∗ )
{declaration}∗ {tag | statement}∗

for consistency with the reading of the first edition and the X3J13 vote.

Before the first iteration, all the init forms are evaluated, and each var is

bound to the value of its respective init. This is a binding, not an assignment;

when the loop terminates, the old values of those variables will be restored.

For do, all of the init forms are evaluated before any var is bound; hence all
the init forms may refer to the old bindings of all the variables (that is, to

the values visible before beginning execution of the do construct). For do*,

the first init form is evaluated, then the first var is bound to that value, then

the second init form is evaluated, then the second var is bound, and so on;

in general, the initj form can refer to the new binding vark if k < j , and
otherwise to the old binding of vark.

The second element of the loop is a list of an end-testing predicate form

end-test and zero or more result forms. This resembles a cond clause. At

the beginning of each iteration, after processing the variables, the end-test is
evaluated. If the result is nil, execution proceeds with the body of the do (or

do*) form. If the result is not nil, the result forms are evaluated in order as

an implicit progn, and then do returns. do returns the results of evaluating

the last result form. If there are no result forms, the value of do is nil. Note

that this is not quite analogous to the treatment of clauses in a cond form,
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because a cond clause with no result forms returns the (non-nil) result of the

test.

At the beginning of each iteration other than the first, the index variables
are updated as follows. All the step forms are evaluated, from left to right,

and the resulting values are assigned to the respective index variables. Any

variable that has no associated step form is not assigned to. For do, all the

step forms are evaluated before any variable is updated; the assignment of

values to variables is done in parallel, as if by psetq. Because all of the step
forms are evaluated before any of the variables are altered, a step form when

evaluated always has access to the old values of all the index variables, even

if other step forms precede it. For do*, the first step form is evaluated, then

the value is assigned to the first var, then the second step form is evaluated,
then the value is assigned to the second var, and so on; the assignment of

values to variables is done sequentially, as if by setq. For either do or do*,

after the variables have been updated, the end-test is evaluated as described

above, and the iteration continues.

If the end-test of a do form is nil, the test will never succeed. Therefore this

provides an idiom for “do forever”: the body of the do is executed repeatedly,

stepping variables as usual. (The loop construct performs a “do forever” that

steps no variables.) The infinite loop can be terminated by the use of return,
return-from, go to an outer level, or throw. For example:

(do ((j 0 (+ j 1)))

(nil) ;Do forever

(format t "~%Input ~D:" j)

(let ((item (read)))

(if (null item) (return) ;Process items until nil seen

(format t "~&Output ~D: ~S" j (process item)))))

The remainder of the do form constitutes an implicit tagbody. Tags may

appear within the body of a do loop for use by go statements appearing in

the body (but such go statements may not appear in the variable specifiers,

the end-test, or the result forms). When the end of a do body is reached, the
next iteration cycle (beginning with the evaluation of step forms) occurs.

An implicit block named nil surrounds the entire do form. A return

statement may be used at any point to exit the loop immediately.

declare forms may appear at the beginning of a do body. They apply to

code in the do body, to the bindings of the do variables, to the init forms, to

the step forms, to the end-test, and to the result forms.
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Compatibility note: “Old-style” MacLisp do loops, that is, those of the form (do

var init step end-test . body), are not supported in Common Lisp. Such old-style
loops are considered obsolete and in any case are easily converted to a new-style do

with the insertion of three pairs of parentheses. In practice the compiler can catch
nearly all instances of old-style do loops because they will not have a legal format
anyway.

Here are some examples of the use of do:

(do ((i 0 (+ i 1)) ;Sets every null element of a-vector to zero

(n (length a-vector)))

((UU i n))

(when (null (aref a-vector i))

(setf (aref a-vector i) 0)))

The construction

(do ((x e (cdr x))

(oldx x x))

((null x))

body)

exploits parallel assignment to index variables. On the first iteration, the value

of oldx is whatever value x had before the do was entered. On succeeding

iterations, oldx contains the value that x had on the previous iteration.

Very often an iterative algorithm can be most clearly expressed entirely in
the step forms of a do, and the body is empty. For example,

(do ((x foo (cdr x))

(y bar (cdr y))

(z ’() (cons (f (car x) (car y)) z)))

((or (null x) (null y))

(nreverse z)))

does the same thing as (mapcar #--’f foo bar). Note that the step compu-

tation for z exploits the fact that variables are stepped in parallel. Also, the

body of the loop is empty. Finally, the use of nreverse to put an accumulated

do loop result into the correct order is a standard idiom. Another example:
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(defun list-reverse (list)

(do ((x list (cdr x))

(y ’() (cons (car x) y)))

((endp x) y)))

Note the use of endp rather than null or atom to test for the end of a list;

this may result in more robust code.

As an example of nested loops, suppose that env holds a list of conses. The
car of each cons is a list of symbols, and the cdr of each cons is a list of equal

length containing corresponding values. Such a data structure is similar to an

association list but is divided into “frames”; the overall structure resembles a

rib cage. A lookup function on such a data structure might be

(defun ribcage-lookup (sym ribcage)

(do ((r ribcage (cdr r)))

((null r) nil)

(do ((s (caar r) (cdr s))

(v (cdar r) (cdr v)))

((null s))

(when (eq (car s) sym)

(return-from ribcage-lookup (car v))))))

(Notice the use of indentation in the above example to set off the bodies of

the do loops.)

A do loop may be explained in terms of the more primitive constructs block,

return, let, loop, tagbody, and psetq as follows:

(block nil

(let ((var1 init1)

(var2 init2)
...

(varn initn))

{declaration}∗
(loop (when end-test (return (progn . result)))

(tagbody . tagbody)

(psetq var1 step1

var2 step2

...

varn stepn))))

do* is exactly like do except that the bindings and steppings of the variables

are performed sequentially rather than in parallel. It is as if, in the above
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explanation, let were replaced by let* and psetq were replaced by setq.

7.8.3. Simple Iteration Constructs

The constructs dolist and dotimes execute a body of code once for each

value taken by a single variable. They are expressible in terms of do, but
capture very common patterns of use.

Both dolist and dotimes perform a body of statements repeatedly. On

each iteration a specified variable is bound to an element of interest that

the body may examine. dolist examines successive elements of a list, and

dotimes examines integers from 0 to n − 1 for some specified positive integer
n.

The value of any of these constructs may be specified by an optional result

form, which if omitted defaults to the value nil.

The return statement may be used to return immediately from a dolist

or dotimes form, discarding any following iterations that might have been

performed; in effect, a block named nil surrounds the construct. The body

of the loop is implicitly a tagbody construct; it may contain tags to serve as
the targets of go statements. Declarations may appear before the body of the

loop.

[Macro]dolist (var listform [resultform] )
{declaration}∗ {tag | statement}∗

dolist provides straightforward iteration over the elements of a list. First

dolist evaluates the form listform, which should produce a list. It then

executes the body once for each element in the list, in order, with the variable

var bound to the element. Then resultform (a single form, not an implicit
progn) is evaluated, and the result is the value of the dolist form. (When

the resultform is evaluated, the control variable var is still bound and has the

value nil.) If resultform is omitted, the result is nil.

(dolist (x ’(a b c d)) (prin1 x) (princ " ")) ⇒ nil

after printing “a b c d ” (note the trailing space)

An explicit return statement may be used to terminate the loop and return

a specified value.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.
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[Macro]dotimes (var countform [resultform] )

{declaration}∗ {tag | statement}∗

dotimes provides straightforward iteration over a sequence of integers. The

expression (dotimes (var countform resultform) . progbody) evaluates the

form countform, which should produce an integer. It then performs progbody

once for each integer from zero (inclusive) to count (exclusive), in order, with

the variable var bound to the integer; if the value of countform is zero or
negative, then the progbody is performed zero times. Finally, resultform (a

single form, not an implicit progn) is evaluated, and the result is the value of

the dotimes form. (When the resultform is evaluated, the control variable var

is still bound and has as its value the number of times the body was executed.)
If resultform is omitted, the result is nil.

An explicit return statement may be used to terminate the loop and return

a specified value.

Here is an example of the use of dotimes in processing strings:

;;; True if the specified subsequence of the string is a

;;; palindrome (reads the same forwards and backwards).

(defun palindromep (string &optional

(start 0)

(end (length string)))

(dotimes (k (floor (- end start) 2) t)

(unless (char-equal (char string (+ start k))

(char string (- end k 1)))

(return nil))))

(palindromep "Able was I ere I saw Elba") ⇒ t

(palindromep "A man, a plan, a canal--Panama!") ⇒ nil

(remove-if-not #--’alpha-char-p ;Remove punctuation

"A man, a plan, a canal--Panama!")

⇒ "AmanaplanacanalPanama"

(palindromep

(remove-if-not #--’alpha-char-p

"A man, a plan, a canal--Panama!")) ⇒ t
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(palindromep

(remove-if-not

#--’alpha-char-p

"Unremarkable was I ere I saw Elba Kramer, nu?")) ⇒ t

(palindromep

(remove-if-not

#--’alpha-char-p

"A man, a plan, a cat, a ham, a yak,

a yam, a hat, a canal--Panama!")) ⇒ t

(palindromep

(remove-if-not

#--’alpha-char-p

"Ja-da, ja-da, ja-da ja-da jing jing jing")) ⇒ nil

Altering the value of var in the body of the loop (by using setq, for ex-

ample) will have unpredictable, possibly implementation-dependent results.
A Common Lisp compiler may choose to issue a warning if such a variable

appears in a setq.

Compatibility note: The dotimes construct is the closest thing in Common Lisp
to the Interlisp rptq construct.

See also do-symbols, do-external-symbols, and do-all-symbols.

7.8.4. Mapping

Mapping is a type of iteration in which a function is successively applied to

pieces of one or more sequences. The result of the iteration is a sequence con-

taining the respective results of the function applications. There are several
options for the way in which the pieces of the list are chosen and for what is

done with the results returned by the applications of the function.

The function map may be used to map over any kind of sequence. The

following functions operate only on lists.
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[Function]mapcar function list &rest more-lists

[Function]maplist function list &rest more-lists

[Function]mapc function list &rest more-lists

[Function]mapl function list &rest more-lists

[Function]mapcan function list &rest more-lists
[Function]mapcon function list &rest more-lists

For each of these mapping functions, the first argument is a function and the

rest must be lists. The function must take as many arguments as there are

lists.

mapcar operates on successive elements of the lists. First the function

is applied to the car of each list, then to the cadr of each list, and so on.

(Ideally all the lists are the same length; if not, the iteration terminates when
the shortest list runs out, and excess elements in other lists are ignored.) The

value returned by mapcar is a list of the results of the successive calls to the

function. For example:

(mapcar #--’abs ’(3 -4 2 -5 -6)) ⇒ (3 4 2 5 6)

(mapcar #--’cons ’(a b c) ’(1 2 3)) ⇒ ((a . 1) (b . 2) (c . 3))

maplist is like mapcar except that the function is applied to the lists and

successive cdr’s of those lists rather than to successive elements of the lists.

For example:

(maplist #--’(lambda (x) (cons ’foo x))

’(a b c d))

⇒ ((foo a b c d) (foo b c d) (foo c d) (foo d))

(maplist #--’(lambda (x) (if (member (car x) (cdr x)) 0 1)))

’(a b a c d b c))

⇒ (0 0 1 0 1 1 1)

;An entry is 1 if the corresponding element of the input

; list was the last instance of that element in the input list.

mapl and mapc are like maplist and mapcar, respectively, except that they

do not accumulate the results of calling the function.

Compatibility note: In all Lisp systems since Lisp 1.5, mapl has been called map.
In the chapter on sequences it is explained why this was a bad choice. Here the name
map is used for the far more useful generic sequence mapper, in closer accordance with
the computer science literature, especially the growing body of papers on functional
programming.
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Note that this remark, predating the design of the Common Lisp Object System,
uses the term “generic” in a generic sense and not necessarily in the technical sense
used by CLOS (see chapter 2).

These functions are used when the function is being called merely for its

side effects rather than for its returned values. The value returned by mapl

or mapc is the second argument, that is, the first sequence argument.

mapcan and mapcon are like mapcar and maplist, respectively, except that

they combine the results of the function using nconc instead of list. That

is,

(mapcon f x1 ... xn)

≡ (apply #--’nconc (maplist f x1 ... xn))

and similarly for the relationship between mapcan and mapcar. Conceptually,

these functions allow the mapped function to return a variable number of
items to be put into the output list. This is particularly useful for effectively

returning zero or one item:

(mapcan #--’(lambda (x) (and (numberp x) (list x)))

’(a 1 b c 3 4 d 5))

⇒ (1 3 4 5)

In this case the function serves as a filter; this is a standard Lisp idiom using

mapcan. (The function remove-if-not might have been useful in this par-

ticular context, however.) Remember that nconc is a destructive operation,
and therefore so are mapcan and mapcon; the lists returned by the function

are altered in order to concatenate them.

Sometimes a do or a straightforward recursion is preferable to a mapping
operation; however, the mapping functions should be used wherever they

naturally apply because this increases the clarity of the code.

The functional argument to a mapping function must be acceptable to

apply; it cannot be a macro or the name of a special form. Of course, there is
nothing wrong with using a function that has &optional and &rest parame-

ters as the functional argument.

X3J13 voted in June 1988 〈90〉 to allow the function to be only of type

symbol or function; a lambda-expression is no longer acceptable as a func-
tional argument. One must use the function special form or the abbreviation

#--’ before a lambda-expression that appears as an explicit argument form.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.
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7.8.5. The “Program Feature”

Lisp implementations since Lisp 1.5 have had what was originally called “the

program feature,” as if it were impossible to write programs without it! The

prog construct allows one to write in an Algol-like or Fortran-like statement-

oriented style, using go statements that can refer to tags in the body of the

prog. Modern Lisp programming style tends to use prog rather infrequently.
The various iteration constructs, such as do, have bodies with the character-

istics of a prog. (However, the ability to use go statements within iteration

constructs is very seldom called upon in practice.)

Three distinct operations are performed by prog: it binds local variables, it
permits use of the return statement, and it permits use of the go statement.

In Common Lisp, these three operations have been separated into three dis-

tinct constructs: let, block, and tagbody. These three constructs may be

used independently as building blocks for other types of constructs.

[Special form]tagbody {tag | statement}∗

The part of a tagbody after the variable list is called the body. An item in

the body may be a symbol or an integer, in which case it is called a tag, or
an item in the body may be a list, in which case it is called a statement.

Each element of the body is processed from left to right. A tag is ignored;

a statement is evaluated, and its results are discarded. If the end of the body

is reached, the tagbody returns nil.
If (go tag) is evaluated, control jumps to the part of the body labelled with

the tag.

Compatibility note: The “computed go” feature of MacLisp is not supported.
The syntax of a computed go is idiosyncratic, and the feature is not supported by
Lisp Machine Lisp, NIL (New Implementation of Lisp), or Interlisp. The computed
go has been infrequently used in MacLisp anyway and is easily simulated with no
loss of efficiency by using a case statement each of whose clauses performs a (non-
computed) go.

The scope of the tags established by a tagbody is lexical, and the extent is

dynamic. Once a tagbody construct has been exited, it is no longer legal to
go to a tag in its body. It is permissible for a go to jump to a tagbody that is

not the innermost tagbody construct containing that go; the tags established

by a tagbody will only shadow other tags of like name.

The lexical scoping of the go targets named by tags is fully general and has

consequences that may be surprising to users and implementors of other Lisp
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systems. For example, the go in the following example actually does work in

Common Lisp as one might expect:

(tagbody

(catch ’stuff

(mapcar #--’(lambda (x) (if (numberp x)

(hairyfun x)

(go lose)))

items))

(return)

lose

(error "I lost big!"))

Depending on the situation, a go in Common Lisp does not necessarily corre-

spond to a simple machine “jump” instruction. A go can break up catchers

if necessary to get to the target. It is possible for a “closure” created by

function for a lambda-expression to refer to a go target as long as the tag is

lexically apparent. See chapter 3 for an elaborate example of this.

There are some holes in this specification (and that of go) that leave some
room for interpretation. For example, there is no explicit prohibition against

the same tag appearing more than once in the same tagbody body. Every

implementation I know of will complain in the compiler, if not in the inter-

preter, if there is a go to such a duplicated tag; but some implementors take

the position that duplicate tags are permitted provided there is no go to such
a tag. (“If a tree falls in the forest, and there is no one there to hear it,

then no one needs to yell ‘Timber!’ ”) Also, some implementations allow ob-

jects other than symbols, integers, and lists in the body and typically ignore

them. Consequently, some programmers use redundant tags such as --- for
formatting purposes, and strings as comments:

(defun dining-philosopher (j)

(tagbody ---

think (unless (hungry) (go think))

---

"Can’t eat without chopsticks."

(snatch (chopstick j))

(snatch (chopstick (mod (+ j 1) 5)))

---
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eat (when (hungry)

(mapc #--’gobble-down

’(twice-cooked-pork kung-pao-chi-ding

wu-dip-har orange-flavor-beef

two-side-yellow-noodles twinkies))

(go eat))

---

"Can’t think with my neighbors’ stomachs rumbling."

(relinquish (chopstick j))

(relinquish (chopstick (mod (+ j 1) 5)))

---

(if (happy) (go think)

(become insurance-salesman))))

In certain implementations of Common Lisp they get away with it. Others

abhor what they view as an abuse of unintended ambiguity in the language

specification. For maximum portability, I advise users to steer clear of these
issues. Similarly, it is best to avoid using nil as a tag, even though it is a

symbol, because a few implementations treat nil as a list to be executed. To

be extra careful, avoid calling from within a tagbody a macro whose expansion

might not be a non-nil list; wrap such a call in (progn ...), or rewrite the
macro to return (progn ...) if possible.

[Macro]prog ( {var | (var [init] )}∗ ) {declaration}∗ {tag | statement}∗
[Macro]prog* ( {var | (var [init] )}∗ ) {declaration}∗ {tag | statement}∗

The prog construct is a synthesis of let, block, and tagbody, allowing bound

variables and the use of return and go within a single construct. A typical

prog construct looks like this:

(prog (var1 var2 (var3 init3) var4 (var5 init5))

{declaration}∗
statement1

tag1

statement2

statement3
statement4

tag2

statement5

...

)
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The list after the keyword prog is a set of specifications for binding var1,

var2, etc., which are temporary variables bound locally to the prog. This list

is processed exactly as the list in a let statement: first all the init forms are

evaluated from left to right (where nil is used for any omitted init form),

and then the variables are all bound in parallel to the respective results. Any
declaration appearing in the prog is used as if appearing at the top of the let

body.

The body of the prog is executed as if it were a tagbody construct; the go

statement may be used to transfer control to a tag.

A prog implicitly establishes a block named nil around the entire prog

construct, so that return may be used at any time to exit from the prog

construct.

Here is a fine example of what can be done with prog:

(defun king-of-confusion (w)

"Take a cons of two lists and make a list of conses.

Think of this function as being like a zipper."

(prog (x y z) ;Initialize x, y, z to nil

(setq y (car w) z (cdr w))

loop

(cond ((null y) (return x))

((null z) (go err)))

rejoin

(setq x (cons (cons (car y) (car z)) x))

(setq y (cdr y) z (cdr z))

(go loop)

err

(cerror "Will self-pair extraneous items"

"Mismatch - gleep! S" y)

(setq z y)

(go rejoin)))

which is accomplished somewhat more perspicuously by

(defun prince-of-clarity (w)

"Take a cons of two lists and make a list of conses.

Think of this function as being like a zipper."

(do ((y (car w) (cdr y))

(z (cdr w) (cdr z))

(x ’() (cons (cons (car y) (car z)) x)))

((null y) x)
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(when (null z)

(cerror "Will self-pair extraneous items"

"Mismatch - gleep! S" y)

(setq z y))))

The prog construct may be explained in terms of the simpler constructs

block, let, and tagbody as follows:

(prog variable-list {declaration}∗ . body)
≡ (block nil (let variable-list {declaration}∗ (tagbody . body)))

The prog* special form is almost the same as prog. The only difference is

that the binding and initialization of the temporary variables is done sequen-
tially, so that the init form for each one can use the values of previous ones.

Therefore prog* is to prog as let* is to let. For example,

(prog* ((y z) (x (car y)))

(return x))

returns the car of the value of z.

I haven’t seen prog used very much in the last several years. Apparently

splitting it into functional constituents (let, block, tagbody) has been a suc-
cess. Common Lisp programmers now tend to use whichever specific construct

is appropriate.

[Special form]go tag

The (go tag) special form is used to do a “go to” within a tagbody construct.

The tag must be a symbol or an integer; the tag is not evaluated. go transfers
control to the point in the body labelled by a tag eql to the one given. If

there is no such tag in the body, the bodies of lexically containing tagbody

constructs (if any) are examined as well. It is an error if there is no matching

tag lexically visible to the point of the go.

The go form does not ever return a value.

As a matter of style, it is recommended that the user think twice before

using a go. Most purposes of go can be accomplished with one of the iteration

primitives, nested conditional forms, or return-from. If the use of go seems

to be unavoidable, perhaps the control structure implemented by go should
be packaged as a macro definition.
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7.9. Structure Traversal and Side Effects

X3J13 voted in January 1989 〈121〉 to restrict side effects during the course
of a built-in operation that can execute user-supplied code while traversing a

data structure.

Consider the following example:

(let ((x ’(apples peaches pumpkin pie)))

(dolist (z x)

(when (eq z ’peaches)

(setf (cddr x) ’(mango kumquat)))

(format t " S " (car z))))

Depending on the details of the implementation of dolist, this bit of code
could easily print

apples peaches mango kumquat

(which is perhaps what was intended), but it might as easily print

apples peaches pumpkin pie

Here is a plausible implementation of dolist that produces the first result:

(defmacro dolist ((var listform &optional (resultform ’’nil))

&body body)

(let ((tailvar (gensym "DOLIST")))

‘(do ((,tailvar ,listform (cdr ,tailvar)))

((null ,tailvar) ,resultform)

(let ((,var (car ,tailvar))) ,@body))

But here is a plausible implementation of dolist that produces the second

result:

(defmacro dolist ((var listform &optional (resultform ’’nil))

&body body)

(let ((tailvar (gensym "DOLIST")))

‘(do ((,tailvar ,listform))

((null ,tailvar) ,resultform)

(let ((,var (pop ,tailvar))) ,@body))

The X3J13 recognizes and legitimizes varying implementation practices:

in general it is an error for code executed during a “structure-traversing”

operation to destructively modify the structure in a way that might affect
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the ongoing traversal operation. The committee identified in particular the

following special cases.

For list traversal operations, the cdr chain may not be destructively modi-

fied.

For array traversal operations, the array may not be adjusted (see adjust-

array) and its fill pointer, if any, may not be modified.

For hash table operations (such as with-hash-table-iterator and
maphash), new entries may not be added or deleted, except that the very

entry being processed by user code may be changed or deleted.

For package symbol operations (for example, with-package-iterator and

do-symbols), new symbols may not be interned in, nor symbols uninterned

from, the packages being traversed or any packages they use, except that the
very symbol being processed by user code may be uninterned.

X3J13 noted that this vote is intended to clarify restrictions on the use of

structure traversal operations that are not themselves inherently destructive;

for example, it applies to map and dolist. Destructive operators such as

delete require even more complicated restrictions and are addressed by a
separate proposal.

The X3J13 vote did not specify a complete list of the operations to which

these restrictions apply. Table 7-1 shows what I believe to be a complete list

of operations that traverse structures and take user code as a body (in the

case of macros) or as a functional argument (in the case of functions).

In addition, note that user code should not modify list structure that might
be undergoing interpretation by the evaluator, whether explicitly invoked via

eval or implicitly invoked, for example as in the case of a hook function (a

defstruct print function, the value of *evalhook* or *applyhook*, etc.)

that happens to be a closure of interpreted code. Similarly, defstruct print
functions and other hooks should not perform side effects on data structures

being printed or being processed by format, or on a string given to make-

string-input-stream. You get the idea; be sensible.

Note that an operation such as mapcar or dolist traverses not only cdr

pointers (in order to chase down the list) but also car pointers (in order to
obtain the elements themselves). The restriction against modification appears

to apply to all these pointers.

7.10. Multiple Values

Ordinarily the result of calling a Lisp function is a single Lisp object. Some-

times, however, it is convenient for a function to compute several objects and
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Table 7-1: Structure Traversal Operations Subject to Side Effect Restrictions

adjoin maphash reduce

assoc mapl remove

assoc-if maplist remove-duplicates

assoc-if-not member remove-if

count member-if remove-if-not

count-if member-if-not search

count-if-not merge set-difference

delete mismatch set-exclusive-or

delete-duplicates nintersection some

delete-if notany sort

delete-if-not notevery stable-sort

do-all-symbols nset-difference sublis

do-external-symbols nset-exclusive-or subsetp

do-symbols nsublis subst

dolist nsubst subst-if

eval nsubst-if subst-if-not

every nsubst-if-not substitute

find nsubstitute substitute-if

find-if nsubstitute-if substitute-if-not

find-if-not nsubstitute-if-not tree-equal

intersection nunion union

certain loop clauses position with-hash-table-iterator

map position-if with-input-from-string

mapc position-if-not with-output-to-string

mapcan rassoc with-package-iterator

mapcar rassoc-if

mapcon rassoc-if-not

return them. Common Lisp provides a mechanism for handling multiple val-
ues directly. This mechanism is cleaner and more efficient than the usual tricks

involving returning a list of results or stashing results in global variables.

7.10.1. Constructs for Handling Multiple Values

Normally multiple values are not used. Special forms are required both to

produce multiple values and to receive them. If the caller of a function does

not request multiple values, but the called function produces multiple values,

then the first value is given to the caller and all others are discarded; if the

called function produces zero values, then the caller gets nil as a value.
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The primary primitive for producing multiple values is values, which takes

any number of arguments and returns that many values. If the last form in

the body of a function is a values with three arguments, then a call to that

function will return three values. Other special forms also produce multiple

values, but they can be described in terms of values. Some built-in Common
Lisp functions, such as floor, return multiple values; those that do are so

documented.

The special forms and macros for receiving multiple values are as follows:

multiple-value-list

multiple-value-call

multiple-value-prog1

multiple-value-bind

multiple-value-setq

These specify a form to evaluate and an indication of where to put the values

returned by that form.

[Function]values &rest args

All of the arguments are returned, in order, as values. For example:

(defun polar (x y)

(values (sqrt (+ (* x x) (* y y))) (atan y x)))

(multiple-value-bind (r theta) (polar 3.0 4.0)

(vector r theta))

⇒ #--(5.0 0.9272952)

The expression (values) returns zero values. This is the standard idiom
for returning no values from a function.

Sometimes it is desirable to indicate explicitly that a function will return
exactly one value. For example, the function

(defun foo (x y)

(floor (+ x y) y))

will return two values because floor returns two values. It may be that the

second value makes no sense, or that for efficiency reasons it is desired not

to compute the second value. The values function is the standard idiom for

indicating that only one value is to be returned, as shown in the following

example.
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(defun foo (x y)

(values (floor (+ x y) y)))

This works because values returns exactly one value for each of its argument

forms; as for any function call, if any argument form to values produces more
than one value, all but the first are discarded.

There is absolutely no way in Common Lisp for a caller to distinguish

between returning a single value in the ordinary manner and returning exactly

one “multiple value.” For example, the values returned by the expressions
(+ 1 2) and (values (+ 1 2)) are identical in every respect: the single

value 3.

[Constant ]multiple-values-limit

The value of multiple-values-limit is a positive integer that is the upper

exclusive bound on the number of values that may be returned from a function.
This bound depends on the implementation but will not be smaller than

20. (Implementors are encouraged to make this limit as large as practicable

without sacrificing performance.) See lambda-parameters-limit and call-

arguments-limit.

[Function]values-list list

All of the elements of list are returned as multiple values. For example:

(values-list (list a b c)) ≡ (values a b c)

In general,

(values-list list) ≡ (apply #--’values list)

but values-list may be clearer or more efficient.

[Macro]multiple-value-list form

multiple-value-list evaluates form and returns a list of the multiple values
it returned. For example:

(multiple-value-list (floor -3 4)) ⇒ (-1 1)

multiple-value-list and values-list are therefore inverses of each other.
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[Special form]multiple-value-call function { form}∗

multiple-value-call first evaluates function to obtain a function and then

evaluates all of the forms. All the values of the forms are gathered together

(not just one value from each) and are all given as arguments to the function.

The result of multiple-value-call is whatever is returned by the function.

For example:

(+ (floor 5 3) (floor 19 4))

≡ (+ 1 4) ⇒ 5

(multiple-value-call #--’+ (floor 5 3) (floor 19 4))

≡ (+ 1 2 4 3) ⇒ 10

(multiple-value-list form) ≡ (multiple-value-call #--’list form)

[Special form]multiple-value-prog1 form { form}∗

multiple-value-prog1 evaluates the first form and saves all the values pro-

duced by that form. It then evaluates the other forms from left to right,

discarding their values. The values produced by the first form are returned

by multiple-value-prog1. See prog1, which always returns a single value.

[Macro]multiple-value-bind ( {var}∗ ) values-form

{declaration}∗ { form}∗

The values-form is evaluated, and each of the variables var is bound to the

respective value returned by that form. If there are more variables than values

returned, extra values of nil are given to the remaining variables. If there
are more values than variables, the excess values are simply discarded. The

variables are bound to the values over the execution of the forms, which make

up an implicit progn. For example:

(multiple-value-bind (x) (floor 5 3) (list x)) ⇒ (1)

(multiple-value-bind (x y) (floor 5 3) (list x y)) ⇒ (1 2)

(multiple-value-bind (x y z) (floor 5 3) (list x y z))

⇒ (1 2 nil)

[Macro]multiple-value-setq variables form

The variables must be a list of variables. The form is evaluated, and the

variables are set (not bound) to the values returned by that form. If there are

more variables than values returned, extra values of nil are assigned to the
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remaining variables. If there are more values than variables, the excess values

are simply discarded.

Compatibility note: In Lisp Machine Lisp this is called multiple-value. The
added clarity of the name multiple-value-setq in Common Lisp was deemed worth
the incompatibility with Lisp Machine Lisp.
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multiple-value-setq always returns a single value, which is the first value

returned by form, or nil if form produces zero values.

X3J13 voted in March 1989 〈173〉 to specify that if any var refers not to an

ordinary variable but to a binding made by symbol-macrolet, then that var

is handled as if setq were used to assign the appropriate value to it.

[Macro]nth-value n form

X3J13 voted in January 1989 〈123〉 to add a new macro named nth-value.

The argument forms n and form are both evaluated. The value of n must be

a non-negative integer, and the form may produce any number of values. The

integer n is used as a zero-based index into the list of values. Value n of the
form is returned as the single value of the nth-value form; nil is returned if

the form produces no more than n values.

As an example, mod could be defined as

(defun mod (number divisor)

(nth-value 1 (floor number divisor)))

Value number 1 is the second value returned by floor, the first value being
value number 0.

One could define nth-value simply as

(defmacro nth-value (n form)

‘(nth ,n (multiple-value-list ,form)))

but the clever implementor will doubtless find an implementation technique

for nth-value that avoids constructing an intermediate list of all the values
of the form.

7.10.2. Rules Governing the Passing of Multiple Values

It is often the case that the value of a special form or macro call is defined to

be the value of one of its subforms. For example, the value of a cond is the

value of the last form in the selected clause.

In most such cases, if the subform produces multiple values, then the orig-
inal form will also produce all of those values. This passing back of multiple

values of course has no effect unless eventually one of the special forms for

receiving multiple values is reached.

To be explicit, multiple values can result from a special form under precisely

these circumstances:
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Evaluation and application

. eval returns multiple values if the form given it to evaluate produces mul-

tiple values.

. apply, funcall, and multiple-value-call pass back multiple values from

the function applied or called.

Implicit progn contexts

. The special form progn passes back multiple values resulting from evalua-
tion of the last subform. Other situations referred to as “implicit progn,”

where several forms are evaluated and the results of all but the last form

are discarded, also pass back multiple values from the last form. These

situations include the body of a lambda-expression, in particular those con-

structed by defun, defmacro, and deftype. Also included are bodies of the
constructs eval-when, progv, let, let*, when, unless, block, multiple-

value-bind, and catch, as well as clauses in such conditional constructs

as case, typecase, ecase, etypecase, ccase, and ctypecase.

X3J13 has voted to add many new constructs to the language that contain

implicit progn contexts. I won’t attempt to list them all here. Of particu-
lar interest, however, is locally, which may be regarded as simply a version

of progn that permits declarations before its body. This provides a useful

building block for constructing macros that permit declarations (but not doc-

umentation strings) before their bodies and pass back any multiple values

produced by the last sub-form of a body. (If a body can contain a documen-
tation string, most likely lambda is the correct building block to use.)

Conditional constructs

. if passes back multiple values from whichever subform is selected (the then

form or the else form).

. and and or pass back multiple values from the last subform but not from

subforms other than the last.

. cond passes back multiple values from the last subform of the implicit progn
of the selected clause. If, however, the clause selected is a singleton clause,

then only a single value (the non-nil predicate value) is returned. This is

true even if the singleton clause is the last clause of the cond. It is not

permitted to treat a final clause (x) as being the same as (t x) for this

reason; the latter passes back multiple values from the form x.
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Returning from a block

. The block construct passes back multiple values from its last subform when

it exits normally. If return-from (or return) is used to terminate the

block prematurely, then return-from passes back multiple values from

its subform as the values of the terminated block. Other constructs that
create implicit blocks, such as do, dolist, dotimes, prog, and prog*, also

pass back multiple values specified by return-from (or return).

. do passes back multiple values from the last form of the exit clause, exactly

as if the exit clause were a cond clause. Similarly, dolist and dotimes

pass back multiple values from the resultform if that is executed. These

situations are all examples of implicit uses of return-from.

Throwing out of a catch

. The catch construct returns multiple values if the result form in a throw

exiting from such a catch produces multiple values.

Miscellaneous situations

. multiple-value-prog1 passes back multiple values from its first subform.
However, prog1 always returns a single value.

. unwind-protect returns multiple values if the form it protects returns mul-
tiple values.

. the returns multiple values if the form it contains returns multiple values.

Among special forms that never pass back multiple values are prog1, prog2,

setq, and multiple-value-setq. The conventional way to force only one

value to be returned from a form x is to write (values x).

The most important rule about multiple values is: No matter how many

values a form produces, if the form is an argument form in a function
call, then exactly one value (the first one) is used.

For example, if you write (cons (floor x)), then cons will always receive

exactly one argument (which is of course an error), even though floor re-

turns two values. To pass both values from floor to cons, one must write
something like (multiple-value-call #--’cons (floor x)). In an ordinary

function call, each argument form produces exactly one argument; if such a

form returns zero values, nil is used for the argument, and if more than one

value, all but the first are discarded. Similarly, conditional constructs such as

if that test the value of a form will use exactly one value, the first one, from
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that form and discard the rest; such constructs will use nil as the test value

if zero values are returned.

7.11. Dynamic Non-Local Exits

Common Lisp provides a facility for exiting from a complex process in a non-

local, dynamically scoped manner. There are two classes of special forms for

this purpose, called catch forms and throw forms, or simply catches and throws.
A catch form evaluates some subforms in such a way that, if a throw form is

executed during such evaluation, the evaluation is aborted at that point and

the catch form immediately returns a value specified by the throw. Unlike

block and return (section 7.7), which allow for exiting a block form from
any point lexically within the body of the block, the catch/throw mechanism

works even if the throw form is not textually within the body of the catch

form. The throw need only occur within the extent (time span) of the evalu-

ation of the body of the catch. This is analogous to the distinction between

dynamically bound (special) variables and lexically bound (local) variables.

[Special form]catch tag { form}∗

The catch special form serves as a target for transfer of control by throw.

The form tag is evaluated first to produce an object that names the catch; it
may be any Lisp object. A catcher is then established with the object as the

tag. The forms are evaluated as an implicit progn, and the results of the last

form are returned, except that if during the evaluation of the forms a throw

should be executed such that the tag of the throw matches (is eq to) the tag

of the catch and the catcher is the most recent outstanding catcher with that
tag, then the evaluation of the forms is aborted and the results specified by

the throw are immediately returned from the catch expression. The catcher

established by the catch expression is disestablished just before the results

are returned.
The tag is used to match throws with catches. (catch ’foo form) will

catch a (throw ’foo form) but not a (throw ’bar form). It is an error if

throw is done when there is no suitable catch ready to catch it.

Catch tags are compared using eq, not eql; therefore numbers and charac-

ters should not be used as catch tags.

Compatibility note: The name catch comes from MacLisp, but the syntax of
catch in Common Lisp is different. The MacLisp syntax was (catch form tag),
where the tag was not evaluated.
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[Special form]unwind-protect protected-form {cleanup-form}∗

Sometimes it is necessary to evaluate a form and make sure that certain side

effects take place after the form is evaluated; a typical example is

(progn (start-motor)

(drill-hole)

(stop-motor))

The non-local exit facility of Common Lisp creates a situation in which the

above code won’t work, however: if drill-hole should do a throw to a catch
that is outside of the progn form (perhaps because the drill bit broke), then

(stop-motor) will never be evaluated (and the motor will presumably be left

running). This is particularly likely if drill-hole causes a Lisp error and the

user tells the error-handler to give up and abort the computation. (A possibly
more practical example might be

(prog2 (open-a-file)

(process-file)

(close-the-file))

where it is desired always to close the file when the computation is terminated

for whatever reason. This case is so important that Common Lisp provides

the special form with-open-file for this purpose.)

In order to allow the example hole-drilling program to work, it can be

rewritten using unwind-protect as follows:

;; Stop the motor no matter what (even if it failed to start).

(unwind-protect

(progn (start-motor)

(drill-hole))

(stop-motor))

If drill-hole does a throw that attempts to quit out of the unwind-protect,
then (stop-motor) will be executed.

This example assumes that it is correct to call stop-motor even if the motor

has not yet been started. Remember that an error or interrupt may cause

an exit even before any initialization forms have been executed. Any state

restoration code should operate correctly no matter where in the protected

code an exit occurred. For example, the following code is not correct:
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(unwind-protect

(progn (incf *access-count*)

(perform-access))

(decf *access-count*))

If an exit occurs before completion of the incf operation the decf operation

will be executed anyway, resulting in an incorrect value for *access-count*.

The correct way to code this is as follows:

(let ((old-count *access-count*))

(unwind-protect

(progn (incf *access-count*)

(perform-access))

(setq *access-count* old-count)))

As a general rule, unwind-protect guarantees to execute the cleanup-forms

before exiting, whether it terminates normally or is aborted by a throw of

some kind. (If, however, an exit occurs during execution of the cleanup-
forms, no special action is taken. The cleanup-forms of an unwind-protect

are not protected by that unwind-protect, though they may be protected if

that unwind-protect occurs within the protected form of another unwind-

protect.) unwind-protect returns whatever results from evaluation of the
protected-form and discards all the results from the cleanup-forms.

It should be emphasized that unwind-protect protects against all attempts

to exit from the protected form, including not only “dynamic exit” facilities

such as throw but also “lexical exit” facilities such as go and return-from.

Consider this situation:

(tagbody

(let ((x 3))

(unwind-protect

(if (numberp x) (go out))

(print x)))

out

...)

When the go is executed, the call to print is executed first, and then the
transfer of control to the tag out is completed.

X3J13 voted in March 1989 〈74〉 to clarify the interaction of unwind-

protect with constructs that perform exits.

Let an exit be a point out of which control can be transferred. For a

throw the exit is the matching catch; for a return-from the exit is the
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corresponding block. For a go the exit is the statement within the tagbody

(the one to which the target tag belongs) which is being executed at the time

the go is performed.

The extent of an exit is dynamic; it is not indefinite. The extent of an exit

begins when the corresponding form (catch, block, or tagbody statement) is

entered. When the extent of an exit has ended, it is no longer legal to return

from it.

Note that the extent of an exit is not the same thing as the scope or extent

of the designator by which the exit is identified. For example, a block name
has lexical scope but the extent of its exit is dynamic. The extent of a catch

tag could differ from the extent of the exit associated with the catch (which is

exactly what is at issue here). The difference matters when there are transfers

of control from the cleanup clauses of an unwind-protect.

When a transfer of control out of an exit is initiated by throw, return-from,

or go, a variety of events occur before the transfer of control is complete:

. The cleanup clauses of any intervening unwind-protect clauses are evalu-

ated.

. Intervening dynamic bindings of special variables and catch tags are undone.

. Intervening exits are abandoned, that is, their extent ends and it is no longer
legal to attempt to transfer control from them.

. The extent of the exit being invoked ends.

. Control is finally passed to the target.

The first edition left the order of these events in some doubt. The implemen-

tation note for throw hinted that the first two processes are interwoven, but
it was unclear whether it is permissible for an implementation to abandon all

intervening exits before processing any intervening unwind-protect cleanup

clauses.

The clarification adopted by X3J13 is as follows. Intervening exits are

abandoned as soon as the transfer of control is initiated; in the case of a

throw, this occurs at the beginning of the “second pass” mentioned in the
implementation note. It is an error to attempt a transfer of control to an exit

whose dynamic extent has ended.

Next the evaluation of unwind-protect cleanup clauses and the undoing

of dynamic bindings and catch tags are performed together, in the order

corresponding to the reverse of the order in which they were established. The

effect of this is that the cleanup clauses of an unwind-protect will see the

same dynamic bindings of variables and catch tags as were visible when the
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unwind-protect was entered. (However, some of those catch tags may not

be useable because they correspond to abandoned exit points.)

Finally control is transferred to the originally invoked exit and simultane-

ously that exit is abandoned.

The effect of this specification is that once a program has attempted to
transfer control to a particular exit, an unwind-protect cleanup form cannot

step in and decide to transfer control to a more recent (nested) exit, blithely

forgetting the original exit request. However, a cleanup form may restate the

request to transfer to the same exit that started the cleanup process.
Here is an example based on a nautical metaphor. The function gently

moves an oar in the water with low force, but if an oar gets stuck, the caller

will catch a crab. The function row takes a boat, an oar-stroking function,

a stream, and a count; an oar is constructed for the boat and stream and

the oar-stroking function is called :count times. The function life rows a
particular boat. Merriment follows, except that if the oarsman is winded he

must stop to catch his breath.

(defun gently (oar)

(stroke oar :force 0.5)

(when (stuck oar)

(throw ’crab nil)))

(defun row (boat stroke-fn stream &key count)

(let ((oar (make-oar boat stream)))

(loop repeat count do (funcall stroke-fn oar))))

(defun life ()

(catch ’crab

(catch ’breath

(unwind-protect

(row *your-boat* #--’gently *query-io* :count 3))

(when (winded) (throw ’breath nil)))

(loop repeat 4 (set-mode :merry))

(dream))))

Suppose that the oar gets stuck, causing gently to call throw with the tag
crab. The program is then committed to exiting from the outer catch (the

one with the tag crab). As control breaks out of the unwind-protect form,

the winded test is executed. Suppose it is true; then another call to throw

occurs, this time with the tag breath. The inner catch (the one with the tag

breath) has been abandoned as a result of the first throw operation (still in
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progress). The clarification voted by X3J13 specifies that the program is in

error for attempting to transfer control to an abandoned exit point. To put

it in terms of the example: once you have begun to catch a crab, you cannot

rely on being able to catch your breath.

Implementations may support longer extents for exits than is required by
this specification, but portable programs may not rely on such extended ex-

tents.

(This specification is somewhat controversial. An alternative proposal was

that the abandoning of exits should be lumped in with the evaluation of
unwind-protect cleanup clauses and the undoing of dynamic bindings and

catch tags, performing all in reverse order of establishment. X3J13 agreed

that this approach is theoretically cleaner and more elegant but also more

stringent and of little additional practical use. There was some concern that

a more stringent specification might be a great added burden to some imple-
mentors and would achieve only a small gain for users.)

[Special form]throw tag result

The throw special form transfers control to a matching catch construct. The

tag is evaluated first to produce an object called the throw tag; then the

result form is evaluated, and its results are saved (if the result form produces

multiple values, then all the values are saved). The most recent outstanding

catch whose tag matches the throw tag is exited; the saved results are returned
as the value(s) of the catch. A catch matches only if the catch tag is eq to

the throw tag.

In the process, dynamic variable bindings are undone back to the point

of the catch, and any intervening unwind-protect cleanup code is executed.
The result form is evaluated before the unwinding process commences, and

whatever results it produces are returned from the catch.

If there is no outstanding catcher whose tag matches the throw tag, no

unwinding of the stack is performed, and an error is signalled. When the

error is signalled, the outstanding catchers and the dynamic variable bindings
are those in force at the point of the throw.

Implementation note: These requirements imply that throwing should typically
make two passes over the control stack. In the first pass it simply searches for a
matching catch. In this search every catch must be considered, but every unwind-

protect should be ignored. On the second pass the stack is actually unwound,
one frame at a time, undoing dynamic bindings and outstanding unwind-protect

constructs in reverse order of creation until the matching catch is reached.
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Compatibility note: The name throw comes from MacLisp, but the syntax of
throw in Common Lisp is different. The MacLisp syntax was (throw form tag),
where the tag was not evaluated.
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Macros

The Common Lisp macro facility allows the user to define arbitrary functions

that convert certain Lisp forms into different forms before evaluating or com-

piling them. This is done at the expression level, not at the character-string

level as in most other languages. Macros are important in the writing of good

code: they make it possible to write code that is clear and elegant at the user
level but that is converted to a more complex or more efficient internal form

for execution.

When eval is given a list whose car is a symbol, it looks for local defini-

tions of that symbol (by flet, labels, and macrolet); if that fails, it looks
for a global definition. If the definition is a macro definition, then the orig-

inal list is said to be a macro call. Associated with the definition will be a

function of two arguments, called the expansion function. This function is

called with the entire macro call as its first argument (the second argument

is a lexical environment); it must return some new Lisp form, called the ex-
pansion of the macro call. (Actually, a more general mechanism is involved;

see macroexpand.) This expansion is then evaluated in place of the original

form.

When a function is being compiled, any macros it contains are expanded
at compilation time. This means that a macro definition must be seen by the

compiler before the first use of the macro.

More generally, an implementation of Common Lisp has great latitude in

deciding exactly when to expand macro calls within a program. For example,

it is acceptable for the defun special form to expand all macro calls within
its body at the time the defun form is executed and record the fully ex-

panded body as the body of the function being defined. (An implementation

might even choose always to compile functions defined by defun, even when

operating in an “interpretive” mode.)

Macros should be written so as to depend as little as possible on the ex-

205
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ecution environment to produce a correct expansion. To ensure consistent

behavior, it is best to ensure that all macro definitions are available, whether

to the interpreter or compiler, before any code containing calls to those macros

is introduced.

In Common Lisp, macros are not functions. In particular, macros cannot

be used as functional arguments to such functions as apply, funcall, or map;

in such situations, the list representing the “original macro call” does not
exist, and cannot exist, because in some sense the arguments have already

been evaluated.

8.1. Macro Definition

The function macro-function determines whether a given symbol is the name

of a macro. The defmacro construct provides a convenient way to define new

macros.

[Function]macro-function symbol
........................................................................................................................................................................................................

The argument must be a symbol. If the symbol has a global function defi-

nition that is a macro definition, then the expansion function (a function of

two arguments, the macro-call form and an environment) is returned. If the

symbol has no global function definition, or has a definition as an ordinary
function or as a special form but not as a macro, then nil is returned. The

function macroexpand is the best way to invoke the expansion function.

It is possible for both macro-function and special-form-p to be true of a

symbol. This is possible because an implementation is permitted to implement

any macro also as a special form for speed. On the other hand, the macro

definition must be available for use by programs that understand only the
standard special forms listed in table 5-1.

macro-function cannot be used to determine whether a symbol names a
locally defined macro established by macrolet; macro-function can examine

only global definitions.

setf may be used with macro-function to install a macro as a symbol’s

global function definition:

(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, an entire

macro call and an environment, and computes the expansion for that call.

Performing this operation causes the symbol to have only that macro definition
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as its global function definition; any previous definition, whether as a macro

or as a function, is lost. It is an error to attempt to redefine the name of a

special form.

X3J13 voted in March 1988 〈118〉 to add an optional environment argument

to macro-function.

[Function]macro-function symbol &optional env

The first argument must be a symbol. If the symbol has a function definition

that is a macro definition, whether a local one established in the environment

env by macrolet or a global one established as if by defmacro, then the
expansion function (a function of two arguments, the macro-call form and an

environment) is returned. If the symbol has no function definition, or has a

definition as an ordinary function or as a special form but not as a macro,

then nil is returned. The function macroexpand or macroexpand-1 is the
best way to invoke the expansion function.

It is possible for both macro-function and special-form-p to be true of a
symbol. This is possible because an implementation is permitted to implement

any macro also as a special form for speed. On the other hand, the macro

definition must be available for use by programs that understand only the

standard special forms listed in table 5-1.

setf may be used with macro-function to install a macro as a symbol’s

global function definition:

(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, an entire

macro call and an environment, and computes the expansion for that call.

Performing this operation causes the symbol to have only that macro definition
as its global function definition; any previous definition, whether as a macro

or as a function, is lost. One cannot use setf to establish a local macro

definition; it is an error to supply a second argument to macro-function

when using it with setf. It is an error to attempt to redefine the name of a

special form.

See also compiler-macro-function.

[Macro]defmacro name lambda-list [[ {declaration}∗ | doc-string ]] { form}∗

defmacro is a macro-defining macro that arranges to decompose the macro-

call form in an elegant and useful way. defmacro has essentially the same
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syntax as defun: name is the symbol whose macro definition we are creating,

lambda-list is similar in form to a lambda-list, and the forms constitute the

body of the expander function. The defmacro construct arranges to install

this expander function, as the global macro definition of name.

The expander function is effectively defined in the global environment; lex-
........................................................................................................................................................................................................

ically scoped entities established outside the defmacro form that would ordi-

narily be lexically apparent are not visible within the body of the expansion

function.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms nor-
mally appear at top level, it is meaningful to place them in non-top-level

contexts. Furthermore, defmacro should define the expander function within

the enclosing lexical environment, not within the global environment.

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander

function defined by defmacro is implicitly enclosed in a block construct whose
name is the same as the name of the defined macro. Therefore return-from

may be used to exit from the function.

The name is returned as the value of the defmacro form.

If we view the macro call as a list containing a function name and some
argument forms, in effect the expander function and the list of (unevaluated)

argument forms is given to apply. The parameter specifiers are processed

as for any lambda-expression, using the macro-call argument forms as the

arguments. Then the body forms are evaluated as an implicit progn, and the

value of the last form is returned as the expansion of the macro call.

If the optional documentation string doc-string is present (if not followed

by a declaration, it may be present only if at least one form is also specified,

as it is otherwise taken to be a form), then it is attached to the name as a

documentation string of type function; see documentation.

Like the lambda-list in a defun, a defmacro lambda-list may contain the
........................................................................................................................................................................................................

lambda-list keywords &optional, &rest, &key, &allow-other-keys, and

&aux. For &optional and &key parameters, initialization forms and supplied-

p parameters may be specified, just as for defun. Three additional markers

are allowed in defmacro variable lists only.

These three markers are now allowed in other constructs as well.

&body This is identical in function to &rest, but it informs certain

output-formatting and editing functions that the remainder

of the form is treated as a body and should be indented ac-

cordingly. (Only one of &body or &rest may be used.)

&whole This is followed by a single variable that is bound to the

entire macro-call form; this is the value that the macro def-
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inition function receives as its single argument. &whole and

the following variable should appear first in the lambda-list,

before any other parameter or lambda-list keyword.

&environment This is followed by a single variable that is bound to an en-

vironment representing the lexical environment in which the

macro call is to be interpreted. This environment may not

be the complete lexical environment; it should be used only

with the function macroexpand for the sake of any local macro
definitions that the macrolet construct may have established

within that lexical environment. This is useful primarily in

the rare cases where a macro definition must explicitly ex-

pand any macros in a subform of the macro call before com-
puting its own expansion.

See lambda-list-keywords.

Notice of correction. In the first edition, the symbol &environment at the

left margin above was inadvertently omitted.

X3J13 voted in March 1989 〈117〉 to specify that macro environment objects
received with the &environment argument of a macro function have only

dynamic extent. The consequences are undefined if such objects are referred to

outside the dynamic extent of that particular invocation of the macro function.

This allows implementations to use somewhat more efficient techniques for
representing environment objects.

X3J13 voted in March 1989 〈51〉 to clarify the permitted uses of &body,

&whole, and &environment:

. &body may appear at any level of a defmacro lambda-list.

. &whole may appear at any level of a defmacro lambda-list. At inner levels

a &whole variable is bound to that part of the argument that matches the

sub-lambda-list in which &whole appears. No matter where &whole is used,
other parameters or lambda-list keywords may follow it.

. &environmentmay occur only at the outermost level of a defmacro lambda-

list, and it may occur at most once, but it may occur anywhere within that

lambda-list, even before an occurrence of &whole.

defmacro, unlike any other Common Lisp construct that has a lambda-list

as part of its syntax, provides an additional facility known as destructuring.

See destructuring-bind, which provides the destructuring facility sepa-

rately.
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Anywhere in the lambda-list where a parameter name may appear, and

where ordinary lambda-list syntax (as described in section 5.2.2) does not

otherwise allow a list, a lambda-list may appear in place of the parameter

name. When this is done, then the argument form that would match the

parameter is treated as a (possibly dotted) list, to be used as an argument
forms list for satisfying the parameters in the embedded lambda-list. As an

example, one could write the macro definition for dolist in this manner:

(defmacro dolist ((var listform &optional resultform)

&rest body)

...)

More examples of embedded lambda-lists in defmacro are shown below.

Another destructuring rule is that defmacro allows any lambda-list

(whether top-level or embedded) to be dotted, ending in a parameter name.

This situation is treated exactly as if the parameter name that ends the list

had appeared preceded by &rest. For example, the definition skeleton for

dolist shown above could instead have been written

(defmacro dolist ((var listform &optional resultform)

. body)

...)

If the compiler encounters a defmacro, the new macro is added to the
compilation environment, and a compiled form of the expansion function is

also added to the output file so that the new macro will be operative at run

time. If this is not the desired effect, the defmacro form can be wrapped in

an eval-when construct.

It is permissible to use defmacro to redefine a macro (for example, to install

a corrected version of an incorrect definition), or to redefine a function as a

macro. It is an error to attempt to redefine the name of a special form (see
table 5-1) as a macro. See macrolet, which establishes macro definitions over

a restricted lexical scope.

See also define-compiler-macro.

Suppose, for the sake of example, that it were desirable to implement a

conditional construct analogous to the Fortran arithmetic IF statement. (This
of course requires a certain stretching of the imagination and suspension of

disbelief.) The construct should accept four forms: a test-value, a neg-form,

a zero-form, and a pos-form. One of the last three forms is chosen to be

executed according to whether the value of the test-form is positive, negative,

or zero. Using defmacro, a definition for such a construct might look like this:
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(defmacro arithmetic-if (test neg-form zero-form pos-form)

(let ((var (gensym)))

‘(let ((,var ,test))

(cond ((< ,var 0) ,neg-form)

((UU ,var 0) ,zero-form)

(t ,pos-form)))))

Note the use of the backquote facility in this definition (see section 22.1.3).

Also note the use of gensym to generate a new variable name. This is necessary

to avoid conflict with any variables that might be referred to in neg-form, zero-

form, or pos-form.

If the form is executed by the interpreter, it will cause the function definition

of the symbol arithmetic-if to be a macro associated with which is a two-

argument expansion function roughly equivalent to

(lambda (calling-form environment)

(declare (ignore environment))

(let ((var (gensym)))

(list ’let

(list (list ’var (cadr calling-form)))

(list ’cond

(list (list ’< var ’0) (caddr calling-form))

(list (list ’UU var ’0) (cadddr calling-form))

(list ’t (fifth calling-form))))))

The lambda-expression is produced by the defmacro declaration. The calls to

list are the (hypothetical) result of the backquote (‘) macro character and

its associated commas. The precise macro expansion function may depend

on the implementation, for example providing some degree of explicit error
checking on the number of argument forms in the macro call.

Now, if eval encounters

(arithmetic-if (- x 4.0)

(- x)

(error "Strange zero")

x)

this will be expanded into something like

(let ((g407 (- x 4.0)))

(cond ((< g407 0) (- x))

((UU g407 0) (error "Strange zero"))
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(t x)))

and eval tries again on this new form. (It should be clear now that the back-
quote facility is very useful in writing macros, since the form to be returned

is normally a complex list structure, typically consisting of a mostly constant

template with a few evaluated forms here and there. The backquote template

provides a “picture” of the resulting code, with places to be filled in indicated
by preceding commas.)

To expand on this example, stretching credibility to its limit, we might allow

the pos-form and zero-form to be omitted, allowing their values to default to

nil, in much the same way that the else form of a Common Lisp if construct

may be omitted:

(defmacro arithmetic-if (test neg-form

&optional zero-form pos-form)

(let ((var (gensym)))

‘(let ((,var ,test))

(cond ((< ,var 0) ,neg-form)

((UU ,var 0) ,zero-form)

(t ,pos-form)))))

Then one could write

(arithmetic-if (- x 4.0) (print x))

which would be expanded into something like

(let ((g408 (- x 4.0)))

(cond ((< g408 0) (print x))

((UU g408 0) nil)

(t nil)))

The resulting code is correct but rather silly-looking. One might rewrite the

macro definition to produce better code when pos-form and possibly zero-form

are omitted, or one might simply rely on the Common Lisp implementation

to provide a compiler smart enough to improve the code itself.

Destructuring is a very powerful facility that allows the defmacro lambda-
list to express the structure of a complicated macro-call syntax. If no lambda-

list keywords appear, then the defmacro lambda-list is simply a list, nested

to some extent, containing parameter names at the leaves. The macro-call

form must have the same list structure. For example, consider this macro

definition:
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(defmacro halibut ((mouth eye1 eye2)

((fin1 length1) (fin2 length2))

tail)

...)

Now consider this macro call:

(halibut (m (car eyes) (cdr eyes))

((f1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)

This would cause the expansion function to receive the following values for its

parameters:

Parameter Value

mouth m

eye1 (car eyes)

eye2 (cdr eyes)

fin1 f1

length1 (count-scales f1)

fin2 f2

length2 (count-scales f2)

tail my-favorite-tail

The following macro call would be in error because there would be no argu-

ment form to match the parameter length1:

(halibut (m (car eyes) (cdr eyes))

((f1) (f2 (count-scales f2)))

my-favorite-tail)

The following macro call would be in error because a symbol appears in the
call where the structure of the lambda-list requires a list.

(halibut my-favorite-head

((f1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)

The fact that the value of the variable my-favorite-head might happen to

be a list is irrelevant here. It is the macro call itself whose structure must

match that of the defmacro lambda-list.

The use of lambda-list keywords adds even greater flexibility. For example,

suppose it is convenient within the expansion function for halibut to be able
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to refer to the list whose components are called mouth, eye1, and eye2 as

head. One may write this:

(defmacro halibut ((&whole head mouth eye1 eye2)

((fin1 length1) (fin2 length2))

tail)

Now consider the same valid macro call as before:

(halibut (m (car eyes) (cdr eyes))

((f1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)

This would cause the expansion function to receive the same values for its

parameters and also a value for the parameter head:

Parameter Value

head (m (car eyes) (cdr eyes))

The stipulation that an embedded lambda-list is permitted only where or-

dinary lambda-list syntax would permit a parameter name but not a list is

made to prevent ambiguity. For example, one may not write

(defmacro loser (x &optional (a b &rest c) &rest z)

...)

because ordinary lambda-list syntax does permit a list following &optional;

the list (a b &rest c) would be interpreted as describing an optional pa-
rameter named a whose default value is that of the form b, with a supplied-p

parameter named &rest (not legal), and an extraneous symbol c in the list

(also not legal). An almost correct way to express this is

(defmacro loser (x &optional ((a b &rest c)) &rest z)

...)

The extra set of parentheses removes the ambiguity. However, the definition is

now incorrect because a macro call such as (loser (car pool)) would not

provide any argument form for the lambda-list (a b &rest c), and so the
default value against which to match the lambda-list would be nil because

no explicit default value was specified. This is in error because nil is an

empty list; it does not have forms to satisfy the parameters a and b. The

fully correct definition would be either

(defmacro loser (x &optional ((a b &rest c) ’(nil nil)) &rest z)
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...)

or

(defmacro loser (x &optional ((&optional a b &rest c)) &rest z)

...)

These differ slightly: the first requires that if the macro call specifies a explic-

itly then it must also specify b explicitly, whereas the second does not have

this requirement. For example,

(loser (car pool) ((+ x 1)))

would be a valid call for the second definition but not for the first.

8.2. Macro Expansion

The macroexpand function is the conventional means for expanding a macro

call. A hook is provided for a user function to gain control during the expan-
sion process.

[Function]macroexpand form &optional env

[Function]macroexpand-1 form &optional env

If form is a macro call, then macroexpand-1 will expand the macro call once

and return two values: the expansion and t. If form is not a macro call, then

the two values form and nil are returned.

A form is considered to be a macro call only if it is a cons whose car is
a symbol that names a macro. The environment env is similar to that used

within the evaluator (see evalhook); it defaults to a null environment. Any

local macro definitions established within env by macrolet will be considered.

If only form is given as an argument, then the environment is effectively

null, and only global macro definitions (as established by defmacro) will be
considered.

Macro expansion is carried out as follows. Once macroexpand-1 has deter-

mined that a symbol names a macro, it obtains the expansion function for

that macro. The value of the variable *macroexpand-hook* is then called as
a function of three arguments: the expansion function, the form, and the en-

vironment env. The value returned from this call is taken to be the expansion

of the macro call. The initial value of *macroexpand-hook* is funcall, and

the net effect is to invoke the expansion function, giving it form and env as

its two arguments.
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X3J13 voted in June 1988 〈90〉 to specify that the value of *macroexpand-

hook* is first coerced to a function before being called as the expansion inter-

face hook. Therefore its value may be a symbol, a lambda-expression, or any

object of type function.

X3J13 voted in March 1989 〈117〉 to specify that macro environment ob-

jects received by a *macroexpand-hook* function have only dynamic extent.

The consequences are undefined if such objects are referred to outside the dy-

namic extent of that particular invocation of the hook function. This allows

implementations to use somewhat more efficient techniques for representing
environment objects.

(The purpose of *macroexpand-hook* is to facilitate various techniques for
........................................................................................................................................................................................................

improving interpretation speed by caching macro expansions.)

X3J13 voted in June 1989 〈116〉 to clarify that, while *macroexpand-hook*

may be useful for debugging purposes, despite the original design intent there

is currently no correct portable way to use it for caching macro expansions.

. Caching by displacement (performing a side effect on the macro-call form)

won’t work because the same (eq) macro-call form may appear in distinct
lexical contexts. In addition, the macro-call form may be a read-only con-

stant (see quote and also section 25.1).

. Caching by table lookup won’t work because such a table would have to be

keyed by both the macro-call form and the environment, but X3J13 voted

in March 1989 〈117〉 to permit macro environments to have only dynamic

extent.

. Caching by storing macro-call forms and expansions within the environment
object itself would work, but there are no portable primitives that would

allow users to do this.

X3J13 also noted that, although there seems to be no correct portable way to

use *macroexpand-hook* to cache macro expansions, there is no requirement

that an implementation call the macro expansion function more than once for
a given form and lexical environment.

X3J13 voted in March 1989 〈173〉 to specify that macroexpand-1 will also

expand symbol macros defined by symbol-macrolet; therefore a form may

also be a macro call if it is a symbol. The vote did not address the interaction
of this feature with the *macroexpand-hook* function. An obvious imple-

mentation choice is that the hook function is indeed called and given a special

expansion function that, when applied to the form (a symbol) and env, will

produce the expansion, just as for an ordinary macro; but this is only my

suggestion.
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The evaluator expands macro calls as if through the use of macroexpand-1;

the point is that eval also uses *macroexpand-hook*.

macroexpand is similar to macroexpand-1, but repeatedly expands form

until it is no longer a macro call. (In effect, macroexpand simply calls

macroexpand-1 repeatedly until the second value returned is nil.) A sec-

ond value of t or nil is returned as for macroexpand-1, indicating whether
the original form was a macro call.

[Variable]*macroexpand-hook*

The value of *macroexpand-hook* is used as the expansion interface hook by

macroexpand-1.

8.3. Destructuring

X3J13 voted in March 1989 〈64〉 to make the destructuring feature of

defmacro available as a separate facility.

[Macro]destructuring-bind lambda-list expression {declaration}∗ { form}∗

This macro binds the variables specified in lambda-list to the corresponding
values in the tree structure resulting from evaluating the expression, then

executes the forms as an implicit progn.

A destructuring-bind lambda-list may contain the lambda-list keywords

&optional, &rest, &key, &allow-other-keys, and &aux; &body and &whole

may also be used as they are in defmacro, but &environment may not be
used. Nested and dotted lambda-lists are also permitted as for defmacro.

The idea is that a destructuring-bind lambda-list has the same format as

inner levels of a defmacro lambda-list.

If the result of evaluating the expression does not match the destructuring

pattern, an error should be signaled.

8.4. Compiler Macros

X3J13 voted in June 1989 〈49〉 to add a facility for defining compiler macros

that take effect only when compiling code, not when interpreting it.

The purpose of this facility is to permit selective source-code transforma-

tions only when the compiler is processing the code. When the compiler is

about to compile a non-atomic form, it first calls compiler-macroexpand-1
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repeatedly until there is no more expansion (there might not be any to begin

with). Then it continues its remaining processing, which may include calling

macroexpand-1 and so on.

The compiler is required to expand compiler macros. It is unspecified

whether the interpreter does so. The intention is that only the compiler will

do so, but the range of possible “compiled-only” implementation strategies
precludes any firm specification.

[Macro]define-compiler-macro name lambda-list

{declaration | doc-string}∗ { form}∗

This is just like defmacro except the definition is not stored in the symbol

function cell of name and is not seen by macroexpand-1. It is, however, seen
by compiler-macroexpand-1. As with defmacro, the lambda-list may include

&environment and &whole and may include destructuring. The definition is

global. (There is no provision for defining local compiler macros in the way

that macrolet defines local macros.)

A top-level call to define-compiler-macro in a file being compiled by

compile-file has an effect on the compilation environment similar to that of
a call to defmacro, except it is noticed as a compiler macro (see section 25.1).

Note that compiler macro definitions do not appear in information re-
turned by function-information; they are global, and their interaction with

other lexical and global definitions can be reconstructed by compiler-macro-

function. It is up to code-walking programs to decide whether to invoke

compiler macro expansion.

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander

function defined by defmacro is implicitly enclosed in a block construct whose
name is the same as the name of the defined macro; presumably this applies

also to define-compiler-macro. Therefore return-frommay be used to exit

from the function.

[Function]compiler-macro-function name &optional env

The name must be a symbol. If it has been defined as a compiler macro, then
compiler-macro-function returns the macro expansion function; otherwise

it returns nil. The lexical environment env may override any global definition

for name by defining a local function or local macro (such as by flet, labels,

or macrolet) in which case nil is returned.

setf may be used with compiler-macro-function to install a function as

the expansion function for the compiler macro name, in the same manner as
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for macro-function. Storing the value nil removes any existing compiler

macro definition. As with macro-function, a non-nil stored value must be

a function of two arguments, the entire macro call and the environment. The

second argument to compiler-macro-function must be omitted when it is

used with setf.

[Function]compiler-macroexpand form &optional env

[Function]compiler-macroexpand-1 form &optional env

These are just like macroexpand and macroexpand-1 except that the ex-

pander function is obtained as if by a call to compiler-macro-function

on the car of the form rather than by a call to macro-function. Note

that compiler-macroexpand performs repeated expansion but compiler-

macroexpand-1 performs at most one expansion. Two values are returned,

the expansion (or the original form) and a value that is true if any expansion
occurred and nil otherwise.

There are three cases where no expansion happens:

. There is no compiler macro definition for the car of form.

. There is such a definition but there is also a notinline declaration, either

globally or in the lexical environment env.

. A global compiler macro definition is shadowed by a local function or macro

definition (such as by flet, labels, or macrolet).

Note that if there is no expansion, the original form is returned as the first
value, and nil as the second value.

Any macro expansion performed by the function compiler-macroexpand

or by the function compiler-macroexpand-1 is carried out by calling the
function that is the value of *macroexpand-hook*.

A compiler macro may decline to provide any expansion merely by returning
the original form. This is useful when using the facility to put “compiler

optimizers” on various function names. For example, here is a compiler macro

that “optimizes” (one would hope) the zero-argument and one-argument cases

of a function called plus:

(define-compiler-macro plus (&whole form &rest args)

(case (length args)

(0 0)

(1 (car args))

(t form)))
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8.5. Environments

X3J13 voted in June 1989 〈174〉 to add some facilities for obtaining in-
formation from environment objects of the kind received as arguments by

macro expansion functions, *macroexpand-hook* functions, and *evalhook*

functions. There is a minimal set of accessors (variable-information,

function-information, and declaration-information) and a constructor

(augment-environment) for environments.

All of the standard declaration specifiers, with the exception of special,
can be defined fairly easily using define-declaration. It also seems to be

able to handle most extended declarations.

The function parse-macro is provided so that users don’t have to write

their own code to destructure macro arguments. This function is not entirely

necessary since X3J13 voted in March 1989 〈64〉 to add destructuring-bind

to the language. However, parse-macro is worth having anyway, since any

program-analyzing program is going to need to define it, and the implemen-

tation isn’t completely trivial even with destructuring-bind to build upon.

The function enclose allows expander functions to be defined in a non-null

lexical environment, as required by the vote of X3J13 in March 1989 〈50〉.
It also provides a mechanism by which a program processing the body of an
(eval-when (:compile-toplevel) ...) form can execute it in the enclosing

environment (see issue 〈73〉).
In all of these functions the argument named env is an environment ob-

ject. (It is not required that implementations provide a distinguished repre-

sentation for such objects.) Optional env arguments default to nil, which
represents the local null lexical environment (containing only global defini-

tions and proclamations that are present in the run-time environment). All

of these functions should signal an error of type type-error if the value of

an environment argument is not a syntactic environment object.

The accessor functions variable-information, function-information,

and declaration-information retrieve information about declarations that
are in effect in the environment. Since implementations are permitted to

ignore declarations (except for special declarations and optimize safety

declarations if they ever compile unsafe code), these accessors are required

only to return information about declarations that were explicitly added to
the environment using augment-environment. They might also return infor-

mation about declarations recognized and added to the environment by the

interpreter or the compiler, but that is at the discretion of the implementor.

Implementations are also permitted to canonicalize declarations, so the infor-

mation returned by the accessors might not be identical to the information
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that was passed to augment-environment.

[Function]variable-information variable &optional env

This function returns information about the interpretation of the symbol vari-

able when it appears as a variable within the lexical environment env. Three

values are returned.
The first value indicates the type of definition or binding for variable in

env :

nil There is no apparent definition or binding for variable.

:special The variable refers to a special variable, either declared or

proclaimed.

:lexical The variable refers to a lexical variable.

:symbol-macro The variable refers to a symbol-macrolet binding.

:constant Either the variable refers to a named constant defined by
defconstant or the variable is a keyword symbol.

The second value indicates whether there is a local binding of the name.

If the name is locally bound, the second value is true; otherwise, the second

value is nil.

The third value is an a-list containing information about declarations that
apply to the apparent binding of the variable. The keys in the a-list are

symbols that name declaration specifiers, and the format of the corresponding

value in the cdr of each pair depends on the particular declaration name

involved. The standard declaration names that might appear as keys in this

a-list are:

dynamic-extent A non-nil value indicates that the variable has been de-
clared dynamic-extent. If the value is nil, the pair might

be omitted.

ignore A non-nil value indicates that the variable has been de-

clared ignore. If the value is nil, the pair might be omit-

ted.

type The value is a type specifier associated with the variable by

a type declaration or an abbreviated declaration such as

(fixnum variable). If no explicit association exists, either

by proclaim or declare, then the type specifier is t. It

is permissible for implementations to use a type specifier
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that is equivalent to or a supertype of the one appearing

in the original declaration. If the value is t, the pair might

be omitted.

If an implementation supports additional declaration specifiers that apply to
variable bindings, those declaration names might also appear in the a-list.

However, the corresponding key must not be a symbol that is external in

any package defined in the standard or that is otherwise accessible in the

common-lisp-user package.

The a-list might contain multiple entries for a given key. The consequences

of destructively modifying the list structure of this a-list or its elements (ex-

cept for values that appear in the a-list as a result of define-declaration)
are undefined.

Note that the global binding might differ from the local one and can be
retrieved by calling variable-information with a null lexical environment.

[Function]function-information function &optional env

This function returns information about the interpretation of the function-

name function when it appears in a functional position within lexical environ-
ment env. Three values are returned.

The first value indicates the type of definition or binding of the function-
name which is apparent in env:

nil There is no apparent definition for function.

:function The function refers to a function.

:macro The function refers to a macro.

:special-form The function refers to a special form.

Some function-names can refer to both a global macro and a global special

form. In such a case the macro takes precedence and :macro is returned as
the first value.

The second value specifies whether the definition is local or global. If local,
the second value is true; it is nil when the definition is global.

The third value is an a-list containing information about declarations that
apply to the apparent binding of the function. The keys in the a-list are

symbols that name declaration specifiers, and the format of the corresponding

values in the cdr of each pair depends on the particular declaration name

involved. The standard declaration names that might appear as keys in this

a-list are:
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dynamic-extent A non-nil value indicates that the function has been de-

clared dynamic-extent. If the value is nil, the pair might

be omitted.

inline The value is one of the symbols inline, notinline, or nil
to indicate whether the function-name has been declared

inline, declared notinline, or neither, respectively. If

the value is nil, the pair might be omitted.

ftype The value is the type specifier associated with the function-

name in the environment, or the symbol function if there

is no functional type declaration or proclamation associ-

ated with the function-name. This value might not include
all the apparent ftype declarations for the function-name.

It is permissible for implementations to use a type speci-

fier that is equivalent to or a supertype of the one that ap-

peared in the original declaration. If the value is function,

the pair might be omitted.

If an implementation supports additional declaration specifiers that apply to

function bindings, those declaration names might also appear in the a-list.

However, the corresponding key must not be a symbol that is external in

any package defined in the standard or that is otherwise accessible in the
common-lisp-user package.

The a-list might contain multiple entries for a given key. In this case the

value associated with the first entry has precedence. The consequences of

destructively modifying the list structure of this a-list or its elements (except
for values that appear in the a-list as a result of define-declaration) are

undefined.

Note that the global binding might differ from the local one and can be

retrieved by calling function-information with a null lexical environment.

[Function]declaration-information decl-name &optional env

This function returns information about declarations named by the symbol

decl-name that are in force in the environment env. Only declarations that do
not apply to function or variable bindings can be accessed with this function.

The format of the information that is returned depends on the decl-name

involved.

It is required that this function recognize optimize and declaration as

decl-names. The values returned for these two cases are as follows:



224 COMMON LISP

optimize A single value is returned, a list whose entries are of the

form (quality value), where quality is one of the standard

optimization qualities (speed, safety, compilation-

speed, space, debug) or some implementation-specific op-

timization quality, and value is an integer in the range
0 to 3 (inclusive). The returned list always contains

an entry for each of the standard qualities and for each

of the implementation-specific qualities. In the absence

of any previous declarations, the associated values are
implementation-dependent. The list might contain multi-

ple entries for a quality, in which case the first such entry

specifies the current value. The consequences of destruc-

tively modifying this list or its elements are undefined.

declaration A single value is returned, a list of the declaration names

that have been proclaimed as valid through the use of the
declaration proclamation. The consequences of destruc-

tively modifying this list or its elements are undefined.

If an implementation is extended to recognize additional declaration speci-

fiers in declare or proclaim, it is required that either the declaration-

information function should recognize those declarations also or the im-

plementation should provide a similar accessor that is specialized for that

declaration specifier. If declaration-information is used to return the in-

formation, the corresponding decl-name must not be a symbol that is external
in any package defined in the standard or that is otherwise accessible in the

common-lisp-user package.

[Function]augment-environment env &key :variable :symbol-macro

:function :macro :declare

This function returns a new environment containing the information present

in env augmented with the information provided by the keyword arguments.

It is intended to be used by program analyzers that perform a code walk.

The arguments are supplied as follows.

:variable

The argument is a list of symbols that will be visible as bound variables in

the new environment. Whether each binding is to be interpreted as special

or lexical depends on special declarations recorded in the environment or

provided in the :declare argument.
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:symbol-macro

The argument is a list of symbol macro definitions, each of the form (name
definition); that is, the argument is in the same format as the cadr of a

symbol-macrolet special form. The new environment will have local symbol-

macro bindings of each symbol to the corresponding expansion, so that

macroexpand will be able to expand them properly. A type declaration in
the :declare argument that refers to a name in this list implicitly modifies

the definition associated with the name. The effect is to wrap a the form

mentioning the type around the definition.

:function

The argument is a list of function-names that will be visible as local function

bindings in the new environment.

:macro

The argument is a list of local macro definitions, each of the form (name

definition). Note that the argument is not in the same format as the cadr of a

macrolet special form. Each definition must be a function of two arguments

(a form and an environment). The new environment will have local macro

bindings of each name to the corresponding expander function, which will be
returned by macro-function and used by macroexpand.

:declare

The argument is a list of declaration specifiers. Information about these

declarations can be retrieved from the resulting environment using variable-

information, function-information, and declaration-information.

The consequences of subsequently destructively modifying the list structure

of any of the arguments to this function are undefined.

An error is signaled if any of the symbols naming a symbol macro in the

:symbol-macro argument is also included in the :variable argument. An

error is signaled if any symbol naming a symbol macro in the :symbol-macro

argument is also included in a special declaration specifier in the :declare

argument. An error is signaled if any symbol naming a macro in the :macro

argument is also included in the :function argument. The condition type of

each of these errors is program-error.

The extent of the returned environment is the same as the extent of the

argument environment env. The result might share structure with env but

env is not modified.
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While an environment argument received by an *evalhook* function is per-

mitted to be used as the environment argument to augment-environment, the

consequences are undefined if an attempt is made to use the result of augment-

environment as the environment argument for evalhook. The environment

returned by augment-environment can be used only for syntactic analysis,
that is, as an argument to the functions defined in this section and functions

such as macroexpand.

[Macro]define-declaration decl-name lambda-list { form}∗

This macro defines a handler for the named declaration. It is the mechanism

by which augment-environment is extended to support additional declara-
tion specifiers. The function defined by this macro will be called with two

arguments, a declaration specifier whose car is decl-name and the env argu-

ment to augment-environment. This function must return two values. The

first value must be one of the following keywords:

:variable The declaration applies to variable bindings.

:function The declaration applies to function bindings.

:declare The declaration does not apply to bindings.

If the first value is :variable or :function then the second value must be

a list, the elements of which are lists of the form (binding-name key value).

If the corresponding information function (either variable-information or

function-information) is applied to the binding-name and the augmented

environment, the a-list returned by the information function as its third value
will contain the value under the specified key.

If the first value is :declare, the second value must be a cons of the form
(key . value). The function declaration-information will return value

when applied to the key and the augmented environment.

define-declaration causes decl-name to be proclaimed to be a declara-

tion; it is as if its expansion included a call (proclaim ’(declaration decl-

name)). As is the case with standard declaration specifiers, the evaluator

and compiler are permitted, but not required, to add information about dec-

laration specifiers defined with define-declaration to the macro expansion
and *evalhook* environments.

The consequences are undefined if decl-name is a symbol that can appear
as the car of any standard declaration specifier.

The consequences are also undefined if the return value from a declaration

handler defined with define-declaration includes a key name that is used
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by the corresponding accessor to return information about any standard dec-

laration specifier. (For example, if the first return value from the handler

is :variable, the second return value may not use the symbols dynamic-

extent, ignore, or type as key names.)

The define-declaration macro does not have any special compile-time
side effects (see section 25.1).

[Function]parse-macro name lambda-list body &optional env

This function is used to process a macro definition in the same way as

defmacro and macrolet. It returns a lambda-expression that accepts two

arguments, a form and an environment. The name, lambda-list, and body
arguments correspond to the parts of a defmacro or macrolet definition.

The lambda-list argument may include &environment and &whole and may

include destructuring. The name argument is used to enclose the body in an

implicit block and might also be used for implementation-dependent purposes

(such as including the name of the macro in error messages if the form does
not match the lambda-list).

[Function]enclose lambda-expression &optional env

This function returns an object of type function that is equivalent to what

would be obtained by evaluating ‘(function ,lambda-expression) in a syn-

tactic environment env. The lambda-expression is permitted to reference only

the parts of the environment argument env that are relevant only to syntactic
processing, specifically declarations and the definitions of macros and symbol

macros. The consequences are undefined if the lambda-expression contains any

references to variable or function bindings that are lexically visible in env, any

go to a tag that is lexically visible in env, or any return-from mentioning a
block name that is lexically visible in env.
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Declarations

Declarations allow you to specify extra information about your program to

the Lisp system. With one exception, declarations are completely optional
and correct declarations do not affect the meaning of a correct program. The

exception is that special declarations do affect the interpretation of variable

bindings and references and so must be specified where appropriate. All other

declarations are of an advisory nature, and may be used by the Lisp system to

aid the programmer by performing extra error checking or producing more ef-
ficient compiled code. Declarations are also a good way to add documentation

to a program.

Note that it is considered an error for a program to violate a declaration

(such as a type declaration), but an implementation is not required to detect

such errors (though such detection, where feasible, is to be encouraged).

9.1. Declaration Syntax

The declare construct is used for embedding declarations within executable

code. Global declarations and declarations that are computed by a program

are established by the proclaim construct.

X3J13 voted in June 1989 〈144〉 to introduce the new macro declaim, which

is guaranteed to be recognized appropriately by the compiler and is often more
convenient than proclaim for establishing global declarations.

[Special form]declare {decl-spec}∗

A declare form is known as a declaration. Declarations may occur only at

the beginning of the bodies of certain special forms; that is, a declaration may

occur only as a statement of such a special form, and all statements preceding

it (if any) must also be declare forms (or possibly documentation strings, in

228
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some cases). Declarations may occur in lambda-expressions and in the forms

listed here.

define-setf-method labels

defmacro let

defsetf let*

deftype locally

defun macrolet

do multiple-value-bind

do* prog

do-all-symbols prog*

do-external-symbols with-input-from-string

do-symbols with-open-file

dolist with-open-stream

dotimes with-output-to-string

flet

Notice of correction. In the first edition, the above list failed to men-

tion the forms define-setf-method, with-input-from-string, with-open-
file, with-open-stream, and with-output-to-string, even though their

individual descriptions in the first edition specified that declarations may ap-

pear in those forms.

X3J13 voted in June 1989 〈31〉 to add with-condition-restarts and also

〈40〉 to add print-unreadable-object and with-standard-io-syntax. The
X3J13 vote left it unclear whether these macros permit declarations to appear

at the heads of their bodies. I believe that was the intent, but this is only my

interpretation.

X3J13 voted in June 1988 〈12〉 to adopt the Common Lisp Object System,

which includes the following additional forms in which declarations may occur:

defgeneric generic-function

define-method-combination generic-labels

defmethod with-added-methods

generic-flet

Furthermore X3J13 voted in January 1989 〈172〉 to allow declarations to occur

before the bodies of these forms:

symbol-macrolet with-slots

with-accessors
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There are certain aspects peculiar to symbol-macrolet (and therefore also

to with-accessors and with-slots, which expand into uses of symbol-

macrolet). An error is signaled if a name defined by symbol-macrolet is

declared special, and a type declaration of a name defined by symbol-

macrolet is equivalent in effect to wrapping a the form mentioning that
type around the expansion of the defined symbol.

It is an error to attempt to evaluate a declaration. Those special forms that
permit declarations to appear perform explicit checks for their presence.

Compatibility note: In MacLisp, declare is a special form that does nothing but
return the symbol declare as its result. The MacLisp interpreter knows nothing
about declarations but just blindly evaluates them, effectively ignoring them. The
MacLisp compiler recognizes declarations but processes them simply by evaluating
the subforms of the declaration in the compilation context. In Common Lisp it is
important that both the interpreter and compiler recognize declarations (especially
special declarations) and treat them consistently, and so the rules about the struc-
ture and use of declarations have been made considerably more stringent. The odd
tricks played in MacLisp by writing arbitrary forms to be evaluated within a declare

form are better done in both MacLisp and Common Lisp by using eval-when.

It is permissible for a macro call to expand into a declaration and be rec-
ognized as such, provided that the macro call appears where a declaration

may legitimately appear. (However, a macro call may not appear in place of

a decl-spec.)

X3J13 voted in March 1988 〈45〉 to eliminate the recognition of a declaration

resulting from the expansion of a macro call. This feature proved to be seldom

used and awkward to implement in interpreters, compilers, and other code-

analyzing programs.

Under this change, a declaration is recognized only as such if it appears

explicitly, as a list whose car is the symbol declare, in the body of a relevant
special form. (Note, however, that it is still possible for a macro to expand

into a call to the proclaim function.)

Each decl-spec is a list whose car is a symbol specifying the kind of decla-

ration to be made. Declarations may be divided into two classes: those that

concern the bindings of variables, and those that do not. (The special dec-

laration is the sole exception: it effectively falls into both classes, as explained
below.) Those that concern variable bindings apply only to the bindings made

by the form at the head of whose body they appear. For example, in

(defun foo (x)

(declare (type float x)) ...
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(let ((x ’a)) ...)

...)

the type declaration applies only to the outer binding of x, and not to the

binding made in the let.

Compatibility note: This represents a difference from MacLisp, in which type
declarations are pervasive.

Declarations that do not concern themselves with variable bindings are
pervasive, affecting all code in the body of the special form. As an example

of a pervasive declaration,

(defun foo (x y) (declare (notinline floor)) ...)

advises that everywhere within the body of foo the function floor should

not be open-coded but called as an out-of-line subroutine.

Some special forms contain pieces of code that, properly speaking, are not

part of the body of the special form. Examples of this are initialization forms

that provide values for bound variables, and the result forms of iteration con-

structs. In all cases such additional code is within the scope of any pervasive

declarations appearing before the body of the special form. Non-pervasive
declarations have no effect on such code, except (of course) in those situa-

tions where the code is defined to be within the scope of the variables affected

by such non-pervasive declarations. For example:

(defun few (x &optional (y *print-circle*))

(declare (special *print-circle*))

...)

The reference to *print-circle* in the first line of this example is special

because of the declaration in the second line.

(defun nonsense (k x z)

(foo z x) ;First call to foo

(let ((j (foo k x)) ;Second call to foo

(x (* k k)))

(declare (inline foo) (special x z))

(foo x j z))) ;Third call to foo

In this rather nonsensical example, the inline declaration applies to the

second and third calls to foo, but not to the first one. The special declaration
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of x causes the let form to make a special binding for x and causes the

reference to x in the body of the let to be a special reference. The reference

to x in the second call to foo is also a special reference. The reference to x

in the first call to foo is a local reference, not a special one. The special

declaration of z causes the reference to z in the call to foo to be a special
reference; it will not refer to the parameter to nonsense named z, because

that parameter binding has not been declared to be special. (The special

declaration of z does not appear in the body of the defun, but in an inner

construct, and therefore does not affect the binding of the parameter.)

X3J13 voted in January 1989 〈42〉 to replace the rules concerning the scope
of declarations occurring at the head of a special form or lambda-expression:

. The scope of a declaration always includes the body forms, as well as any

“stepper” or “result” forms (which are logically part of the body), of the

special form or lambda-expression.

. If the declaration applies to a name binding, then the scope of the declara-

tion also includes the scope of the name binding.

Note that the distinction between pervasive and non-pervasive declarations is
eliminated. An important change from the first edition is that “initialization”

forms are specifically not included as part of the body under the first rule; on

the other hand, in many cases initialization forms may fall within the scope

of certain declarations under the second rule.

X3J13 also voted in January 1989 〈46〉 to change the interpretation of type
declarations (see section 9.2).

These changes affect the interpretation of some of the examples from the

first edition.

(defun foo (x)

(declare (type float x)) ...

(let ((x ’a)) ...)

...)

Under the interpretation approved by X3J13, the type declaration applies to

both bindings of x. More accurately, the type declaration is considered to

apply to variable references rather than bindings, and the type declaration

refers to every reference in the body of foo to a variable named x, no matter

to what binding it may refer.

(defun foo (x y) (declare (notinline floor)) ...)
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This example of the use of notinline stands unchanged, but the following

slight extension of it would change:

(defun foo (x &optional (y (floor x)))

(declare (notinline floor)) ...)

Under first edition rules, the notinline declaration would be considered to
apply to the call to floor in the initialization form for y. Under the interpre-

tation approved by X3J13, the notinline would not apply to that particular

call to floor. Instead the user must write something like

(defun foo (x &optional (y (locally (declare (notinline floor))

(floor x))))

(declare (notinline floor)) ...)

or perhaps

(locally (declare (notinline floor))

(defun foo (x &optional (y (floor x))) ...))

Similarly, the special declaration in

(defun few (x &optional (y *print-circle*))

(declare (special *print-circle*))

...)

is not considered to apply to the reference in the initialization form for y in

few. As for the nonsense example,

(defun nonsense (k x z)

(foo z x) ;First call to foo

(let ((j (foo k x)) ;Second call to foo

(x (* k k)))

(declare (inline foo) (special x z))

(foo x j z))) ;Third call to foo

under the interpretation approved by X3J13, the inline declaration is no

longer considered to apply to the second call to foo, because it is in an ini-

tialization form, which is no longer considered in the scope of the declaration.

Similarly, the reference to x in that second call to foo is no longer taken to be

a special reference, but a local reference to the second parameter of nonsense.
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[Macro]locally {declaration}∗ { form}∗

This macro may be used to make local pervasive declarations where desired.

It does not bind any variables and therefore cannot be used meaningfully for

declarations of variable bindings. (Note that the special declaration may be
used with locally to pervasively affect references to, rather than bindings of,

variables.) For example:

(locally (declare (inline floor) (notinline car cdr))

(declare (optimize space))

(floor (car x) (cdr y)))

X3J13 voted in January 1989 〈156〉 to specify that locally executes the
forms as an implicit progn and returns the value(s) of the last form.

X3J13 voted in March 1989 〈113〉 to make locally be a special form rather

than a macro. It still has the same syntax.

[Special form]locally {declaration}∗ { form}∗

This change was made to accommodate the new compilation model for top-

level forms in a file (see section 25.1). When a locally form appears at top

level, the forms in its body are processed as top-level forms. This means that
one may, for example, meaningfully use locally to wrap declarations around

a defun or defmacro form:

(locally

(declare (optimize (safety 3) (space 3) (debug 3) (speed 1)))

(defun foo (x &optional (y (abs x)) (z (sqrt y)))

(bar x y z)))

Without assurance that this works one must write something cumbersome

such as

(defun foo (x &optional (y (locally

(declare (optimize (safety 3)

(space 3)

(debug 3)

(speed 1)))

(abs x)))

(z (locally

(declare (optimize (safety 3)

(space 3)
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(debug 3)

(speed 1)))

(sqrt y))))

(locally

(declare (optimize (safety 3) (space 3) (debug 3) (speed 1)))

(bar x y z)))
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[Function]proclaim decl-spec

The function proclaim takes a decl-spec as its argument and puts it into ef-

fect globally. (Such a global declaration is called a proclamation.) Because
proclaim is a function, its argument is always evaluated. This allows a pro-

gram to compute a declaration and then put it into effect by calling proclaim.

Any variable names mentioned are assumed to refer to the dynamic values
of the variable. For example, the proclamation

(proclaim ’(type float tolerance))

once executed, specifies that the dynamic value of tolerance should always

be a floating-point number. Similarly, any function-names mentioned are

assumed to refer to the global function definition.

A proclamation constitutes a universal declaration, always in force unless

locally shadowed. For example,

(proclaim ’(inline floor))

advises that floor should normally be open-coded in-line by the compiler
(but in the situation

(defun foo (x y) (declare (notinline floor)) ...)

it will be compiled out-of-line anyway in the body of foo, because of the

shadowing local declaration to that effect).

X3J13 voted in January 1989 〈164〉 to clarify that such shadowing does not

occur in the case of type declarations. If there is a local type declaration for a

special variable and there is also a global proclamation for that same variable,

then the value of the variable within the scope of the local declaration must be
a member of the intersection of the two declared types. This is consistent with

the treatment of nested local type declarations on which X3J13 also voted in

January 1989 〈46〉.
As a special case (so to speak), proclaim treats a special decl-spec as

applying to all bindings as well as to all references of the mentioned variables.

Notice of correction. In the first edition, this sentence referred to a

“special declaration-form.” That was incorrect; proclaim accepts only a
decl-spec, not a declaration-form.

For example, after

(proclaim ’(special x))

in a function definition such as
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(defun example (x) ...)

the parameter x will be bound as a special (dynamic) variable rather than as a
lexical (static) variable. This facility should be used with caution. The usual

way to define a globally special variable is with defvar or defparameter.

X3J13 voted in June 1989 〈144〉 to clarify that the compiler is not required

to treat calls to proclaim any differently from the way it treats any other
function call. If a top-level call to proclaim is to take effect at compile time,

it should be surrounded by an appropriate eval-when form. Better yet, the

new macro declaim may be used instead.

[Macro]declaim {decl-spec}∗

This macro is syntactically like declare and semantically like proclaim. It

is an executable form and may be used anywhere proclaim may be called.

However, each decl-spec is not evaluated.
If a call to this macro appears at top level in a file being processed by the

file compiler, the proclamations are also made at compile time. As with other

defining macros, it is unspecified whether or not the compile-time side effects

of a declaim persist after the file has been compiled (see section 25.1).

9.2. Declaration Specifiers

Here is a list of valid declaration specifiers for use in declare. A construct

is said to be “affected” by a declaration if it occurs within the scope of a

declaration.

special

(special var1 var2 ...) specifies that all of the variables named are to be

considered special. This specifier affects variable bindings but also pervasively

affects references. All variable bindings affected are made to be dynamic
bindings, and affected variable references refer to the current dynamic binding

rather than to the current local binding. For example:

(defun hack (thing *mod*) ;The binding of the parameter
(declare (special *mod*)) ; *mod* is visible to hack1,

(hack1 (car thing))) ; but not that of thing

(defun hack1 (arg)

(declare (special *mod*)) ;Declare references to *mod*
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; within hack1 to be special

(if (atom arg) *mod*

(cons (hack1 (car arg)) (hack1 (cdr arg)))))

Note that it is conventional, though not required, to give special variables

names that begin and end with an asterisk.

A special declaration does not affect bindings pervasively. Inner bindings
of a variable implicitly shadow a special declaration and must be explicitly

re-declared to be special. (However, a special proclamation does pervasively

affect bindings; this exception is made for reasons of convenience and com-

patibility with MacLisp.) For example:

(proclaim ’(special x)) ;x is always special

(defun example (x y)

(declare (special y))

(let ((y 3) (x (* x 2)))

(print (+ y (locally (declare (special y)) y)))

(let ((y 4)) (declare (special y)) (foo x))))

In the contorted code above, the outermost and innermost bindings of y are
special and therefore dynamically scoped, but the middle binding is lexically

scoped. The two arguments to + are different, one being the value, which is 3,

of the lexically bound variable y, and the other being the value of the special

variable named y (a binding of which happens, coincidentally, to lexically

surround it at an outer level). All the bindings of x and references to x are
special, however, because of the proclamation that x is always special.

As a matter of style, use of special proclamations should be avoided. The

defvar and defparametermacros are the conventional means for proclaiming

special variables in a program.

type

(type type var1 var2 ...) affects only variable bindings and specifies that

the variables mentioned will take on values only of the specified type. In
particular, values assigned to the variables by setq, as well as the initial

values of the variables, must be of the specified type.

X3J13 voted in January 1989 〈46〉 to alter the interpretation of type decla-

rations. They are not to be construed to affect “only variable bindings.” The

new rule for a declaration of a variable to have a specified type is threefold:
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. It is an error if, during the execution of any reference to that variable within

the scope of the declaration, the value of the variable is not of the declared

type.

. It is an error if, during the execution of a setq of that variable within the

scope of the declaration, the new value for the variable is not of the declared

type.

. It is an error if, at any moment that execution enters the scope of the
declaration, the value of the variable is not of the declared type.

One may think of a type declaration (declare (type face bodoni)) as
implicitly changing every reference to bodoni within the scope of the dec-

laration to (the face bodoni); changing every expression exp assigned to

bodoni within the scope of the declaration to (the face exp); and implic-

itly executing (the face bodoni) every time execution enters the scope of

the declaration.

These new rules make type declarations much more useful. Under first
edition rules, a type declaration was useless if not associated with a variable

binding; declarations such as in

(locally

(declare (type (byte 8) x y))

(+ x y))

at best had no effect and at worst were erroneous, depending on one’s inter-

pretation of the first edition. Under the interpretation approved by X3J13,

such declarations have “the obvious natural interpretation.”

X3J13 noted that if nested type declarations refer to the same variable,

then all of them have effect; the value of the variable must be a member of
the intersection of the declared types.

Nested type declarations could occur as a result of either macro expansion

or carefully crafted code. There are three cases. First, the inner type might

be a subtype of the outer one:

(defun compare (apples oranges)

(declare (type number apples oranges))
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(cond ((typep apples ’fixnum)

;; The programmer happens to know that, thanks to

;; constraints imposed by the caller, if APPLES

;; is a fixnum, then ORANGES will be also, and

;; therefore wishes to avoid the unnecessary cost

;; of checking ORANGES. Nevertheless the compiler

;; should be informed to allow it to optimize code.

(locally (declare (type fixnum apples oranges)))

;; Maybe the compiler could have figured

;; out by flow analysis that APPLES must

;; be a fixnum here, but it doesn’t hurt

;; to say it explicitly.

(< apples oranges)))

((or (complex apples)

(complex oranges))

(error "Not yet implemented. Sorry."))

...))

This is the case most likely to arise in code written completely by hand.

Second, the outer type might be a subtype of the inner one. In this case the

inner declaration has no additional practical effect, but it is harmless. This

is likely to occur if code declares a variable to be of a very specific type and
then passes it to a macro that then declares it to be of a less specific type.

Third, the inner and outer declarations might be for types that overlap,

neither being a subtype of the other. This is likely to occur only as a result

of macro expansion. For example, user code might declare a variable to be of

type integer, and a macro might later declare it to be of type (or fixnum

package); in this case a compiler could intersect the two types to determine

that in this instance the variable may hold only fixnums.

The reader should note that the following code fragment is, perhaps aston-

ishingly, not in error under the interpretation approved by X3J13:
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(let ((james .007)

(maxwell 86))

(flet ((spy-swap ()

(rotatef james maxwell)))

(locally (declare (integer maxwell))

(spy-swap)

(view-movie "The Sound of Music")

(spy-swap)

maxwell)))

⇒ 86 (after a couple of hours of Julie Andrews)

The variable maxwell is declared to be an integer over the scope of the type

declaration, not over its extent. Indeed maxwell takes on the non-integer value

.007 while the Trapp family make their escape, but because no reference to

maxwell within the scope of the declaration ever produces a non-integer value,
the code is correct.

Now the assignment to maxwell during the first call to spy-swap, and the

reference to maxwell during the second call, do involve non-integer values,

but they occur within the body of spy-swap, which is not in the scope of the

type declaration! One could put the declaration in a different place so as to
include spy-swap in the scope:

(let ((james .007)

(maxwell 86))

(locally (declare (integer maxwell))

(flet ((spy-swap ()

(rotatef james maxwell)))

(spy-swap) ;Bug!

(view-movie "The Sound of Music")

(spy-swap)

maxwell)))

and then the code is indeed in error.

X3J13 also voted in January 1989 〈91〉 to alter the meaning of the function

type specifier when used in type declarations (see section 4.5).

type

(type var1 var2 ...) is an abbreviation for (type type var1 var2 ...),

provided that type is one of the symbols appearing in table 4-1.
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Observe that this covers the particularly common case of declaring numeric

variables:

(declare (single-float mass dx dy dz)

(double-float acceleration sum))

In many implementations there is also some advantage to declaring variables
to have certain specialized vector types such as base-string.

ftype

(ftype type function-name-1 function-name-2 ...) specifies that the

named functions will be of the functional type type, an example of which

follows. For example:

(declare (ftype (function (integer list) t) nth)

(ftype (function (number) float) sin cos))

Note that rules of lexical scoping are observed; if one of the functions men-

tioned has a lexically apparent local definition (as made by flet or labels),

then the declaration applies to that local definition and not to the global
function definition.

X3J13 voted in March 1989 〈89〉 to extend ftype declaration specifiers to

accept any function-name (a symbol or a list whose car is setf—see sec-

tion 7.1). Thus one may write

(declaim (ftype (function (list) t) (setf cadr)))

to indicate the type of the setf expansion function for cadr.

X3J13 voted in January 1989 〈91〉 to alter the meaning of the function

type specifier when used in ftype declarations (see section 4.5).

function........................................................................................................................................................................................................

(function name arglist result-type1 result-type2 ...) is entirely equiva-

lent to

(ftype (function arglist result-type1 result-type2 ...) name)

but may be more convenient for some purposes. For example:

(declare (function nth (integer list) t)
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(function sin (number) float)

(function cos (number) float))

The syntax mildly resembles that of defun: a function-name, then an argu-

ment list, then a specification of results.
Note that rules of lexical scoping are observed; if one of the functions men-

tioned has a lexically apparent local definition (as made by flet or labels),

then the declaration applies to that local definition and not to the global

function definition.

X3J13 voted in January 1989 〈44〉 to remove this interpretation of the

function declaration specifier from the language. Instead, a declaration spec-

ifier

(function var1 var2 ...)

is to be treated simply as an abbreviation for

(type function var1 var2 ...)

just as for all other symbols appearing in table 4-1.

X3J13 noted that although function appears in table 4-1, the first edition
also discussed it explicitly, with a different meaning, without noting whether

the differing interpretation was to replace or augment the interpretation re-

garding table 4-1. Unfortunately there is an ambiguous case: the declaration

(declare (function foo nil string))

can be construed to abbreviate either

(declare (ftype (function () string) foo))

or

(declare (type function foo nil string))

The latter could perhaps be rejected on semantic grounds: it would be an
error to declare nil, a constant, to be of type function. In any case, X3J13

determined that the ice was too thin here; the possibility of confusion is not

worth the convenience of an abbreviation for ftype declarations. The change

also makes the language more consistent.

inline

(inline function1 function2 ...) specifies that it is desirable for the com-
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piler to open-code calls to the specified functions; that is, the code for a

specified function should be integrated into the calling routine, appearing in-

line in place of a procedure call. This may achieve extra speed at the expense

of debuggability (calls to functions compiled in-line cannot be traced, for ex-

ample). This declaration is pervasive. Remember that a compiler is free to
ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions men-
tioned has a lexically apparent local definition (as established by flet or

labels), then the declaration applies to that local definition and not to the

global function definition.

X3J13 voted in October 1988 〈145〉 to clarify that during compilation the

inline declaration specifier serves two distinct purposes: it indicates not only

that affected calls to the specified functions should be expanded in-line, but

also that affected definitions of the specified functions must be recorded for

possible use in performing such expansions.

Looking at it the other way, the compiler is not required to save function

definitions against the possibility of future expansions unless the functions
have already been proclaimed to be inline. If a function is proclaimed (or

declaimed) inline before some call to that function but the current defini-

tion of that function was established before the proclamation was processed,

it is implementation-dependent whether that call will be expanded in-line.

(Of course, it is implementation-dependent anyway, because a compiler is al-
ways free to ignore inline declaration specifiers. However, the intent of the

committee is clear: for best results, the user is advised to put any inline

proclamation of a function before any definition of or call to that function.)

Consider these examples:

(defun huey (x) (+ x 100)) ;Compiler need not remember this

(declaim (inline huey dewey))

(defun dewey (y) (huey (sqrt y))) ;Call to huey unlikely to be expanded

(defun louie (z) (dewey (/ z))) ;Call to dewey likely to be expanded

X3J13 voted in March 1989 〈89〉 to extend inline declaration specifiers

to accept any function-name (a symbol or a list whose car is setf—see sec-

tion 7.1). Thus one may write (declare (inline (setf cadr))) to indicate

that the setf expansion function for cadr should be compiled in-line.

notinline

(notinline function1 function2 ...) specifies that it is undesirable to com-
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pile the specified functions in-line. This declaration is pervasive. A compiler

is not free to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions men-

tioned has a lexically apparent local definition (as made by flet or labels),

then the declaration applies to that local definition and not to the global
function definition.

X3J13 voted in March 1989 〈89〉 to extend notinline declaration speci-

fiers to accept any function-name (a symbol or a list whose car is setf—see

section 7.1). Thus one may write (declare (notinline (setf cadr))) to
indicate that the setf expansion function for cadr should not be compiled

in-line.

X3J13 voted in January 1989 〈4〉 to clarify that the proper way to define

a function gnards that is not inline by default, but for which a local decla-

ration (declare (inline gnards)) has half a chance of actually compiling
gnards in-line, is as follows:

(declaim (inline gnards))

(defun gnards ...)

(declaim (notinline gnards))

The point is that the first declamation informs the compiler that the defi-
nition of gnards may be needed later for in-line expansion, and the second

declamation prevents any expansions unless and until it is overridden.

While an implementation is never required to perform in-line expansion,

many implementations that do support such expansion will not process
inline requests successfully unless definitions are written with these procla-

mations in the manner shown above.

ignore

(ignore var1 var2 ... varn) affects only variable bindings and specifies

that the bindings of the specified variables are never used. It is desirable
for a compiler to issue a warning if a variable so declared is ever referred to

or is also declared special, or if a variable is lexical, never referred to, and not

declared to be ignored.

optimize

(optimize (quality1 value1) (quality2 value2)...) advises the compiler

that each quality should be given attention according to the specified cor-
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responding value. A quality is a symbol; standard qualities include speed (of

the object code), space (both code size and run-time space), safety (run-time

error checking), and compilation-speed (speed of the compilation process).

X3J13 voted in October 1988 〈124〉 to add the standard quality debug (ease

of debugging).
Other qualities may be recognized by particular implementations. A value

should be a non-negative integer, normally in the range 0 to 3. The value

0 means that the quality is totally unimportant, and 3 that the quality is

extremely important; 1 and 2 are intermediate values, with 1 the “normal”
or “usual” value. One may abbreviate (quality 3) to simply quality. This

declaration is pervasive. For example:

(defun often-used-subroutine (x y)

(declare (optimize (safety 2)))

(error-check x y)

(hairy-setup x)

(do ((i 0 (+ i 1))

(z x (cdr z)))

((null z) i)

;; This inner loop really needs to burn.

(declare (optimize speed))

(declare (fixnum i))

)))

declaration

(declaration name1 name2 ...) advises the compiler that each namej is

a valid but non-standard declaration name. The purpose of this is to tell one

compiler not to issue warnings for declarations meant for another compiler or
other program processor.

This kind of declaration may be used only as a proclamation. For example:
........................................................................................................................................................................................................

(proclaim ’(declaration author

target-language

target-machine))

(proclaim ’(target-language ada))

(proclaim ’(target-machine IBM-650))
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(defun strangep (x)

(declare (author "Harry Tweeker"))

(member x ’(strange weird odd peculiar)))

X3J13 voted in June 1989 〈144〉 to introduce the new macro declaim, which

is guaranteed to be recognized appropriately by the compiler and is often more

convenient than proclaim for establishing global declarations.

The declaration declaration specifier may be used with declaim as well as
proclaim. The preceding examples would be better written using declaim,

to ensure that the compiler will process them properly.

(declaim (declaration author

target-language

target-machine))

(declaim (target-language ada)

(target-machine IBM-650))

(defun strangep (x)

(declare (author "Harry Tweeker"))

(member x ’(strange weird odd peculiar)))

X3J13 voted in March 1989 〈69〉 to introduce a new declaration specifier

dynamic-extent for variables, and voted in June 1989 〈70〉 to extend it to

handle function-names as well.

dynamic-extent

(dynamic-extent item1 item2 ... itemn) declares that certain variables or

function-names refer to data objects whose extents may be regarded as dy-

namic; that is, the declaration may be construed as a guarantee on the part

of the programmer that the program will behave correctly even if the data
objects have only dynamic extent rather than the usual indefinite extent.

Each item may be either a variable name or (function f ) where f is a

function-name (see section 7.1). (Of course, (function f ) may be abbrevi-

ated in the usual way as #--’f.)

It is permissible for an implementation simply to ignore this declaration.

In implementations that do not ignore it, the compiler (or interpreter) is

free to make whatever optimizations are appropriate given this information;

the most common optimization is to stack-allocate the initial value of the
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object. The data types that can be optimized in this manner may vary from

implementation to implementation.

The meaning of this declaration can be stated more precisely. We say

that object x is an otherwise inaccessible part of y if and only if making y

inaccessible would make x inaccessible. (Note that every object is an otherwise
inaccessible part of itself.) Now suppose that construct c contains a dynamic-

extent declaration for variable (or function) v (which need not be bound

by c). Consider the values w1, . . . ,wn taken on by v during the course of

some execution of c. The declaration asserts that if some object x is an
otherwise inaccessible part of wj whenever wj becomes the value of v, then

just after execution of c terminates x will be either inaccessible or still an

otherwise inaccessible part of the value of v. If this assertion is ever violated,

the consequences are undefined.

In some implementations, it is possible to allocate data structures in a way
that will make them easier to reclaim than by general-purpose garbage col-

lection (for example, on the stack or in some temporary area). The dynamic-

extent declaration is designed to give the implementation the information

necessary to exploit such techniques.

For example, in the code fragment

(let ((x (list ’a1 ’b1 ’c1))

(y (cons ’a2 (cons ’b2 (cons ’c2 ’d2)))))

(declare (dynamic-extent x y))

...)

it is not difficult to prove that the otherwise inaccessible parts of x include the

three conses constructed by list, and that the otherwise inaccessible parts of
y include three other conses manufactured by the three calls to cons. Given

the presence of the dynamic-extent declaration, a compiler would be justified

in stack-allocating these six conses and reclaiming their storage on exit from

the let form.

Since stack allocation of the initial value entails knowing at the object’s

creation time that the object can be stack-allocated, it is not generally useful

to declare dynamic-extent for variables that have no lexically apparent initial

value. For example,

(defun f ()

(let ((x (list 1 2 3)))

(declare (dynamic-extent x))

...))
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would permit a compiler to stack-allocate the list in x. However,

(defun g (x) (declare (dynamic-extent x)) ...)

(defun f () (g (list 1 2 3)))

could not typically permit a similar optimization in f because of the possibility

of later redefinition of g. Only an implementation careful enough to recompile

f if the definition of g were to change incompatibly could stack-allocate the
list argument to g in f.

Other interesting cases are

(declaim (inline g))

(defun g (x) (declare (dynamic-extent x)) ...)

(defun f () (g (list 1 2 3)))

and

(defun f ()

(flet ((g (x) (declare (dynamic-extent x)) ...))

(g (list 1 2 3))))

In each case some compilers might realize the optimization is possible and
others might not.

An interesting variant of this is the so-called stack-allocated rest list, which

can be achieved (in implementations supporting the optimization) by

(defun f (&rest x)

(declare (dynamic-extent x))

...)

Note here that although the initial value of x is not explicitly present, nev-

ertheless in the usual implementation strategy the function f is responsible

for assembling the list for x from the passed arguments, so the f function

can be optimized by a compiler to construct a stack-allocated list instead of
a heap-allocated list.

Some Common Lisp functions take other functions as arguments; frequently

the argument function is a so-called downward funarg, that is, a functional

argument that is passed only downward and whose extent may therefore be

dynamic.
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(flet ((gd (x) (atan (sinh x))))

(declare (dynamic-extent #--’gd)) ;mapcar won’t hang on to gd

(mapcar #--’gd my-list-of-numbers))

The following three examples are in error, since in each case the value of x

is used outside of its extent.

(length (let ((x (list 1 2 3)))

(declare (dynamic-extent x))

x)) ;Wrong

The preceding code is obviously incorrect, because the cons cells making up

the list in x might be deallocated (thanks to the declaration) before length

is called.

(length (list (let ((x (list 1 2 3)))

(declare (dynamic-extent x))

x))) ;Wrong

In this second case it is less obvious that the code is incorrect, because one

might argue that the cons cells making up the list in x have no effect on

the result to be computed by length. Nevertheless the code briefly violates

the assertion implied by the declaration and is therefore incorrect. (It is not

difficult to imagine a perfectly sensible implementation of a garbage collector
that might become confused by a cons cell containing a dangling pointer to a

list that was once stack-allocated but then deallocated.)

(progn (let ((x (list 1 2 3)))

(declare (dynamic-extent x))

x) ;Wrong

(print "Six dollars is your change have a nice day NEXT!"))

In this third case it is even less obvious that the code is incorrect, because

the value of x returned from the let construct is discarded right away by

the progn. Indeed it is, but “right away” isn’t fast enough. The code briefly

violates the assertion implied by the declaration and is therefore incorrect.
(If the code is being interpreted, the interpreter might hang on to the value

returned by the let for some time before it is eventually discarded.)

Here is one last example, one that has little practical import but is theo-

retically quite instructive.
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(dotimes (j 10)

(declare (dynamic-extent j))

(setq foo 3) ;Correct

(setq foo j)) ;Erroneous—but why? (see text)

Since j is an integer by the definition of dotimes, but eq and eql are not nec-

essarily equivalent for integers, what are the otherwise inaccessible parts of j,

which this declaration requires the body of the dotimes not to “save”? If the
value of j is 3, and the body does (setq foo 3), is that an error? The an-

swer is no, but the interesting thing is that it depends on the implementation-

dependent behavior of eq on numbers. In an implementation where eq and

eql are equivalent for 3, then 3 is not an otherwise inaccessible part because
(eq j (+ 2 1)) is true, and therefore there is another way to access the ob-

ject besides going through j. On the other hand, in an implementation where

eq and eql are not equivalent for 3, then the particular 3 that is the value of j

is an otherwise inaccessible part, but any other 3 is not. Thus (setq foo 3)

is valid but (setq foo j) is erroneous. Since (setq foo j) is erroneous
in some implementations, it is erroneous in all portable programs, but some

other implementations may not be able to detect the error. (If this conclusion

seems strange, it may help to replace 3 everywhere in the preceding argument

with some obvious bignum such as 375374638837424898243 and to replace
10 with some even larger bignum.)

The dynamic-extent declaration should be used with great care. It makes
possible great performance improvements in some situations, but if the user

misdeclares something and consequently the implementation returns a pointer

into the stack (or stores it in the heap), an undefined situation may result and

the integrity of the Lisp storage mechanism may be compromised. Debugging

these situations may be tricky. Users who have asked for this feature have
indicated a willingness to deal with such problems; nevertheless, I do not

encourage casual users to use this declaration.

An implementation is free to support other (implementation-dependent)

declaration specifiers as well. On the other hand, a Common Lisp com-

piler is free to ignore entire classes of declaration specifiers (for example,

implementation-dependent declaration specifiers not supported by that com-
piler’s implementation), except for the declaration declaration specifier.

Compiler implementors are encouraged, however, to program the compiler

to issue by default a warning if the compiler finds a declaration specifier of

a kind it never uses. Such a warning is required in any case if a declaration

specifier is not one of those defined above and has not been declared in a
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declaration declaration.

9.3. Type Declaration for Forms

Frequently it is useful to declare that the value produced by the evaluation

of some form will be of a particular type. Using declare one can declare the

type of the value held by a bound variable, but there is no easy way to declare
the type of the value of an unnamed form. For this purpose the the special

form is defined; (the type form) means that the value of form is declared to

be of type type.

[Special form]the value-type form

The form is evaluated; whatever it produces is returned by the the form. In

addition, it is an error if what is produced by the form does not conform
to the data type specified by value-type (which is not evaluated). (A given

implementation may or may not actually check for this error. Implementations

are encouraged to make an explicit error check when running interpretively.)

In effect, this declares that the user undertakes to guarantee that the values
of the form will always be of the specified type. For example:

(the string (copy-seq x)) ;The result will be a string

(the integer (+ x 3)) ;The result of + will be an integer

(+ (the integer x) 3) ;The value of x will be an integer

(the (complex rational) (* z 3))

(the (unsigned-byte 8) (logand x mask))

The values type specifier may be used to indicate the types of multiple values:

(the (values integer integer) (floor x y))

(the (values string t)

(gethash the-key the-string-table))

X3J13 voted in June 1989 〈177〉 to clarify that value-type may be any valid

type specifier whatsoever. The point is that a type specifier need not be one

suitable for discrimination but only for declaration.

In the case that the form produces exactly one value and value-type is not a

values type specifier, one may describe a the form as being entirely equivalent

to

(let ((#--1UU#--:temp form)) (declare (type value-type #--1#--)) #--1#--)
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A more elaborate expression could be written to describe the case where

value-type is a values type specifier.

Compatibility note: This construct is borrowed from the Interlisp DECL package;
Interlisp, however, allows an implicit progn after the type specifier rather than just
a single form. The MacLisp fixnum-identity and flonum-identity constructs can
be expressed as (the fixnum x) and (the single-float x).
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Symbols

A Lisp symbol is a data object that has three user-visible components:

. The property list is a list that effectively provides each symbol with many

modifiable named components.

. The print name must be a string, which is the sequence of characters used

to identify the symbol. Symbols are of great use because a symbol can

be located once its name is given (typed, say, on a keyboard). One may
ordinarily not alter a symbol’s print name.

X3J13 voted in March 1989 〈11〉 to specify it is an error to alter a print

name.

. The package cell must refer to a package object. A package is a data struc-

ture used to locate a symbol once given the symbol’s name. A symbol is

uniquely identified by its name only when considered relative to a package.

A symbol may appear in many packages, but it can be owned by at most
one package. The package cell points to the owner, if any. Package cells are

discussed along with packages in chapter 11.

A symbol may actually have other components for use by the implemen-

tation. One of the more important uses of symbols is as names for program
variables; it is frequently desirable for the implementor to use certain compo-

nents of a symbol to implement the semantics of variables. See symbol-value

and symbol-function. However, there are several possible implementation

strategies, and so such possible components are not described here.

10.1. The Property List

Since its inception, Lisp has associated with each symbol a kind of tabular

data structure called a property list (plist for short). A property list contains
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zero or more entries; each entry associates with a key (called the indicator),

which is typically a symbol, an arbitrary Lisp object (called the value or,

sometimes, the property). There are no duplications among the indicators; a

property list may only have one property at a time with a given name. In this

way, given a symbol and an indicator (another symbol), an associated value
can be retrieved.

A property list is very similar in purpose to an association list. The differ-
ence is that a property list is an object with a unique identity; the operations

for adding and removing property-list entries are destructive operations that

alter the property list rather than making a new one. Association lists, on the

other hand, are normally augmented non-destructively (without side effects)

by adding new entries to the front (see acons and pairlis).

A property list is implemented as a memory cell containing a list with

an even number (possibly zero) of elements. (Usually this memory cell is
the property-list cell of a symbol, but any memory cell acceptable to setf

can be used if getf and remf are used.) Each pair of elements in the list

constitutes an entry; the first item is the indicator, and the second is the

value. Because property-list functions are given the symbol and not the list

itself, modifications to the property list can be recorded by storing back into
the property-list cell of the symbol.

When a symbol is created, its property list is initially empty. Properties
are created by using get within a setf form.

Common Lisp does not use a symbol’s property list as extensively as earlier

Lisp implementations did. Less-used data, such as compiler, debugging, and
documentation information, is kept on property lists in Common Lisp.

Compatibility note: In older Lisp implementations, the print name, value, and
function definition of a symbol were kept on its property list. The value cell was
introduced into MacLisp and Interlisp to speed up access to variables; similarly
for the print-name cell and function cell (MacLisp does not use a function cell).
Recent Lisp implementations such as Spice Lisp, Lisp Machine Lisp, and NIL have
introduced all of these cells plus the package cell. None of the MacLisp system
property names (expr, fexpr, macro, array, subr, lsubr, fsubr, and in former
times value and pname) exist in Common Lisp.

In Common Lisp, the notion of “disembodied property list” introduced in MacLisp
is eliminated. It tended to be used for rather kludgy things, and in Lisp Machine
Lisp is often associated with the use of locatives (to make it “off by one” for searching
alternating keyword lists). In Common Lisp special setf-like property-list functions
are introduced: getf and remf.
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[Function]get symbol indicator &optional default

get searches the property list of symbol for an indicator eq to indicator. The

first argument must be a symbol. If one is found, then the corresponding
value is returned; otherwise default is returned.

If default is not specified, then nil is used for default.

Note that there is no way to distinguish an absent property from one whose
value is default.

(get x y) ≡ (getf (symbol-plist x) y)

Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then,

for example:

(get ’foo ’baz) ⇒ 3

(get ’foo ’hunoz) ⇒ "Huh?"

(get ’foo ’zoo) ⇒ nil

Compatibility note: In MacLisp, the first argument to get could be a list, in
which case the cdr of the list was treated as a so-called “disembodied property list.”
The first argument to get could also be any other object, in which case get would
always return nil. In Common Lisp, it is an error to give anything but a symbol as
the first argument to get.

What Common Lisp calls get, Interlisp calls getprop.
What MacLisp and Interlisp call putprop is accomplished in Common Lisp by

using get with setf.

setf may be used with get to create a new property-value pair, possibly
replacing an old pair with the same property name. For example:

(get ’clyde ’species) ⇒ nil

(setf (get ’clyde ’species) ’elephant) ⇒ elephant

and now (get ’clyde ’species) ⇒ elephant

The default argument may be specified to get in this context; it is ignored by

setf but may be useful in such macros as push that are related to setf:

(push item (get sym ’token-stack ’(initial-item)))

means approximately the same as

(setf (get sym ’token-stack ’(initial-item))

(cons item (get sym ’token-stack ’(initial-item))))
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which in turn would be treated as simply

(setf (get sym ’token-stack)

(cons item (get sym ’token-stack ’(initial-item))))

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects

of certain operations; (setf (get symbol indicator) newvalue) is required

to behave exactly the same as (setf (getf (symbol-plist symbol) indi-

cator) newvalue).

[Function]remprop symbol indicator

This removes from symbol the property with an indicator eq to indicator. The

property indicator and the corresponding value are removed by destructively

splicing the property list. It returns nil if no such property was found, or

non-nil if a property was found.

(remprop x y) ≡ (remf (symbol-plist x) y)

For example, if the property list of foo is initially

(color blue height 6.3 near-to bar)

then the call

(remprop ’foo ’height)

returns a non-nil value after altering foo’s property list to be

(color blue near-to bar)

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of
certain operations; (remprop symbol indicator) is required to behave exactly

the same as (remf (symbol-plist symbol) indicator).

[Function]symbol-plist symbol

This returns the list that contains the property pairs of symbol; the contents

of the property-list cell are extracted and returned.
Note that using get on the result of symbol-plist does not work. One

must give the symbol itself to get or else use the function getf.

setf may be used with symbol-plist to destructively replace the entire

property list of a symbol. This is a relatively dangerous operation, as it may

destroy important information that the implementation may happen to store
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in property lists. Also, care must be taken that the new property list is in

fact a list of even length.

Compatibility note: In MacLisp, this function is called plist; in Interlisp, it is
called getproplist.

[Function]getf place indicator &optional default

getf searches the property list stored in place for an indicator eq to indicator.

If one is found, then the corresponding value is returned; otherwise default is
returned. If default is not specified, then nil is used for default. Note that

there is no way to distinguish an absent property from one whose value is

default. Often place is computed from a generalized variable acceptable to

setf.

setf may be used with getf, in which case the place must indeed be ac-
ceptable as a place to setf. The effect is to add a new property-value pair,

or update an existing pair, in the property list kept in the place. The de-

fault argument may be specified to getf in this context; it is ignored by setf

but may be useful in such macros as push that are related to setf. See the
description of get for an example of this.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of

certain operations; setf used with getf is permitted to perform a setf on

the place or on any part, car or cdr, of the top-level list structure held by that

place.
X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-

tion 7.2).

Compatibility note: The Interlisp function listget is similar to getf. The
Interlisp function listput is similar to using getf with setf.

[Macro]remf place indicator

This removes from the property list stored in place the property with an

indicator eq to indicator. The property indicator and the corresponding value

are removed by destructively splicing the property list. remf returns nil if no
such property was found, or some non-nil value if a property was found. The

form place may be any generalized variable acceptable to setf. See remprop.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of

certain operations; remf is permitted to perform a setf on the place or on

any part, car or cdr, of the top-level list structure held by that place.
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X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-

tion 7.2).

[Function]get-properties place indicator-list

get-properties is like getf, except that the second argument is a list of

indicators. get-properties searches the property list stored in place for any

of the indicators in indicator-list until it finds the first property in the property

list whose indicator is one of the elements of indicator-list. Normally place is
computed from a generalized variable acceptable to setf.

get-properties returns three values. If any property was found, then
the first two values are the indicator and value for the first property whose

indicator was in indicator-list, and the third is that tail of the property list

whose car was the indicator (and whose cadr is therefore the value). If no

property was found, all three values are nil. Thus the third value serves as a

flag indicating success or failure and also allows the search to be restarted, if
desired, after the property was found.

10.2. The Print Name

Every symbol has an associated string called the print name. This string is

used as the external representation of the symbol: if the characters in the

string are typed in to read (with suitable escape conventions for certain char-

acters), it is interpreted as a reference to that symbol (if it is interned); and if
the symbol is printed, print types out the print name. For more information,

see the sections on the reader (section 22.1.1) and printer (section 22.1.6).

[Function]symbol-name sym

This returns the print name of the symbol sym. For example:

(symbol-name ’xyz) ⇒ "XYZ"

It is an extremely bad idea to modify a string being used as the print name of

a symbol. Such a modification may tremendously confuse the function read

and the package system.

X3J13 voted in March 1989 〈11〉 to specify that it is an error to modify a
string being used as the print name of a symbol.
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10.3. Creating Symbols

Symbols can be used in two rather different ways. An interned symbol is one

that is indexed by its print name in a catalogue called a package. A request to

locate a symbol with that print name results in the same (eq) symbol. Every

time input is read with the function read, and that print name appears, it is

read as the same symbol. This property of symbols makes them appropriate
to use as names for things and as hooks on which to hang permanent data

objects (using the property list, for example).

Interned symbols are normally created automatically; the first time some-

thing (such as the function read) asks the package system for a symbol with

a given print name, that symbol is automatically created. The function used
to ask for an interned symbol is intern, or one of the functions related to

intern.

Although interned symbols are the most commonly used, they will not be

discussed further here. For more information, see chapter 11.

An uninterned symbol is a symbol used simply as a data object, with no spe-

cial cataloguing (it belongs to no particular package). An uninterned symbol

is printed as #--: followed by its print name. The following are some functions
for creating uninterned symbols.

[Function]make-symbol print-name

(make-symbol print-name) creates a new uninterned symbol, whose print

name is the string print-name. The value and function bindings will be un-

bound and the property list will be empty.

The string actually installed in the symbol’s print-name component may be
the given string print-name or may be a copy of it, at the implementation’s

discretion. The user should not assume that (symbol-name (make-symbol

x)) is eq to x, but also should not alter a string once it has been given as an

argument to make-symbol.

Implementation note: An implementation might choose, for example, to copy
the string to some read-only area, in the expectation that it will never be altered.

[Function]copy-symbol sym &optional copy-props

This returns a new uninterned symbol with the same print name as sym.

X3J13 voted in March 1989 〈39〉 that the print name of the new symbol

is required to be the same only in the sense of stringUU; in other words, an
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implementation is permitted (but not required) to make a copy of the print

name. User programs should not assume that the print names of the old

and new symbols will be eq, although they may happen to be eq in some

implementations.

If copy-props is non-nil, then the initial value and function definition of
the new symbol will be the same as those of sym, and the property list of the

new symbol will be a copy of sym’s.

X3J13 voted in March 1989 〈38〉 to clarify that only the top-level conses

of the property list are copied; it is as if (copy-list (symbol-plist sym))

were used as the property list of the new symbol.

If copy-props is nil (the default), then the new symbol will be unbound

and undefined, and its property list will be empty.

[Function]gensym &optional x

gensym invents a print name and creates a new symbol with that print name.

It returns the new, uninterned symbol.

The invented print name consists of a prefix (which defaults to G), followed

by the decimal representation of a number.
The number is increased by 1 every time gensym is called.

........................................................................................................................................................................................................

If the argument x is present and is an integer, then x must be non-negative,

and the internal counter is set to x for future use; otherwise the internal

counter is incremented. If x is a string, then that string is made the de-
fault prefix for this and future calls to gensym. After handling the argument,

gensym creates a symbol as it would with no argument. For example:

(gensym) ⇒ G7

(gensym "FOO-") ⇒ FOO-8

(gensym 32) ⇒ FOO-32

(gensym) ⇒ FOO-33

(gensym "GARBAGE-") ⇒ GARBAGE-34

gensym is usually used to create a symbol that should not normally be

seen by the user and whose print name is unimportant except to allow easy
distinction by eye between two such symbols. The optional argument is rarely

supplied. The name comes from “generate symbol,” and the symbols produced

by it are often called “gensyms.”

Compatibility note: In earlier versions of Lisp, such as MacLisp and Interlisp,
the print name of a gensym was of fixed length, consisting of a single letter and
a fixed-length decimal representation with leading zeros if necessary, for example,
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G0007. This convention was motivated by an implementation consideration, namely
that the name should fit into a single machine word, allowing a quick and clever im-
plementation. Such considerations are less relevant in Common Lisp. The consistent
use of mnemonic prefixes can make it easier for the programmer, when debugging,
to determine what code generated a particular symbol. The elimination of the fixed-
length decimal representation prevents the same name from being used twice unless
the counter is explicitly reset.

If it is desirable for the generated symbols to be interned, and yet guaranteed
to be symbols distinct from all others, then the function gentemp may be more

appropriate to use.

X3J13 voted in March 1989 〈94〉 to alter the specification of gensym so

that supplying an optional argument (whether a string or a number) does not
alter the internal state maintained by gensym. Instead, the internal counter

is made explicitly available as a variable named *gensym-counter*.

If a string argument is given to gensym, that string is used as the prefix;

otherwise “G” is used. If a number is provided, its decimal representation is

used, but the internal counter is unaffected. X3J13 deprecates the use of a
number as an argument.

[Variable]*gensym-counter*

X3J13 voted in March 1989 〈94〉 to add *gensym-counter*, which holds the

state of the gensym counter; that is, gensym uses the decimal representation

of its value as part of the generated name and then increments its value.

The initial value of this variable is implementation-dependent but will be a

non-negative integer.
The user may assign to or bind this variable at any time, but its value must

always be a non-negative integer.

[Function]gentemp &optional prefix package

gentemp, like gensym, creates and returns a new symbol. gentemp differs

from gensym in that it interns the symbol (see intern) in the package (which

defaults to the current package; see *package*). gentemp guarantees the

symbol will be a new one not already existing in the package. It does this
by using a counter as gensym does, but if the generated symbol is not really

new, then the process is repeated until a new one is created. There is no

provision for resetting the gentemp counter. Also, the prefix for gentemp is

not remembered from one call to the next; if prefix is omitted, the default

prefix T is used.
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[Function]symbol-package sym

Given a symbol sym, symbol-package returns the contents of the package cell

of that symbol. This will be a package object or nil.

[Function]keywordp object

The argument may be any Lisp object. The predicate keywordp is true if
the argument is a symbol and that symbol is a keyword (that is, belongs to

the keyword package). Keywords are those symbols that are written with

a leading colon. Every keyword is a constant, in the sense that it always

evaluates to itself. See constantp.
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Packages

One problem with earlier Lisp systems is the use of a single name space for

all symbols. In large Lisp systems, with modules written by many different

programmers, accidental name collisions become a serious problem. Common
Lisp addresses this problem through the package system, derived from an

earlier package system developed for Lisp Machine Lisp [55]. In addition

to preventing name-space conflicts, the package system makes the modular

structure of large Lisp systems more explicit.

A package is a data structure that establishes a mapping from print names

(strings) to symbols. The package thus replaces the “oblist” or “obarray”
machinery of earlier Lisp systems. At any given time one package is current,

and this package is used by the Lisp reader in translating strings into symbols.

The current package is, by definition, the one that is the value of the global

variable *package*. It is possible to refer to symbols in packages other than
the current one through the use of package qualifiers in the printed representa-

tion of the symbol. For example, foo:bar, when seen by the reader, refers to

the symbol whose name is bar in the package whose name is foo. (Actually,

this is true only if bar is an external symbol of foo, that is, a symbol that
is supposed to be visible outside of foo. A reference to an internal symbol

requires the intentionally clumsier syntax foo::bar.)

The string-to-symbol mappings available in a given package are divided

into two classes, external and internal. We refer to the symbols accessible

via these mappings as being external and internal symbols of the package

in question, though really it is the mappings that are different and not the
symbols themselves. Within a given package, a name refers to one symbol or

to none; if it does refer to a symbol, then it is either external or internal in

that package, but not both.

External symbols are part of the package’s public interface to other pack-

ages. External symbols are supposed to be chosen with some care and are

264
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advertised to users of the package. Internal symbols are for internal use only,

and these symbols are normally hidden from other packages. Most symbols

are created as internal symbols; they become external only if they appear

explicitly in an export command for the package.

A symbol may appear in many packages. It will always have the same name

wherever it appears, but it may be external in some packages and internal in

others. On the other hand, the same name (string) may refer to different
symbols in different packages.

Normally, a symbol that appears in one or more packages will be owned by
one particular package, called the home package of the symbol; that package

is said to own the symbol. Every symbol has a component called the package

cell that contains a pointer to its home package. A symbol that is owned by

some package is said to be interned. Some symbols are not owned by any
package; such a symbol is said to be uninterned, and its package cell contains

nil.

Packages may be built up in layers. From the point of view of a package’s

user, the package is a single collection of mappings from strings into internal

and external symbols. However, some of these mappings may be established

within the package itself, while other mappings are inherited from other pack-

ages via the use-package construct. (The mechanisms responsible for this
inheritance are described below.) In what follows, we will refer to a symbol as

being accessible in a package if it can be referred to without a package qual-

ifier when that package is current, regardless of whether the mapping occurs

within that package or via inheritance. We will refer to a symbol as being
present in a package if the mapping is in the package itself and is not inherited

from somewhere else. Thus a symbol present in a package is accessible, but

an accessible symbol is not necessarily present.

A symbol is said to be interned in a package if it is accessible in that

package and also is owned (by either that package or some other package).

Normally all the symbols accessible in a package will in fact be owned by some

package, but the terminology is useful when discussing the pathological case
of an accessible but unowned (uninterned) symbol.

As a verb, to intern a symbol in a package means to cause the symbol to be
interned in the package if it was not already; this process is performed by the

function intern. If the symbol was previously unowned, then the package it

is being interned in becomes its owner (home package); but if the symbol was

previously owned by another package, that other package continues to own

the symbol.

To unintern a symbol from the package means to cause it to be not present

in the package and, additionally, to cause the symbol to be uninterned if
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the package was the home package (owner) of the symbol. This process is

performed by the function unintern.

11.1. Consistency Rules

Package-related bugs can be very subtle and confusing: things are not what

they appear to be. The Common Lisp package system is designed with a

number of safety features to prevent most of the common bugs that would

otherwise occur in normal use. This may seem over-protective, but experience
with earlier package systems has shown that such safety features are needed.

In dealing with the package system, it is useful to keep in mind the following

consistency rules, which remain in force as long as the value of *package* is

not changed by the user:

. Read-read consistency: Reading the same print name always results in the

same (eq) symbol.

. Print-read consistency: An interned symbol always prints as a sequence of

characters that, when read back in, yields the same (eq) symbol.

. Print-print consistency: If two interned symbols are not eq, then their

printed representations will be different sequences of characters.

These consistency rules remain true in spite of any amount of implicit in-

terning caused by typing in Lisp forms, loading files, etc. This has the impor-

tant implication that, as long as the current package is not changed, results
are reproducible regardless of the order of loading files or the exact history

of what symbols were typed in when. The rules can only be violated by

explicit action: changing the value of *package*, forcing some action by con-

tinuing from an error, or calling one of the “dangerous” functions unintern,

unexport, shadow, shadowing-import, or unuse-package.

11.2. Package Names

Each package has a name (a string) and perhaps some nicknames. These are
assigned when the package is created, though they can be changed later. A

package’s name should be something long and self-explanatory, like editor;

there might be a nickname that is shorter and easier to type, such as ed.

There is a single name space for packages. The function find-package

translates a package name or nickname into the associated package. The func-

tion package-name returns the name of a package. The function package-
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nicknames returns a list of all nicknames for a package. The function rename-

package removes a package’s current name and nicknames and replaces them

with new ones specified by the user. Package renaming is occasionally useful

when, for development purposes, it is desirable to load two versions of a pack-

age into the same Lisp. One can load the first version, rename it, and then
load the other version, without getting a lot of name conflicts.

When the Lisp reader sees a qualified symbol, it handles the package-name

part in the same way as the symbol part with respect to capitalization. Lower-

case characters in the package name are converted to corresponding uppercase

characters unless preceded by the escape character \ or surrounded by | char-
acters. The lookup done by the find-package function is case-sensitive, like

that done for symbols. Note that |Foo|:|Bar| refers to a symbol whose

name is Bar in a package whose name is Foo. By contrast, |Foo:Bar| refers

to a seven-character symbol that has a colon in its name (as well as two
uppercase letters and four lowercase letters) and is interned in the current

package. Following the convention used in this book for symbols, we show

ordinary package names using lowercase letters, even though the name string

is internally represented with uppercase letters.

Most of the functions that require a package-name argument from the user
accept either a symbol or a string. If a symbol is supplied, its print name

will be used; the print name will already have undergone case-conversion by

the usual rules. If a string is supplied, it must be so capitalized as to match

exactly the string that names the package.

X3J13 voted in January 1989 〈127〉 to clarify that one may use either a
package object or a package name (symbol or string) in any of the following

situations:

. the :use argument to make-package

. the first argument to package-use-list, package-used-by-list,

package-name, package-nicknames, in-package, find-package, rename-
package, or delete-package,

. the second argument to intern, find-symbol, unintern, export,
unexport, import, shadowing-import, or shadow

. the first argument, or a member of the list that is the first argument, to
use-package or unuse-package

. the value of the package given to do-symbols, do-external-symbols, or
do-all-symbols

. a member of the package-list given to with-package-iterator
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Note that the first argument to make-package must still be a package name

and not an actual package; it makes no sense to create an already existing

package. Similarly, package nicknames must always be expressed as package

names and not as package objects. If find-package is given a package object

instead of a name, it simply returns that package.

11.3. Translating Strings to Symbols

The value of the special variable *package* must always be a package object

(not a name). Whatever package object is currently the value of *package*

is referred to as the current package.

When the Lisp reader has, by parsing, obtained a string of characters

thought to name a symbol, that name is looked up in the current package.
This lookup may involve looking in other packages whose external symbols

are inherited by the current package. If the name is found, the corresponding

symbol is returned. If the name is not found (that is, there is no symbol of

that name accessible in the current package), a new symbol is created for it
and is placed in the current package as an internal symbol. Moreover, the

current package becomes the owner (home package) of the symbol, and so the

symbol becomes interned in the current package. If the name is later read

again while this same package is current, the same symbol will then be found

and returned.
Often it is desirable to refer to an external symbol in some package other

than the current one. This is done through the use of a qualified name,

consisting of a package name, then a colon, then the name of the symbol.

This causes the symbol’s name to be looked up in the specified package, rather
than in the current one. For example, editor:buffer refers to the external

symbol named buffer accessible in the package named editor, regardless of

whether there is a symbol named buffer in the current package. If there

is no package named editor, or if no symbol named buffer is accessible in

editor, or if buffer is an internal symbol in editor, the Lisp reader will
signal a correctable error to ask the user for instructions.

On rare occasions, a user may need to refer to an internal symbol of some

package other than the current one. It is illegal to do this with the colon

qualifier, since accessing an internal symbol of some other package is usually
a mistake. However, this operation is legal if a doubled colon :: is used as

the separator in place of the usual single colon. If editor::buffer is seen,

the effect is exactly the same as reading buffer with *package* temporarily

rebound to the package whose name is editor. This special-purpose qualifier

should be used with caution.
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The package named keyword contains all keyword symbols used by the

Lisp system itself and by user-written code. Such symbols must be easily

accessible from any package, and name conflicts are not an issue because these

symbols are used only as labels and never to carry package-specific values or

properties. Because keyword symbols are used so frequently, Common Lisp
provides a special reader syntax for them. Any symbol preceded by a colon

but no package name (for example :foo) is added to (or looked up in) the

keyword package as an external symbol. The keyword package is also treated

specially in that whenever a symbol is added to the keyword package the
symbol is always made external; the symbol is also automatically declared to

be a constant (see defconstant) and made to have itself as its value. This is

why every keyword evaluates to itself. As a matter of style, keywords should

always be accessed using the leading-colon convention; the user should never

import or inherit keywords into any other package. It is an error to try to
apply use-package to the keyword package.

Each symbol contains a package cell that is used to record the home package

of the symbol, or nil if the symbol is uninterned. This cell may be accessed

by using the function symbol-package. When an interned symbol is printed,
if it is a symbol in the keyword package, then it is printed with a preceding

colon; otherwise, if it is accessible (directly or by inheritance) in the current

package, it is printed without any qualification; otherwise, it is printed with

the name of the home package as the qualifier, using : as the separator if the

symbol is external and :: if not.

A symbol whose package slot contains nil (that is, has no home package)

is printed preceded by #--:. It is possible, by the use of import and unintern,

to create a symbol that has no recorded home package but that in fact is

accessible in some package. The system does not check for this pathological
case, and such symbols will always be printed preceded by #--:.

In summary, the following four uses of symbol qualifier syntax are defined.

foo:bar

When read, looks up BAR among the external symbols of the package named

FOO. Printed when symbol bar is external in its home package foo and is not
accessible in the current package.

foo::bar

When read, interns BAR as if FOO were the current package. Printed when

symbol bar is internal in its home package foo and is not accessible in the

current package.
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:bar

When read, interns BAR as an external symbol in the keyword package and
makes it evaluate to itself. Printed when the home package of symbol bar is

keyword.

#--:bar

When read, creates a new uninterned symbol named BAR. Printed when the

symbol bar is uninterned (has no home package), even in the pathological
case that bar is uninterned but nevertheless somehow accessible in the current

package.

All other uses of colons within names of symbols are not defined by Common
Lisp but are reserved for implementation-dependent use; this includes names

that end in a colon, contain two or more colons, or consist of just a colon.

11.4. Exporting and Importing Symbols

Symbols from one package may be made accessible in another package in two

ways.

First, any individual symbol may be added to a package by use of the

function import. The form (import ’editor:buffer) takes the external
symbol named buffer in the editor package (this symbol was located when

the form was read by the Lisp reader) and adds it to the current package as

an internal symbol. The symbol is then present in the current package. The

imported symbol is not automatically exported from the current package, but

if it is already present and external, then the fact that it is external is not
changed. After the call to import it is possible to refer to buffer in the

importing package without any qualifier. The status of buffer in the package

named editor is unchanged, and editor remains the home package for this

symbol. Once imported, a symbol is present in the importing package and
can be removed only by calling unintern.

If the symbol is already present in the importing package, import has no
effect. If a distinct symbol with the name buffer is accessible in the importing

package (directly or by inheritance), then a correctable error is signaled, as

described in section 11.5, because import avoids letting one symbol shadow

another.

A symbol is said to be shadowed by another symbol in some package if

the first symbol would be accessible by inheritance if not for the presence of

the second symbol. To import a symbol without the possibility of getting
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an error because of shadowing, use the function shadowing-import. This

inserts the symbol into the specified package as an internal symbol, regardless

of whether another symbol of the same name will be shadowed by this action.

If a different symbol of the same name is already present in the package, that

symbol will first be uninterned from the package (see unintern). The new
symbol is added to the package’s shadowing-symbols list. shadowing-import

should be used with caution. It changes the state of the package system in

such a way that the consistency rules do not hold across the change.

The second mechanism is provided by the function use-package. This

causes a package to inherit all of the external symbols of some other package.
These symbols become accessible as internal symbols of the using package.

That is, they can be referred to without a qualifier while this package is

current, but they are not passed along to any other package that uses this

package. Note that use-package, unlike import, does not cause any new
symbols to be present in the current package but only makes them accessi-

ble by inheritance. use-package checks carefully for name conflicts between

the newly imported symbols and those already accessible in the importing

package. This is described in detail in section 11.5.

Typically a user, working by default in the user package, will load a number

of packages into Lisp to provide an augmented working environment, and then
call use-package on each of these packages to allow easy access to their exter-

nal symbols. unuse-package undoes the effects of a previous use-package.

The external symbols of the used package are no longer inherited. However,

any symbols that have been imported into the using package continue to be
present in that package.

There is no way to inherit the internal symbols of another package; to refer

to an internal symbol, the user must either make that symbol’s home package

current, use a qualifier, or import that symbol into the current package.

The distinction between external and internal symbols is a primary means

of hiding names so that one program does not tread on the namespace of
another.

When intern or some other function wants to look up a symbol in a given

package, it first looks for the symbol among the external and internal symbols

of the package itself; then it looks through the external symbols of the used

packages in some unspecified order. The order does not matter; according to
the rules for handling name conflicts (see below), if conflicting symbols appear

in two or more packages inherited by package X, a symbol of this name must

also appear in X itself as a shadowing symbol. Of course, implementations

are free to choose other, more efficient ways of implementing this search, as

long as the user-visible behavior is equivalent to what is described here.
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The function export takes a symbol that is accessible in some specified

package (directly or by inheritance) and makes it an external symbol of that

package. If the symbol is already accessible as an external symbol in the

package, export has no effect. If the symbol is directly present in the package

as an internal symbol, it is simply changed to external status. If it is accessible
as an internal symbol via use-package, the symbol is first imported into the

package, then exported. (The symbol is then present in the specified package

whether or not the package continues to use the package through which the

symbol was originally inherited.) If the symbol is not accessible at all in the
specified package, a correctable error is signaled that, upon continuing, asks

the user whether the symbol should be imported.

The function unexport is provided mainly as a way to undo erroneous calls

to export. It works only on symbols directly present in the current package,

switching them back to internal status. If unexport is given a symbol already

accessible as an internal symbol in the current package, it does nothing; if it
is given a symbol not accessible in the package at all, it signals an error.

11.5. Name Conflicts

A fundamental invariant of the package system is that within one package any
particular name can refer to at most one symbol. A name conflict is said to

occur when there is more than one candidate symbol and it is not obvious

which one to choose. If the system does not always choose the same way, the

read-read consistency rule would be violated. For example, some programs
or data might have been read in under a certain mapping of the name to

a symbol. If the mapping changes to a different symbol, and subsequently

additional programs or data are read, then the two programs will not access

the same symbol even though they use the same name. Even if the system did
always choose the same way, a name conflict is likely to result in a mapping

from names to symbols different from what was expected by the user, causing

programs to execute incorrectly. Therefore, any time a name conflict is about

to occur, an error is signaled. The user may continue from the error and tell

the package system how to resolve the conflict.

It may be that the same symbol is accessible to a package through more
than one path. For example, the symbol might be an external symbol of

more than one used package, or the symbol might be directly present in a

package and also inherited from another package. In such cases there is no

name conflict. The same identical symbol cannot conflict with itself. Name

conflicts occur only between distinct symbols with the same name.
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The creator of a package can tell the system in advance how to resolve

a name conflict through the use of shadowing. Every package has a list of

shadowing symbols. A shadowing symbol takes precedence over any other

symbol of the same name that would otherwise be accessible to the package.

A name conflict involving a shadowing symbol is always resolved in favor of
the shadowing symbol, without signaling an error (except for one instance

involving import described below). The functions shadow and shadowing-

import may be used to declare shadowing symbols.

Name conflicts are detected when they become possible, that is, when the

package structure is altered. There is no need to check for name conflicts
during every name lookup.

The functions use-package, import, and export check for name conflicts.

use-package makes the external symbols of the package being used accessible

to the using package; each of these symbols is checked for name conflicts with

the symbols already accessible. import adds a single symbol to the internals of
a package, checking for a name conflict with an existing symbol either present

in the package or accessible to it. import signals a name conflict error even if

the conflict is with a shadowing symbol, the rationale being that the user has

given two explicit and inconsistent directives. export makes a single symbol

accessible to all the packages that use the package from which the symbol
is exported. All of these packages are checked for name conflicts: (export s

p) does (find-symbol (symbol-name s) q) for each package q in (package-

used-by-list p). Note that in the usual case of an export during the initial

definition of a package, the result of package-used-by-list will be nil and
the name-conflict checking will take negligible time.

The function intern, which is the one used most frequently by the Lisp

reader for looking up names of symbols, does not need to do any name-conflict

checking, because it never creates a new symbol if there is already an accessible

symbol with the name given.

shadow and shadowing-import never signal a name-conflict error because
the user, by calling these functions, has specified how any possible conflict

is to be resolved. shadow does name-conflict checking to the extent that it

checks whether a distinct existing symbol with the specified name is accessible

and, if so, whether it is directly present in the package or inherited. In the
latter case, a new symbol is created to shadow it. shadowing-import does

name-conflict checking to the extent that it checks whether a distinct existing

symbol with the same name is accessible; if so, it is shadowed by the new

symbol, which implies that it must be uninterned if it was directly present in

the package.

unuse-package, unexport, and unintern (when the symbol being unin-
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terned is not a shadowing symbol) do not need to do any name-conflict check-

ing because they only remove symbols from a package; they do not make any

new symbols accessible.

Giving a shadowing symbol to unintern can uncover a name conflict that

had previously been resolved by the shadowing. If package A uses packages B
and C, A contains a shadowing symbol x, and B and C each contain external

symbols named x, then removing the shadowing symbol x from A will reveal

a name conflict between b:x and c:x if those two symbols are distinct. In

this case unintern will signal an error.

Aborting from a name-conflict error leaves the original symbol accessible.

Package functions always signal name-conflict errors before making any change

to the package structure. When multiple changes are to be made, however,

for example when export is given a list of symbols, it is permissible for the
implementation to process each change separately, so that aborting from a

name conflict caused by the second symbol in the list will not unexport the

first symbol in the list. However, aborting from a name-conflict error caused

by export of a single symbol will not leave that symbol accessible to some

packages and inaccessible to others; with respect to each symbol processed,
export behaves as if it were an atomic operation.

Continuing from a name-conflict error should offer the user a chance to

resolve the name conflict in favor of either of the candidates. The package

structure should be altered to reflect the resolution of the name conflict, via
shadowing-import, unintern, or unexport.

A name conflict in use-package between a symbol directly present in the

using package and an external symbol of the used package may be resolved in

favor of the first symbol by making it a shadowing symbol, or in favor of the

second symbol by uninterning the first symbol from the using package. The
latter resolution is dangerous if the symbol to be uninterned is an external

symbol of the using package, since it will cease to be an external symbol.

A name conflict in use-package between two external symbols inherited

by the using package from other packages may be resolved in favor of either
symbol by importing it into the using package and making it a shadowing

symbol.

A name conflict in export between the symbol being exported and a symbol

already present in a package that would inherit the newly exported symbol
may be resolved in favor of the exported symbol by uninterning the other one,

or in favor of the already-present symbol by making it a shadowing symbol.

A name conflict in export or unintern due to a package inheriting two

distinct symbols with the same name from two other packages may be resolved

in favor of either symbol by importing it into the using package and making
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it a shadowing symbol, just as with use-package.

A name conflict in import between the symbol being imported and a symbol

inherited from some other package may be resolved in favor of the symbol

being imported by making it a shadowing symbol, or in favor of the symbol
already accessible by not doing the import. A name conflict in import with

a symbol already present in the package may be resolved by uninterning that

symbol, or by not doing the import.

Good user-interface style dictates that use-package and export, which
can cause many name conflicts simultaneously, first check for all of the name

conflicts before presenting any of them to the user. The user may then choose

to resolve all of them wholesale or to resolve each of them individually, the

latter requiring a lot of interaction but permitting different conflicts to be
resolved different ways.

Implementations may offer other ways of resolving name conflicts. For in-

stance, if the symbols that conflict are not being used as objects but only

as names for functions, it may be possible to “merge” the two symbols by
putting the function definition onto both symbols. References to either sym-

bol for purposes of calling a function would be equivalent. A similar merging

operation can be done for variable values and for things stored on the prop-

erty list. In Lisp Machine Lisp, for example, one can also forward the value,
function, and property cells so that future changes to either symbol will prop-

agate to the other one. Some other implementations are able to do this with

value cells but not with property lists. Only the user can know whether this

way of resolving a name conflict is adequate, because it will work only if the

use of two non-eq symbols with the same name will not prevent the correct
operation of the program. The value of offering symbol merging as a way of

resolving name conflicts is that it can avoid the need to throw away the whole

Lisp world, correct the package-definition forms that caused the error, and

start over from scratch.

11.6. Built-in Packages

The following packages, at least, are built into every Common Lisp system.
........................................................................................................................................................................................................

lisp

The package named lisp contains the primitives of the Common Lisp sys-

tem. Its external symbols include all of the user-visible functions and global

variables that are present in the Common Lisp system, such as car, cdr, and

*package*. Almost all other packages will want to use lisp so that these

symbols will be accessible without qualification.
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user

The user package is, by default, the current package at the time a Common
Lisp system starts up. This package uses the lisp package.

X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI

Common Lisp will use the package name common-lisp instead of lisp and

the package name common-lisp-user instead of user. The purpose is to

allow a single Lisp system to support both “old” Common Lisp and “new”
ANSI Common Lisp simultaneously despite the fact that in some cases the

two languages use the same names for incompatible purposes. (That’s what

packages are for!)

common-lisp

The package named common-lisp contains the primitives of the ANSI Com-

mon Lisp system (as opposed to a Common Lisp system based on the 1984
specification). Its external symbols include all of the user-visible functions

and global variables that are present in the ANSI Common Lisp system, such

as car, cdr, and *package*. Note, however, that the home package of such

symbols is not necessarily the common-lisp package (this makes it easier for
symbols such as t and lambda to be shared between the common-lisp package

and another package, possibly one named lisp). Almost all other packages

ought to use common-lisp so that these symbols will be accessible without

qualification. This package has the nickname cl.

common-lisp-user

The common-lisp-user package is, by default, the current package at the time

an ANSI Common Lisp system starts up. This package uses the common-lisp
package and has the nickname cl-user. It may contain other implementation-

dependent symbols and may use other implementation-specific packages.

keyword

This package contains all of the keywords used by built-in or user-defined

Lisp functions. Printed symbol representations that start with a colon are

interpreted as referring to symbols in this package, which are always external

symbols. All symbols in this package are treated as constants that evaluate
to themselves, so that the user can type :foo instead of ’:foo.

system........................................................................................................................................................................................................

This package name is reserved to the implementation. Normally this is used to
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contain names of implementation-dependent system-interface functions. This

package uses lisp and has the nickname sys.

X3J13 voted in January 1989 〈125〉 to modify the requirements on the built-
in packages so as to limit what may appear in the common-lisp package and to

lift the requirement that every implementation have a package named system.

The details are as follows.

Not only must the common-lisp package in any given implementation con-

tain all the external symbols prescribed by the standard; the common-lisp

package moreover may not contain any external symbol that is not prescribed

by the standard. However, the common-lisp package may contain additional
internal symbols, depending on the implementation.

An external symbol of the common-lisp package may not have a function,

macro, or special form definition, or a top-level value, or a special procla-
mation, or a type definition, unless specifically permitted by the standard.

Programmers may validly rely on this fact; for example, fboundp is guaran-

teed to be false for all external symbols of the common-lisp package except

those explicitly specified in the standard to name functions, macros, and spe-
cial forms. Similarly, boundp will be false of all such external symbols except

those documented to be variables or constants.

Portable programs may use external symbols in the common-lisp package
that are not documented to be constants or variables as names of local lexical

variables with the presumption that the implementation has not proclaimed

such variables to be special; this legitimizes the common practice of using

such names as list and string as names for local variables.

A valid implementation may initially have properties on any symbol, or

dynamically put new properties on symbols (even user-created symbols), as

long as no property indicator used for this purpose is an external symbol of
any package defined by the standard or a symbol that is accessible from the

common-lisp-user package or any package defined by the user.

This vote eliminates the requirement that every implementation have a pre-

defined package named system. An implementation may provide any number

of predefined packages; these should be described in the documentation for

that implementation.

The common-lisp-user package may contain symbols not described by the

standard and may use other implementation-specific packages.

X3J13 voted in March 1989 〈109〉 to restrict user programs from performing

certain actions that might interfere with built-in facilities or interact badly

with them. Except where explicitly allowed, the consequences are undefined

if any of the following actions are performed on a symbol in the common-lisp
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package.

. binding or altering its value (lexically or dynamically)

. defining or binding it as a function

. defining or binding it as a macro

. defining it as a type specifier (defstruct, defclass, deftype)

. defining it as a structure (defstruct)

. defining it as a declaration

. dsing it as a symbol macro

. altering its print name

. altering its package

. tracing it

. declaring or proclaiming it special or lexical

. declaring or proclaiming its type or ftype

. removing it from the package common-lisp

X3J13 also voted in June 1989 〈49〉 to add to this list the item

. defining it as a compiler macro

If such a symbol is not globally defined as a variable or a constant, a user

program is allowed to lexically bind it and declare the type of that binding.

If such a symbol is not defined as a function, macro, or special form, a user

program is allowed to (lexically) bind it as a function and to declare the ftype

of that binding and to trace that binding.

If such a symbol is not defined as a function, macro, or special form, a user
program is allowed to (lexically) bind it as a macro.

As an example, the behavior of the code fragment

(flet ((open (filename &key direction)

(format t "~%OPEN was called.")

(open filename :direction direction)))

(with-open-file (x "frob" :direction ’:output)

(format t "~%Was OPEN called?")))
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is undefined. Even in a “reasonable” implementation, for example, the macro

expansion of with-open-filemight refer to the open function and might not.

However, the preceding rules eliminate the burden of deciding whether an

implementation is reasonable. The code fragment violates the rules; officially

its behavior is therefore completely undefined, and that’s that.

Note that “altering the property list” is not in the list of proscribed actions,
so a user program is permitted to add properties to or remove properties from

symbols in the common-lisp package.

11.7. Package System Functions and Variables

Some of the functions and variables in this section are described in previous

sections but are included here for completeness.

It is up to each implementation’s compiler to ensure that when a compiled
........................................................................................................................................................................................................

file is loaded, all of the symbols in the file end up in the same packages that
they would occupy if the Lisp source file were loaded. In most compilers,

this will be accomplished by treating certain package operations as though

they are surrounded by (eval-when (compile load eval) ...); see eval-

when. These operations are make-package, in-package, shadow, shadowing-
import, export, unexport, use-package, unuse-package, and import. To

guarantee proper compilation in all Common Lisp implementations, these

functions should appear only at top level within a file. As a matter of style,

it is suggested that each file contain only one package, and that all of the

package setup forms appear near the start of the file. This is discussed in
more detail, with examples, in section 11.9.

X3J13 voted in March 1989 〈103〉 to cancel the specifications of the pre-

ceding paragraph in order to support a model of file compilation in which the

compiler need never take special note of ordinary function calls; only special

forms and macros are recognized as affecting the state of the compilation pro-

cess. As part of this change in-package was changed to be a macro rather
than a function and its functionality was restricted. The actions of shadow,

shadowing-import, use-package, import, intern, and export for compila-

tion purposes may be accomplished with the new macro defpackage.

Implementation note: In the past, some Lisp compilers have read the entire file
into Lisp before processing any of the forms. Other compilers have arranged for
the loader to do all of its intern operations before evaluating any of the top-level
forms. Neither of these techniques will work in a straightforward way in Common
Lisp because of the presence of multiple packages.
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For the functions described here, all optional arguments named package de-

fault to the current value of *package*. Where a function takes an argument

that is either a symbol or a list of symbols, an argument of nil is treated as

an empty list of symbols. Any argument described as a package name may be

either a string or a symbol. If a symbol is supplied, its print name will be used
as the package name; if a string is supplied, the user must take care to specify

the same capitalization used in the package name, normally all uppercase.

[Variable]*package*

The value of this variable must be a package; this package is said to be the

current package. The initial value of *package* is the user package.
X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI

Common Lisp will use the package name common-lisp-user instead of user.

The function load rebinds *package* to its current value. If some form in

the file changes the value of *package* during loading, the old value will be
restored when the loading is completed.

X3J13 voted in October 1988 〈21〉 to require compile-file to rebind

*package* to its current value.

[Function]make-package package-name &key :nicknames :use

This creates and returns a new package with the specified package name.
As described above, this argument may be either a string or a symbol. The

:nicknames argument must be a list of strings to be used as alternative names

for the package. Once again, the user may supply symbols in place of the

strings, in which case the print names of the symbols are used. These names

and nicknames must not conflict with any existing package names; if they do,
a correctable error is signaled.

The :use argument is a list of packages or the names (strings or symbols)

of packages whose external symbols are to be inherited by the new package.

These packages must already exist. If not supplied, :use defaults to a list of
one package, the lisp package.

X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI

Common Lisp will use the package name common-lisp instead of lisp.

X3J13 voted in January 1989 〈119〉 to change the specification of make-
package so that the default value for the :use argument is unspecified.

Portable code should specify :use ’("COMMON-LISP") explicitly.

Rationale: Many existing implementations of Common Lisp happen to have vi-
olated the first edition specification, providing as the default not only the lisp
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package but also (or instead) a package containing implementation-dependent lan-
guage extensions. This is for good reason: usually it is much more convenient to
the user for the default :use list to be the entire, implementation-dependent, ex-
tended language rather than only the facilities specified in this book. The X3J13
vote simply legitimizes existing practice.

[Function]in-package package-name &key :nicknames :use
........................................................................................................................................................................................................

The in-package function is intended to be placed at the start of a file con-

taining a subsystem that is to be loaded into some package other than user.

If there is not already a package named package-name, this function is simi-

lar to make-package, except that after the new package is created, *package*

is set to it. This binding will remain in force until changed by the user (per-

haps with another in-package call) or until the *package* variable reverts
to its old value at the completion of a load operation.

If there is an existing package whose name is package-name, the assumption

is that the user is re-loading a file after making some changes. The existing
package is augmented to reflect any new nicknames or new packages in the

:use list (with the usual error checking), and *package* is then set to this

package.

X3J13 voted in January 1989 〈156〉 to specify that in-package returns the

new package, that is, the value of *package* after the operation has been

executed.

X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI

Common Lisp will use the package name common-lisp-user instead of user.

X3J13 voted in March 1989 〈103〉 to restrict the functionality of in-package

and to make it a macro. This is an incompatible change.

Making in-package a macro rather than a function means that there is

no need to require compile-file to handle it specially. Since defpackage is

also defined to have side effects on the compilation environment, there is no

need to require any of the package functions to be treated specially by the

compiler.

[Macro]in-package name

This macro causes *package* to be set to the package named name, which

must be a symbol or string. The name is not evaluated. An error is signaled

if the package does not already exist. Everything this macro does is also

performed at compile time if the call appears at top level.



282 COMMON LISP

[Function]find-package name

The name must be a string that is the name or nickname for a package.
This argument may also be a symbol, in which case the symbol’s print name

is used. The package with that name or nickname is returned; if no such

package exists, find-package returns nil. The matching of names observes

case (as in stringUU).

X3J13 voted in January 1989 〈127〉 to allow find-package to accept a

package object, in which case the package is simply returned (see section 11.2).

[Function]package-name package

The argument must be a package. This function returns the string that names
that package.

X3J13 voted in January 1989 〈127〉 to allow package-name to accept a
package name or nickname, in which case the primary name of the package

so specified is returned (see section 11.2).

X3J13 voted in January 1989 〈126〉 to add a function to delete packages.
One consequence of this vote is that package-name will return nil instead of

a package name if applied to a deleted package object. See delete-package.

[Function]package-nicknames package

The argument must be a package. This function returns the list of nickname

strings for that package, not including the primary name.

X3J13 voted in January 1989 〈127〉 to allow package-nicknames to accept

a package name or nickname, in which case the nicknames of the package so

specified are returned (see section 11.2).

[Function]rename-package package new-name &optional

new-nicknames

The old name and all of the old nicknames of package are eliminated and

are replaced by new-name and new-nicknames. The new-name argument is
a string or symbol; the new-nicknames argument, which defaults to nil, is a

list of strings or symbols.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument
may be either a package object or a package name (see section 11.2).

X3J13 voted in January 1989 〈156〉 to specify that rename-package returns

package.
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[Function]package-use-list package

A list of other packages used by the argument package is returned.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

[Function]package-used-by-list package

A list of other packages that use the argument package is returned.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

[Function]package-shadowing-symbols package

A list is returned of symbols that have been declared as shadowing symbols

in this package by shadow or shadowing-import. All symbols on this list are

present in the specified package.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

[Function]list-all-packages

This function returns a list of all packages that currently exist in the Lisp

system.

[Function]delete-package package

X3J13 voted in January 1989 〈126〉 to add the delete-package function,
which deletes the specified package from all package system data structures.

The package argument may be either a package or the name of a package.

If package is a name but there is currently no package of that name, a

correctable error is signaled. Continuing from the error makes no deletion

attempt but merely returns nil from the call to delete-package.

If package is a package object that has already been deleted, no error is

signaled and no deletion is attempted; instead, delete-package immediately

returns nil.

If the package specified for deletion is currently used by other packages,

a correctable error is signaled. Continuing from this error, the effect of the

function unuse-package is performed on all such other packages so as to re-

move their dependency on the specified package, after which delete-package
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proceeds to delete the specified package as if no other package had been using

it.

If any symbol had the specified package as its home package before the call

to delete-package, then its home package is unspecified (that is, the contents

of its package cell are unspecified) after the delete-package operation has
been completed. Symbols in the deleted package are not modified in any other

way.

The name and nicknames of the package cease to be recognized package

names. The package object is still a package, but anonymous; packagep will

be true of it, but package-name applied to it will return nil.

The effect of any other package operation on a deleted package object is

undefined. In particular, an attempt to locate a symbol within a deleted

package (using intern or find-symbol, for example) will have unspecified

results.

delete-package returns t if the deletion succeeds, and nil otherwise.

[Function]intern string &optional package

The package, which defaults to the current package, is searched for a symbol

with the name specified by the string argument. This search will include

inherited symbols, as described in section 11.4. If a symbol with the specified
name is found, it is returned. If no such symbol is found, one is created

and is installed in the specified package as an internal symbol (as an external

symbol if the package is the keyword package); the specified package becomes

the home package of the created symbol.

X3J13 voted in March 1989 〈11〉 to specify that intern may in effect per-
form the search using a copy of the argument string in which some or all of

the implementation-defined attributes have been removed from the characters

of the string. It is implementation-dependent which attributes are removed.

Two values are returned. The first is the symbol that was found or created.
The second value is nil if no pre-existing symbol was found, and takes on one

of three values if a symbol was found:

:internal The symbol was directly present in the package as an internal

symbol.

:external The symbol was directly present as an external symbol.

:inherited The symbol was inherited via use-package (which implies

that the symbol is internal).
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X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

Compatibility note: Conceptually, intern translates a string to a symbol. In
MacLisp and several other dialects of Lisp, intern can take either a string or a
symbol as its argument; in the latter case, the symbol’s print name is extracted
and used as the string. However, this leads to some confusing issues about what to
do if intern finds a symbol that is not eq to the argument symbol. To avoid such
confusion, Common Lisp requires the argument to be a string.

[Function]find-symbol string &optional package

This is identical to intern, but it never creates a new symbol. If a symbol with
the specified name is found in the specified package, directly or by inheritance,

the symbol found is returned as the first value and the second value is as

specified for intern. If the symbol is not accessible in the specified package,

both values are nil.
X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

[Function]unintern symbol &optional package

If the specified symbol is present in the specified package, it is removed from

that package and also from the package’s shadowing-symbols list if it is present

there. Moreover, if the package is the home package for the symbol, the symbol

is made to have no home package. Note that in some circumstances the
symbol may continue to be accessible in the specified package by inheritance.

unintern returns t if it actually removed a symbol, and nil otherwise.

unintern should be used with caution. It changes the state of the package

system in such a way that the consistency rules do not hold across the change.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument
may be either a package object or a package name (see section 11.2).

Compatibility note: The equivalent of this in MacLisp is remob.

[Function]export symbols &optional package

The symbols argument should be a list of symbols, or possibly a single sym-

bol. These symbols become accessible as external symbols in package (see

section 11.4). export returns t.
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By convention, a call to export listing all exported symbols is placed near

the start of a file to advertise which of the symbols mentioned in the file are

intended to be used by other programs.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

[Function]unexport symbols &optional package

The argument should be a list of symbols, or possibly a single symbol. These

symbols become internal symbols in package. It is an error to unexport a

symbol from the keyword package (see section 11.4). unexport returns t.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument
may be either a package object or a package name (see section 11.2).

[Function]import symbols &optional package

The argument should be a list of symbols, or possibly a single symbol. These

symbols become internal symbols in package and can therefore be referred

to without having to use qualified-name (colon) syntax. import signals a
correctable error if any of the imported symbols has the same name as some

distinct symbol already accessible in the package (see section 11.4). import

returns t.

X3J13 voted in June 1987 〈102〉 to clarify that if any symbol to be imported
has no home package then import sets the home package of the symbol to the

package to which the symbol is being imported.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

[Function]shadowing-import symbols &optional package

This is like import, but it does not signal an error even if the importation

of a symbol would shadow some symbol already accessible in the package. In

addition to being imported, the symbol is placed on the shadowing-symbols

list of package (see section 11.5). shadowing-import returns t.

shadowing-import should be used with caution. It changes the state of the

package system in such a way that the consistency rules do not hold across

the change.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).
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[Function]shadow symbols &optional package

The argument should be a list of symbols, or possibly a single symbol. The

print name of each symbol is extracted, and the specified package is searched

for a symbol of that name. If such a symbol is present in this package (directly,
not by inheritance), then nothing is done. Otherwise, a new symbol is created

with this print name, and it is inserted in the package as an internal symbol.

The symbol is also placed on the shadowing-symbols list of the package (see

section 11.5). shadow returns t.
X3J13 voted in March 1988 〈161〉 to change shadow to accept strings as well

as well as symbols (a string in the symbols list being treated as a print name),

and to clarify that if a symbol of specified name is already in the package but

is not yet on the shadowing-symbols list for that package, then shadow does

add it to the shadowing-symbols list rather than simply doing nothing.
shadow should be used with caution. It changes the state of the package

system in such a way that the consistency rules do not hold across the change.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

[Function]use-package packages-to-use &optional package

The packages-to-use argument should be a list of packages or package names,

or possibly a single package or package name. These packages are added to
the use-list of package if they are not there already. All external symbols

in the packages to use become accessible in package as internal symbols (see

section 11.4). It is an error to try to use the keyword package. use-package

returns t.
X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

[Function]unuse-package packages-to-unuse &optional package

The packages-to-unuse argument should be a list of packages or package

names, or possibly a single package or package name. These packages are

removed from the use-list of package. unuse-package returns t.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

X3J13 voted in January 1989 〈52〉 to add a macro defpackage to the lan-

guage to make it easier to create new packages, alleviating the burden on the

programmer to perform the various setup operations in exactly the correct

sequence.
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[Macro]defpackage defined-package-name {option}∗

This creates a new package, or modifies an existing one, whose name is defined-

package-name. The defined-package-name may be a string or a symbol; if it

is a symbol, only its print name matters, and not what package, if any, the
symbol happens to be in. The newly created or modified package is returned

as the value of the defpackage form.

Each standard option is a list of a keyword (the name of the option) and

associated arguments. No part of a defpackage form is evaluated. Except for

the :size option, more than one option of the same kind may occur within
the same defpackage form.

The standard options for defpackage are as follows. In every case, any

option argument called package-name or symbol-name may be a string or a

symbol; if it is a symbol, only its print name matters, and not what package,

if any, the symbol happens to be in.

(:size integer)

This specifies approximately the number of symbols expected to be in the
package. This is purely an efficiency hint to the storage allocator, so that

implementations using hash tables as part of the package data structure (the

usual technique) will not have to incrementally expand the package as new

symbols are added to it (for example, as a large file is read while “in” that
package).

(:nicknames {package-name}∗ )
The specified names become nicknames of the package being defined. If any

of the specified nicknames already refers to an existing package, a continuable

error is signaled exactly as for the function make-package.

(:shadow {symbol-name}∗ )
Symbols with the specified names are created as shadows in the package being

defined, just as with the function shadow.

(:shadowing-import-from package-name {symbol-name}∗ )
Symbols with the specified names are located in the specified package. These
symbols are imported into the package being defined, shadowing other sym-

bols if necessary, just as with the function shadowing-import. In no case will

symbols be created in a package other than the one being defined; a continu-

able error is signaled if for any symbol-name there is no symbol of that name

accessible in the package named package-name.
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(:use {package-name}∗ )
The package being defined is made to “use” (inherit from) the packages spec-

ified by this option, just as with the function use-package. If no :use option

is supplied, then a default list is assumed as for make-package.

X3J13 voted in January 1989 〈119〉 to change the specification of make-

package so that the default value for the :use argument is unspecified.
This change affects defpackage as well. Portable code should specify

(:use ’("COMMON-LISP")) explicitly.

(:import-from package-name {symbol-name}∗ )
Symbols with the specified names are located in the specified package. These
symbols are imported into the package being defined, just as with the function

import. In no case will symbols be created in a package other than the one

being defined; a continuable error is signaled if for any symbol-name there is

no symbol of that name accessible in the package named package-name.

(:intern {symbol-name}∗ )
Symbols with the specified names are located or created in the package being

defined, just as with the function intern. Note that the action of this option

may be affected by a :use option, because an inherited symbol will be used

in preference to creating a new one.

(:export {symbol-name}∗ )
Symbols with the specified names are located or created in the package being

defined and then exported, just as with the function export. Note that the ac-

tion of this option may be affected by a :use, :import-from, or :shadowing-
import-from option, because an inherited or imported symbol will be used

in preference to creating a new one.

The order in which options appear in a defpackage form does not matter;

part of the convenience of defpackage is that it sorts out the options into the

correct order for processing. Options are processed in the following order:

1. :shadow and :shadowing-import-from

2. :use

3. :import-from and :intern

4. :export

Shadows are established first in order to avoid spurious name conflicts when

use links are established. Use links must occur before importing and interning
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so that those operations may refer to normally inherited symbols rather than

creating new ones. Exports are performed last so that symbols created by

any of the other options, in particular, shadows and imported symbols, may

be exported. Note that exporting an inherited symbol implicitly imports it

first (see section 11.4).
If no package named defined-package-name already exists, defpackage cre-

ates it. If such a package does already exist, then no new package is created.

The existing package is modified, if possible, to reflect the new definition. The

results are undefined if the new definition is not consistent with the current
state of the package.

An error is signaled if more than one :size option appears.

An error is signaled if the same symbol-name argument (in the sense of com-

paring names with stringUU) appears more than once among the arguments

to all the :shadow, :shadowing-import-from, :import-from, and :intern

options.

An error is signaled if the same symbol-name argument (in the sense of com-

paring names with stringUU) appears more than once among the arguments

to all the :intern and :export options.
Other kinds of name conflicts are handled in the same manner that the

underlying operations use-package, import, and export would handle them.

Implementations may support other defpackage options. Every implemen-

tation should signal an error on encountering a defpackage option it does not

support.
The function compile-file should treat top-level defpackage forms in

the same way it would treat top-level calls to package-affecting functions (as

described at the beginning of section 11.7).

Here is an example of a call to defpackage that “plays it safe” by using
only strings as names.

(cl:defpackage "MY-VERY-OWN-PACKAGE"

(:size 496)

(:nicknames "MY-PKG" "MYPKG" "MVOP")

(:use "COMMON-LISP")

(:shadow "CAR" "CDR")

(:shadowing-import-from "BRAND-X-LISP" "CONS")

(:import-from "BRAND-X-LISP" "GC" "BLINK-FRONT-PANEL-LIGHTS")

(:export "EQ" "CONS" "MY-VERY-OWN-FUNCTION"))

The preceding defpackage example is designed to operate correctly even if the

package current when the form is read happens not to “use” the common-lisp

package. (Note the use in this example of the nickname cl for the common-
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lisp package.) Moreover, neither reading in nor evaluating this defpackage

form will ever create any symbols in the current package. Note too the use of

uppercase letters in the strings.

Here, for the sake of contrast, is a rather similar use of defpackage that
“plays the whale” by using all sorts of permissible syntax.

(defpackage my-very-own-package

(:export :EQ common-lisp:cons my-very-own-function)

(:nicknames "MY-PKG" #--:MyPkg)

(:use "COMMON-LISP")

(:shadow "CAR")

(:size 496)

(:nicknames mvop)

(:import-from "BRAND-X-LISP" "GC" Blink-Front-Panel-Lights)

(:shadow common-lisp::cdr)

(:shadowing-import-from "BRAND-X-LISP" CONS))

This example has exactly the same effect on the newly created package but

may create useless symbols in other packages. The use of explicit package
tags is particularly confusing; for example, this defpackage form will cause

the symbol cdr to be shadowed in the new package; it will not be shadowed

in the package common-lisp. The fact that the name “CDR” was specified

by a package-qualified reference to a symbol in the common-lisp package is

a red herring. The moral is that the syntactic flexibility of defpackage, as
in other parts of Common Lisp, yields considerable convenience when used

with commonsense competence, but unutterable confusion when used with

Malthusian profusion.

Implementation note: An implementation of defpackage might choose to trans-
form all the package-name and symbol-name arguments into strings at macro ex-
pansion time, rather than at the time the resulting expansion is executed, so that
even if source code is expressed in terms of strange symbols in the defpackage form,
the binary file resulting from compiling the source code would contain only strings.
The purpose of this is simply to minimize the creation of useless symbols in produc-
tion code. This technique is permitted as an implementation strategy but is not a
behavior required by the specification of defpackage.

Note that defpackage is not capable by itself of defining mutually recursive

packages, for example two packages each of which uses the other. However,

nothing prevents one from using defpackage to perform much of the initial
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setup and then using functions such as use-package, import, and export to

complete the links.

The purpose of defpackage is to encourage the user to put the entire defi-

nition of a package and its relationships to other packages in a single place. It

may also encourage the designer of a large system to place the definitions of

all relevant packages into a single file (say) that can be loaded before loading
or compiling any code that depends on those packages. Such a file, if carefully

constructed, can simply be loaded into the common-lisp-user package.

Implementations and programming environments may also be better able to

support the programming process (if only by providing better error checking)

through global knowledge of the intended package setup.

[Function]find-all-symbols string-or-symbol

find-all-symbols searches every package in the Lisp system to find every
symbol whose print name is the specified string. A list of all such symbols

found is returned. This search is case-sensitive. If the argument is a symbol,

its print name supplies the string to be searched for.

[Macro]do-symbols (var [package [result-form] ] )
{declaration}∗ {tag | statement}∗

do-symbols provides straightforward iteration over the symbols of a package.

The body is performed once for each symbol accessible in the package, in no

particular order, with the variable var bound to the symbol. Then result-

form (a single form, not an implicit progn) is evaluated, and the result is
the value of the do-symbols form. (When the result-form is evaluated, the

control variable var is still bound and has the value nil.) If the result-form

is omitted, the result is nil. return may be used to terminate the iteration

prematurely. If execution of the body affects which symbols are contained in
the package, other than possibly to remove the symbol currently the value of

var by using unintern, the effects are unpredictable.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

X3J13 voted in March 1988 〈66〉 to specify that the body of a do-symbols

form may be executed more than once for the same accessible symbol, and

users should take care to allow for this possibility.

The point is that the same symbol might be accessible via more than one

chain of inheritance, and it is implementationally costly to eliminate such

duplicates. Here is an example:
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(setq *a* (make-package ’a)) ;Implicitly uses package common-lisp

(setq *b* (make-package ’b)) ;Implicitly uses package common-lisp

(setq *c* (make-package ’c :use ’(a b)))

(do-symbols (x *c*) (print x)) ;Symbols in package common-lisp

; might be printed once or twice here

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

Note that the loop construct provides a kind of for clause that can iterate

over the symbols of a package (see chapter 26).

[Macro]do-external-symbols (var [package [result] ] )

{declaration}∗ {tag | statement}∗

do-external-symbols is just like do-symbols, except that only the external

symbols of the specified package are scanned.
The clarification voted by X3J13 in March 1988 for do-symbols 〈66〉, re-

garding redundant executions of the body for the same symbol, applies also

to do-external-symbols.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument
may be either a package object or a package name (see section 11.2).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Macro]do-all-symbols (var [result-form] )

{declaration}∗ {tag | statement}∗

This is similar to do-symbols but executes the body once for every symbol

contained in every package. (This will not process every symbol whatsoever,

because a symbol not accessible in any package will not be processed. Nor-

mally, uninterned symbols are not accessible in any package.) It is not in
general the case that each symbol is processed only once, because a symbol

may appear in many packages.

The clarification voted by X3J13 in March 1988 for do-symbols 〈66〉, re-

garding redundant executions of the body for the same symbol, applies also
to do-all-symbols.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument

may be either a package object or a package name (see section 11.2).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.
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X3J13 voted in January 1989 〈98〉 to add a new macro with-package-

iterator to the language.

[Macro]with-package-iterator (mname package-list {symbol-type}+ )

{ form}∗

The name mname is bound and defined as if by macrolet, with the body forms

as its lexical scope, to be a “generator macro” such that each invocation of

(mname) will return a symbol and that successive invocations will eventually

deliver, one by one, all the symbols from the packages that are elements of the
list that is the value of the expression package-list (which is evaluated exactly

once).

Each element of the package-list value may be either a package or the name

of a package. As a further convenience, if the package-list value is itself a

package or the name of a package, it is treated as if a singleton list containing

that value had been provided. If the package-list value is nil, it is considered

to be an empty list of packages.

At each invocation of the generator macro, there are two possibilities. If

there is yet another unprocessed symbol, then four values are returned: t,
the symbol, a keyword indicating the accessibility of the symbol within the

package (see below), and the package from which the symbol was accessed. If

there are no more unprocessed symbols in the list of packages, then one value

is returned: nil.

When the generator macro returns a symbol as its second value, the fourth

value is always one of the packages present or named in the package-list value,

and the third value is a keyword indicating accessibility: :internal means
present in the package and not exported; :external means present and ex-

ported; and :inheritedmeans not present (thus not shadowed) but inherited

from some package used by the package that is the fourth value.

Each symbol-type in an invocation of with-package-iterator is not eval-

uated. More than one may be present; their order does not matter. They

indicate the accessibility types of interest. A symbol is not returned by the

generator macro unless its actual accessibility matches one of the symbol-type
indicators. The standard symbol-type indicators are :internal, :external,

and :inherited, but implementations are permitted to extend the syntax of

with-package-iteratorby recognizing additional symbol accessibility types.

An error is signaled if no symbol-type is supplied, or if any supplied symbol-type
is not recognized by the implementation.

The order in which symbols are produced by successive invocations of the

generator macro is not necessarily correlated in any way with the order of the
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packages in the package-list. When more than one package is in the package-

list, symbols accessible from more than one package may be produced once or

more than once. Even when only one package is specified, symbols inherited

in multiple ways via used packages may be produced once or more than once.

The implicit interior state of the iteration over the list of packages and
the symbols within them has dynamic extent. It is an error to invoke the

generator macro once the with-package-iterator form has been exited.

Any number of invocations of with-package-iterator and related macros

may be nested, and the generator macro of an outer invocation may be called
from within an inner invocation (provided, of course, that its name is visible

or otherwise made available).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

Rationale: This facility is a bit more flexible in some ways than do-symbols and
friends. In particular, it makes it possible to implement loop clauses for iterating
over packages in a way that is both portable and efficient (see chapter 26).

11.8. Modules

A module is a Common Lisp subsystem that is loaded from one or more files.

A module is normally loaded as a single unit, regardless of how many files

are involved. A module may consist of one package or several packages. The
file-loading process is necessarily implementation-dependent, but Common

Lisp provides some very simple portable machinery for naming modules, for

keeping track of which modules have been loaded, and for loading modules as

a unit.

X3J13 voted in January 1989 〈154〉 to eliminate the entire module facility
from the language; that is, the variable *modules* and the functions provide

and require are deleted. X3J13 commented that the file-loading feature

of require is not portable, and that the remaining functionality is easily

implemented by user code. (I will add that in any case the specification of
require is so vague that different implementations are likely to have differing

behavior.)

[Variable]*modules*

The variable *modules* is a list of names of the modules that have been

loaded into the Lisp system so far. This list is used by the functions provide

and require.
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[Function]provide module-name

[Function]require module-name &optional pathname

Each module has a unique name (a string). The provide and require func-

tions accept either a string or a symbol as the module-name argument. If a
symbol is provided, its print name is used as the module name. If the module

consists of a single package, it is customary for the package and module names

to be the same.

The provide function adds a new module name to the list of modules
maintained in the variable *modules*, thereby indicating that the module in

question has been loaded.

The require function tests whether a module is already present (using a

case-sensitive comparison); if the module is not present, require proceeds to

load the appropriate file or set of files. The pathname argument, if present, is
a single pathname or a list of pathnames whose files are to be loaded in order,

left to right. If the pathname argument is nil or is not provided, the system

will attempt to determine, in some system-dependent manner, which files to

load. This will typically involve some central registry of module names and
the associated file lists.

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉
and to specify exactly which streams may be used as pathnames 〈132〉 (see

section 23.1.6). Of course, this is moot if require is not in the language.

X3J13 voted in January 1989 〈156〉 to specify that the values returned by
provide and require are implementation-dependent. Of course, this is moot

if provide and require are not in the language.

Implementation note: One way to implement such a registry on many operating
systems is simply to use a distinguished “library” directory within the file system,
where the name of each file is the same as the module it contains.

11.9. An Example

Most users will want to load and use packages but will never need to build one.
........................................................................................................................................................................................................

Often a user will load a number of packages into the user package whenever

using Common Lisp. Typically an implementation might provide some sort

of initialization file mechanism to make such setup automatic when the Lisp

starts up. Table 11-1 shows such an initialization file, one that simply causes

other facilities to be loaded.
X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI

Common Lisp will use the package name common-lisp-user instead of user.
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Table 11-1: An Initialization File

;;;; Lisp init file for I. Newton.

;;; Set up the USER package the way I like it.

(require ’calculus) ;I use CALCULUS a lot; load it.

(use-package ’calculus) ;Get easy access to its

; exported symbols.

(require ’newtonian-mechanics) ;Same thing for NEWTONIAN-MECHANICS

(use-package ’newtonian-mechanics)

;;; I just want a few things from RELATIVITY,

;;; and other things conflict.

;;; Import only what I need into the USER package.

(require ’relativity)
(import ’(relativity:speed-of-light

relativity:ignore-small-errors))

;;; These are worth loading, but I will use qualified names,

;;; such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols

;;; I might need from these packages.

(require ’phlogiston)
(require ’alchemy)

;;; End of Lisp init file for I. Newton.

When each of two files uses some symbols from the other, the author of

those files must be careful to arrange the contents of the file in the proper
order. Typically each file contains a single package that is a complete module.

The contents of such a file should include the following items, in order:

1. A call to provide that announces the module name.

2. A call to in-package that establishes the package.

3. A call to shadow that establishes any local symbols that will shadow symbols

that would otherwise be inherited from packages that this package will use.

4. A call to export that establishes all of this package’s external symbols.
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5. Any number of calls to require to load other modules that the contents of

this file might want to use or refer to. (Because the calls to require follow

the calls to in-package, shadow, and export, it is possible for the packages

that may be loaded to refer to external symbols in this package.)

6. Any number of calls to use-package, to make external symbols from other

packages accessible in this package.

7. Any number of calls to import, to make symbols from other packages

present in this package.

8. Finally, the definitions making up the contents of this package/module.

The following mnemonic sentence may be helpful in remembering the proper
order of these calls:

Put in seven extremely random user interface commands.

Each word of the sentence corresponds to one item in the above ordering:

Put Provide

IN IN-package

Seven Shadow

EXtremely EXport

Random Require

USEr USE-package

Interface Import

COmmands COntents of package/module

The sentence says what it helps you to do.

The most distressing aspect of the X3J13 vote to eliminate provide and

require 〈154〉 is of course that it completely ruins the mnemonic sentence.

Now, suppose for the sake of example that the phlogiston and alchemy

packages are single-file, single-package modules as described above. The

phlogiston package needs to use the alchemy package, and the alchemy

package needs to use several external symbols from the phlogiston pack-

age. The definitions in the alchemy and phlogiston files (see tables 11-2

and 11-3) allow a user to specify require statements for either of these mod-
ules, or for both of them in either order, and all relevant information will be

loaded automatically and in the correct order.

For very large modules whose contents are spread over several files (the lisp
........................................................................................................................................................................................................

package is an example), it is recommended that the user create the package
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Table 11-2: File alchemy

;;;; Alchemy functions, written and maintained by Merlin, Inc.

(provide ’alchemy) ;The module is named ALCHEMY.

(in-package ’alchemy) ;So is the package.

;;; There is nothing to shadow.

;;; Here is the external interface.

(export ’(lead-to-gold gold-to-lead

antimony-to-zinc elixir-of-life))

;;; This package/module needs a function from

;;; the PHLOGISTON package/module.

(require ’phlogiston)

;;; We don’t frequently need most of the external symbols from

;;; PHLOGISTON, so it’s not worth doing a USE-PACKAGE on it.

;;; We’ll just use qualified names as needed. But we use

;;; one function, MAKE-FIRE-BOTTLE, a lot, so import it.

;;; It’s external in PHLOGISTON and so can be referred to

;;; here using ":" qualified-name syntax.

(import ’(phlogiston:make-fire-bottle))

;;; Now for the real contents of this file.

(defun lead-to-gold (x)

"Takes a quantity of lead and returns gold."

(when (> (phlogiston:heat-flow 5 x x) ;Using a qualified symbol

3)

(make-fire-bottle x)) ;Using an imported symbol

(gild x))

;;; And so on ...



300 COMMON LISP

Table 11-3: File phlogiston

;;;; Phlogiston functions, by Thermofluidics, Ltd.

(provide ’phlogiston) ;The module is named PHLOGISTON.

(in-package ’phlogiston) ;So is the package.

;;; There is nothing to shadow.

;;; Here is the external interface.

(export ’(heat-flow cold-flow mix-fluids separate-fluids

burn make-fire-bottle))

;;; This file uses functions from the ALCHEMY package/module.

(require ’alchemy)

;;; We use alchemy functions a lot, so use the package.

;;; This will allow symbols exported from the ALCHEMY package

;;; to be referred to here without the need for qualified names.

(use-package ’alchemy)

;;; No calls to IMPORT are needed here.

;;; The real contents of this package/module.

(defvar *feeling-weak* nil)

(defun heat-flow (amount x y)

"Make some amount of heat flow from x to y."

(when *feeling-weak*

(quaff (elixir-of-life))) ;No qualifier is needed.

(push-heat amount x y))

;;; And so on ...
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Table 11-4: An Initialization File When defpackage Is Used

;;;; Lisp init file for I. Newton.

;;; Set up the USER package the way I like it.

(load "calculus") ;I use CALCULUS a lot; load it.

(use-package ’calculus) ;Get easy access to its

; exported symbols.

(load "newtonian-mechanics") ;Ditto for NEWTONIAN-MECHANICS

(use-package ’newtonian-mechanics)

;;; I just want a few things from RELATIVITY,

;;; and other things conflict.

;;; Import only what I need into the USER package.

(load "relativity")

(import ’(relativity:speed-of-light
relativity:ignore-small-errors))

;;; These are worth loading, but I will use qualified names,

;;; such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols

;;; I might need from these packages.

(load "phlogiston")

(load "alchemy")

;;; End of Lisp init file for I. Newton.

and declare all of the shadows and external symbols in a separate file, so that

this can be loaded before anything that might use symbols from this package.

Indeed, the defpackage macro approved by X3J13 in January 1989 〈52〉
encourages the use of such a separate file. (By the way, X3J13 voted in March

1989 〈108〉 to specify that the forthcoming ANSI Common Lisp will use the

package name common-lisp instead of lisp.) Let’s take a look at a revision

of I. Newton’s files using defpackage.

The new version of the initialization file avoids using require; instead, we

assume that load will do the job (see table 11-4).

The other files have each been split into two parts, one that establishes
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the package and one that defines the contents. This example uses a simple

convention that for any file named, say, “foo” the file named “foo-package”

contains the necessary defpackage and/or other package-establishing code.

The idiom

(unless (find-package "FOO")

(load "foo-package"))

is conventionally used to load a package definition but only if the package has

not already been defined. (This is a bit clumsy, and there are other ways to

arrange things so that a package is defined no more than once.)

The file alchemy-package is shown in table 11-5. The tricky point here

is that the alchemy and phlogiston packages contain mutual references

(each imports from the other), and so defpackage alone cannot do the job.

Therefore the phlogiston package is not mentioned in a :use option in the
defpackage for the alchemy package. Instead, the function use-package is

called explicitly, after the package definition for phlogiston has been loaded.

Note that this file has been coded with excruciating care so as to operate cor-

rectly even if the package current when the file is loaded does not inherit from
the common-lisp package. In particular, the standard load-package-definition

idiom has been peppered with package qualifiers:

(cl:unless (cl:find-package "PHLOGISTON")

(cl:load "phlogiston-package"))

Note the use of the nickname cl for the common-lisp package.

The alchemy file, shown in table 11-6, simply loads the alchemy package

definition, makes that package current, and then defines the “real contents”

of the package.

The file phlogiston-package is shown in table 11-7. This one is a lit-

tle more straightforward than the file alchemy-package, because the latter
bears the responsibility for breaking the circular package references. This file

simply makes sure that the alchemy package is defined and then performs a

defpackage for the phlogiston package.

The phlogiston file, shown in table 11-8, simply loads the phlogiston

package definition, makes that package current, and then defines the “real

contents” of the package.

Let’s look at the question of package circularity in this example a little

more closely. Suppose that the file alchemy-package is loaded first. It de-

fines the alchemy package and then loads file phlogiston-package. That file

in turn finds that the package alchemy has already been defined and there-
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fore does not attempt to load file alchemy-package again; it merely defines

package phlogiston. The file alchemy-package then has a chance to import

phlogiston:make-fire-bottle and everything is fine.

On the other hand, suppose that the file phlogiston-package is loaded

first. It finds that the package alchemy has not already been defined, and
therefore it immediately loads file alchemy-package. That file in turn defines

the alchemy package; then it finds that package phlogiston is not yet defined

and so loads file phlogiston-package again (indeed, in nested fashion). This

time file phlogiston-package does find that the package alchemy has al-
ready been defined, so it simply defines package phlogiston and terminates.

The file alchemy-package then imports phlogiston:make-fire-bottle and

terminates. Finally, the outer loading of file phlogiston-package re-defines

package phlogiston. Oh, dear. Fortunately the two definitions of package

phlogiston agree in every detail, so everything ought to be all right. Still, it
looks a bit dicey; I certainly don’t have the same warm, fuzzy feeling that I

would if no package were defined more than once.
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Table 11-5: File alchemy-package Using defpackage

;;;; Alchemy package, written and maintained by Merlin, Inc.

(cl:defpackage "ALCHEMY"

(:export "LEAD-TO-GOLD" "GOLD-TO-LEAD"

"ANTIMONY-TO-ZINC" "ELIXIR-OF-LIFE")

)

;;; This package needs a function from the PHLOGISTON package.

;;; Load the definition of the PHLOGISTON package if necessary.

(cl:unless (cl:find-package "PHLOGISTON")

(cl:load "phlogiston-package"))

;;; We don’t frequently need most of the external symbols from

;;; PHLOGISTON, so it’s not worth doing a USE-PACKAGE on it.

;;; We’ll just use qualified names as needed. But we use

;;; one function, MAKE-FIRE-BOTTLE, a lot, so import it.

;;; It’s external in PHLOGISTON and so can be referred to

;;; here using ":" qualified-name syntax.

(cl:import ’(phlogiston:make-fire-bottle))

Table 11-6: File alchemy Using defpackage

;;;; Alchemy functions, written and maintained by Merlin, Inc.

(unless (find-package "ALCHEMY")

(load "alchemy-package"))

(in-package ’alchemy)

(defun lead-to-gold (x)

"Takes a quantity of lead and returns gold."

(when (> (phlogiston:heat-flow 5 x x) ;Using a qualified symbol

3)

(make-fire-bottle x)) ;Using an imported symbol

(gild x))

;;; And so on ...
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Table 11-7: File phlogiston-package Using defpackage

;;;; Phlogiston package definition, by Thermofluidics, Ltd.

;;; This package uses functions from the ALCHEMY package.

(cl:unless (cl:find-package "ALCHEMY")

(cl:load "alchemy-package"))

(cl:defpackage "PHLOGISTON"

(:use "COMMON-LISP" "ALCHEMY")

(:export "HEAT-FLOW"

"COLD-FLOW"

"MIX-FLUIDS"

"SEPARATE-FLUIDS"

"BURN"

"MAKE-FIRE-BOTTLE")

)

Table 11-8: File phlogiston Using defpackage

;;;; Phlogiston functions, by Thermofluidics, Ltd.

(unless (find-package "PHLOGISTON")

(load "phlogiston-package"))

(in-package ’phlogiston)

(defvar *feeling-weak* nil)

(defun heat-flow (amount x y)

"Make some amount of heat flow from x to y."

(when *feeling-weak*

(quaff (elixir-of-life))) ;No qualifier is needed.

(push-heat amount x y))

;;; And so on ...
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Conclusion: defpackage goes a long way, but it certainly doesn’t solve all

the possible problems of package and file management. Neither did require

and provide. Perhaps further experimentation will yield facilities appropriate

for future standardization.



12

Numbers

Common Lisp provides several different representations for numbers. These

representations may be divided into four categories: integers, ratios, floating-

point numbers, and complex numbers. Many numeric functions will accept

any kind of number; they are generic. Other functions accept only certain
kinds of numbers.

Note that this remark, predating the design of the Common Lisp Object

System, uses the term “generic” in a generic sense and not necessarily in the
technical sense used by CLOS (see chapter 2).

In general, numbers in Common Lisp are not true objects; eq cannot be

counted upon to operate on them reliably. In particular, it is possible that
the expression

(let ((x z) (y z)) (eq x y))

may be false rather than true if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers allows the imple-
mentor enough design freedom to produce exceptionally efficient numerical code on
conventional architectures. MacLisp requires this freedom, for example, in order to
produce compiled numerical code equal in speed to Fortran. Common Lisp makes
this same restriction, if not for this freedom, then at least for the sake of compati-
bility.

If two objects are to be compared for “identity,” but either might be a

number, then the predicate eql is probably appropriate; if both objects are

known to be numbers, then UU may be preferable.

307



308 COMMON LISP

12.1. Precision, Contagion, and Coercion

In general, computations with floating-point numbers are only approximate.

The precision of a floating-point number is not necessarily correlated at all

with the accuracy of that number. For instance, 3.142857142857142857 is a

more precise approximation to π than 3.14159, but the latter is more accurate.
The precision refers to the number of bits retained in the representation.

When an operation combines a short floating-point number with a long one,

the result will be a long floating-point number. This rule is made to ensure

that as much accuracy as possible is preserved; however, it is by no means

a guarantee. Common Lisp numerical routines do assume, however, that the
accuracy of an argument does not exceed its precision. Therefore when two

small floating-point numbers are combined, the result will always be a small

floating-point number. This assumption can be overridden by first explicitly

converting a small floating-point number to a larger representation. (Common
Lisp never converts automatically from a larger size to a smaller one.)

Rational computations cannot overflow in the usual sense (though of course

there may not be enough storage to represent one), as integers and ratios
may in principle be of any magnitude. Floating-point computations may get

exponent overflow or underflow; this is an error.

X3J13 voted in June 1989 〈79〉 to address certain problems relating to

floating-point overflow and underflow, but certain parts of the proposed
solution were not adopted, namely to add the macro without-floating-

underflow-traps to the language and to require certain behavior of floating-

point overflow and underflow. The committee agreed that this area of the

language requires more discussion before a solution is standardized.

For the record, the proposal that was considered and rejected (for the nonce)

introduced a macro without-floating-underflow-traps that would exe-

cute its body in such a way that, within its dynamic extent, a floating-point
underflow must not signal an error but instead must produce either a denor-

malized number or zero as the result. The rejected proposal also specified the

following treatment of overflow and underflow:

. A floating-point computation that overflows should signal an error of type
floating-point-overflow.

. Unless the dynamic extent of a use of without-floating-underflow-

traps, a floating-point computation that underflows should signal an error

of type floating-point-underflow. A result that can be represented only

in denormalized form must be considered an underflow in implementations

that support denormalized floating-point numbers.
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These points refer to conditions floating-point-overflow and floating-

point-underflow that were approved by X3J13 and are described in sec-

tion 29.5.

When rational and floating-point numbers are compared or combined by

a numerical function, the rule of floating-point contagion is followed: when

a rational meets a floating-point number, the rational is first converted to
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a floating-point number of the same format. For functions such as + that

take more than two arguments, it may be that part of the operation is car-

ried out exactly using rationals and then the rest is done using floating-point

arithmetic.

X3J13 voted in January 1989 〈37〉 to apply the rule of floating-point conta-
gion stated above to the case of combining rational and floating-point numbers.

For comparing, the following rule is to be used instead: When a rational num-

ber and a floating-point number are to be compared by a numerical function,

in effect the floating-point number is first converted to a rational number as

if by the function rational, and then an exact comparison of two rational
numbers is performed. It is of course valid to use a more efficient implemen-

tation than actually calling the function rational, as long as the result of

the comparison is the same. In the case of complex numbers, the real and

imaginary parts are handled separately.

Rationale: In general, accuracy cannot be preserved in combining operations, but it
can be preserved in comparisons, and preserving it makes that part of Common Lisp
algebraically a bit more tractable. In particular, this change prevents the breakdown
of transitivity. Let a be the result of (/ 10.0 single-float-epsilon), and let j

be the result of (floor a). (Note that (UU a (+ a 1.0)) is true, by the definition of
single-float-epsilon.) Under the old rules, all of (<UU a j), (< j (+ j 1)), and
(<UU (+ j 1) a) would be true; transitivity would then imply that (< a a) ought
to be true, but of course it is false, and therefore transitivity fails. Under the new
rule, however, (<UU (+ j 1) a) is false.

For functions that are mathematically associative (and possibly commu-

tative), a Common Lisp implementation may process the arguments in any

manner consistent with associative (and possibly commutative) rearrange-

ment. This does not affect the order in which the argument forms are eval-
uated, of course; that order is always left to right, as in all Common Lisp

function calls. What is left loose is the order in which the argument values

are processed. The point of all this is that implementations may differ in

which automatic coercions are applied because of differing orders of argument

processing. As an example, consider this expression:

(+ 1/3 2/3 1.0D0 1.0 1.0E-15)

One implementation might process the arguments from left to right, first

adding 1/3 and 2/3 to get 1, then converting that to a double-precision

floating-point number for combination with 1.0D0, then successively convert-

ing and adding 1.0 and 1.0E-15. Another implementation might process the
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arguments from right to left, first performing a single-precision floating-point

addition of 1.0 and 1.0E-15 (and probably losing some accuracy in the pro-

cess!), then converting the sum to double precision and adding 1.0D0, then

converting 2/3 to double-precision floating-point and adding it, and then con-

verting 1/3 and adding that. A third implementation might first scan all the
arguments, process all the rationals first to keep that part of the computation

exact, then find an argument of the largest floating-point format among all

the arguments and add that, and then add in all other arguments, converting

each in turn (all in a perhaps misguided attempt to make the computation
as accurate as possible). In any case, all three strategies are legitimate. The

user can of course control the order of processing explicitly by writing several

calls; for example:

(+ (+ 1/3 2/3) (+ 1.0D0 1.0E-15) 1.0)

The user can also control all coercions simply by writing calls to coercion

functions explicitly.

In general, then, the type of the result of a numerical function is a floating-
point number of the largest format among all the floating-point arguments to

the function; but if the arguments are all rational, then the result is rational

(except for functions that can produce mathematically irrational results, in

which case a single-format floating-point number may result).

There is a separate rule of complex contagion. As a rule, complex numbers
never result from a numerical function unless one or more of the arguments

is complex. (Exceptions to this rule occur among the irrational and transcen-

dental functions, specifically expt, log, sqrt, asin, acos, acosh, and atanh;

see section 12.5.) When a non-complex number meets a complex number,
the non-complex number is in effect first converted to a complex number by

providing an imaginary part of zero.

If any computation produces a result that is a ratio of two integers such

that the denominator evenly divides the numerator, then the result is imme-

diately converted to the equivalent integer. This is called the rule of rational
canonicalization.

If the result of any computation would be a complex rational with a zero

imaginary part, the result is immediately converted to a non-complex rational

number by taking the real part. This is called the rule of complex canonical-
ization. Note that this rule does not apply to complex numbers whose com-

ponents are floating-point numbers. Whereas #--C(5 0) and 5 are not distinct

values in Common Lisp (they are always eql), #--C(5.0 0.0) and 5.0 are al-

ways distinct values in Common Lisp (they are never eql, although they are

equalp).
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12.2. Predicates on Numbers

Each of the following functions tests a single number for a specific property.

Each function requires that its argument be a number; to call one with a

non-number is an error.

[Function]zerop number

This predicate is true if number is zero (the integer zero, a floating-point zero,

or a complex zero), and is false otherwise. Regardless of whether an implemen-

tation provides distinct representations for positive and negative floating-point

zeros, (zerop -0.0) is always true. It is an error if the argument number is
not a number.

[Function]plusp number

This predicate is true if number is strictly greater than zero, and is false

otherwise. It is an error if the argument number is not a non-complex number.

[Function]minusp number

This predicate is true if number is strictly less than zero, and is false otherwise.

Regardless of whether an implementation provides distinct representations

for positive and negative floating-point zeros, (minusp -0.0) is always false.

(The function float-sign may be used to distinguish a negative zero.) It is
an error if the argument number is not a non-complex number.

[Function]oddp integer

This predicate is true if the argument integer is odd (not divisible by 2), and

otherwise is false. It is an error if the argument is not an integer.

[Function]evenp integer

This predicate is true if the argument integer is even (divisible by 2), and

otherwise is false. It is an error if the argument is not an integer.

See also the data-type predicates integerp, rationalp, floatp, complexp,

and numberp.
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12.3. Comparisons on Numbers

Each of the functions in this section requires that its arguments all be num-

bers; to call one with a non-number is an error. Unless otherwise specified,

each works on all types of numbers, automatically performing any required

coercions when arguments are of different types.

[Function]UU number &rest more-numbers

[Function]/UU number &rest more-numbers

[Function]< number &rest more-numbers
[Function]> number &rest more-numbers

[Function]<UU number &rest more-numbers

[Function]>UU number &rest more-numbers

These functions each take one or more arguments. If the sequence of argu-
ments satisfies a certain condition:

UU all the same

/UU all different
< monotonically increasing

> monotonically decreasing

<UU monotonically nondecreasing

>UU monotonically nonincreasing

then the predicate is true, and otherwise is false. Complex numbers may

be compared using UU and /UU, but the others require non-complex arguments.

Two complex numbers are considered equal by UU if their real parts are equal

and their imaginary parts are equal according to UU. A complex number may
be compared with a non-complex number with UU or /UU. For example:

(UU 3 3) is true. (/UU 3 3) is false.

(UU 3 5) is false. (/UU 3 5) is true.

(UU 3 3 3 3) is true. (/UU 3 3 3 3) is false.
(UU 3 3 5 3) is false. (/UU 3 3 5 3) is false.

(UU 3 6 5 2) is false. (/UU 3 6 5 2) is true.

(UU 3 2 3) is false. (/UU 3 2 3) is false.

(< 3 5) is true. (<UU 3 5) is true.
(< 3 -5) is false. (<UU 3 -5) is false.

(< 3 3) is false. (<UU 3 3) is true.

(< 0 3 4 6 7) is true. (<UU 0 3 4 6 7) is true.

(< 0 3 4 4 6) is false. (<UU 0 3 4 4 6) is true.

(> 4 3) is true. (>UU 4 3) is true.
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(> 4 3 2 1 0) is true. (>UU 4 3 2 1 0) is true.

(> 4 3 3 2 0) is false. (>UU 4 3 3 2 0) is true.

(> 4 3 1 2 0) is false. (>UU 4 3 1 2 0) is false.

(UU 3) is true. (/UU 3) is true.

(< 3) is true. (<UU 3) is true.
(UU 3.0 #--C(3.0 0.0)) is true. (/UU 3.0 #--C(3.0 1.0)) is true.

(UU 3 3.0) is true. (UU 3.0s0 3.0d0) is true.

(UU 0.0 -0.0) is true. (UU 5/2 2.5) is true.

(> 0.0 -0.0) is false. (UU 0 -0.0) is true.

With two arguments, these functions perform the usual arithmetic comparison

tests. With three or more arguments, they are useful for range checks, as

shown in the following example:

(<UU 0 x 9) ;true if x is between 0 and 9, inclusive

(< 0.0 x 1.0) ;true if x is between 0.0 and 1.0, exclusive
(< -1 j (length s)) ;true if j is a valid index for s

(<UU 0 j k (- (length s) 1)) ;true if j and k are each valid

; indices for s and j ≤ k

Rationale: The “unequality” relation is called /UU rather than <> (the name used
in Pascal) for two reasons. First, /UU of more than two arguments is not the same
as the or of < and > of those same arguments. Second, unequality is meaningful
for complex numbers even though < and > are not. For both reasons it would be
misleading to associate unequality with the names of < and >.

Compatibility note: In Common Lisp, the comparison operations perform
“mixed-mode” comparisons: (UU 3 3.0) is true. In MacLisp, there must be ex-
actly two arguments, and they must be either both fixnums or both floating-point
numbers. To compare two numbers for numerical equality and type equality, use
eql.

[Function]max number &rest more-numbers
[Function]min number &rest more-numbers

The arguments may be any non-complex numbers. max returns the argument

that is greatest (closest to positive infinity). min returns the argument that

is least (closest to negative infinity).

For max, if the arguments are a mixture of rationals and floating-point

numbers, and the largest argument is a rational, then the implementation

is free to produce either that rational or its floating-point approximation; if
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the largest argument is a floating-point number of a smaller format than the

largest format of any floating-point argument, then the implementation is free

to return the argument in its given format or expanded to the larger format.

More concisely, the implementation has the choice of returning the largest

argument as is or applying the rules of floating-point contagion, taking all the
arguments into consideration for contagion purposes. Also, if two or more of

the arguments are equal, then any one of them may be chosen as the value

to return. Similar remarks apply to min (replacing “largest argument” by

“smallest argument”).

(max 6 12) ⇒ 12 (min 6 12) ⇒ 6

(max -6 -12) ⇒ -6 (min -6 -12) ⇒ -12

(max 1 3 2 -7) ⇒ 3 (min 1 3 2 -7) ⇒ -7

(max -2 3 0 7) ⇒ 7 (min -2 3 0 7) ⇒ -2

(max 3) ⇒ 3 (min 3) ⇒ 3

(max 5.0 2) ⇒ 5.0 (min 5.0 2) ⇒ 2 or 2.0

(max 3.0 7 1) ⇒ 7 or 7.0 (min 3.0 7 1) ⇒ 1 or 1.0

(max 1.0s0 7.0d0) ⇒ 7.0d0

(min 1.0s0 7.0d0) ⇒ 1.0s0 or 1.0d0

(max 3 1 1.0s0 1.0d0) ⇒ 3 or 3.0d0

(min 3 1 1.0s0 1.0d0) ⇒ 1 or 1.0s0 or 1.0d0

12.4. Arithmetic Operations

Each of the functions in this section requires that its arguments all be num-
bers; to call one with a non-number is an error. Unless otherwise specified,

each works on all types of numbers, automatically performing any required

coercions when arguments are of different types.

[Function]+ &rest numbers

This returns the sum of the arguments. If there are no arguments, the result

is 0, which is an identity for this operation.

Compatibility note: While + is compatible with its use in Lisp Machine Lisp, it
is incompatible with MacLisp, which uses + for fixnum-only addition.

[Function]- number &rest more-numbers

The function -, when given one argument, returns the negative of that argu-

ment.
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The function -, when given more than one argument, successively subtracts

from the first argument all the others, and returns the result. For example,

(- 3 4 5) ⇒ -6.

Compatibility note: While - is compatible with its use in Lisp Machine Lisp, it
is incompatible with MacLisp, which uses - for fixnum-only subtraction. Also, -

differs from difference as used in most Lisp systems in the case of one argument.

[Function]* &rest numbers

This returns the product of the arguments. If there are no arguments, the

result is 1, which is an identity for this operation.

Compatibility note: While * is compatible with its use in Lisp Machine Lisp, it
is incompatible with MacLisp, which uses * for fixnum-only multiplication.

[Function]/ number &rest more-numbers

The function /, when given more than one argument, successively divides the

first argument by all the others and returns the result.

It is generally accepted that it is an error for any argument other than the
first to be zero.

With one argument, / reciprocates the argument.

It is generally accepted that it is an error in this case for the argument to

be zero.

/ will produce a ratio if the mathematical quotient of two integers is not
an exact integer. For example:

(/ 12 4) ⇒ 3

(/ 13 4) ⇒ 13/4

(/ -8) ⇒ -1/8

(/ 3 4 5) ⇒ 3/20

To divide one integer by another producing an integer result, use one of the

functions floor, ceiling, truncate, or round.
If any argument is a floating-point number, then the rules of floating-point

contagion apply.

Compatibility note: What / does is totally unlike what the usual // or quotient
operator does. In most Lisp systems, quotient behaves like / except when dividing
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integers, in which case it behaves like truncate of two arguments; this behavior is
mathematically intractable, leading to such anomalies as

(quotient 1.0 2.0) ⇒ 0.5 but (quotient 1 2) ⇒ 0

In contrast, the Common Lisp function / produces these results:

(/ 1.0 2.0) ⇒ 0.5 and (/ 1 2) ⇒ 1/2

In practice quotient is used only when one is sure that both arguments are integers,
or when one is sure that at least one argument is a floating-point number. / is
tractable for its purpose and works for any numbers.

[Function]1+ number

[Function]1- number

(1+ x) is the same as (+ x 1).

(1- x) is the same as (- x 1). Note that the short name may be confusing:
(1- x) does not mean 1− x ; rather, it means x − 1.

Rationale: These are included primarily for compatibility with MacLisp and Lisp
Machine Lisp. Some programmers prefer always to write (+ x 1) and (- x 1)

instead of (1+ x) and (1- x).

Implementation note: Compiler writers are very strongly encouraged to ensure
that (1+ x) and (+ x 1) compile into identical code, and similarly for (1- x) and
(- x 1), to avoid pressure on a Lisp programmer to write possibly less clear code for
the sake of efficiency. This can easily be done as a source-language transformation.

[Macro]incf place [delta]

[Macro]decf place [delta]

The number produced by the form delta is added to (incf) or subtracted

from (decf) the number in the generalized variable named by place, and the

sum is stored back into place and returned. The form place may be any form

acceptable as a generalized variable to setf. If delta is not supplied, then the
number in place is changed by 1. For example:

(setq n 0)

(incf n) ⇒ 1 and now n ⇒ 1

(decf n 3) ⇒ -2 and now n ⇒ -2

(decf n -5) ⇒ 3 and now n ⇒ 3

(decf n) ⇒ 2 and now n ⇒ 2
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The effect of (incf place delta) is roughly equivalent to

(setf place (+ place delta))

except that the latter would evaluate any subforms of place twice, whereas

incf takes care to evaluate them only once. Moreover, for certain place forms

incf may be significantly more efficient than the setf version.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-

tion 7.2).

[Function]conjugate number

This returns the complex conjugate of number. The conjugate of a non-

complex number is itself. For a complex number z,

(conjugate z) ≡ (complex (realpart z) (- (imagpart z)))

For example:

(conjugate #--C(3/5 4/5)) ⇒ #--C(3/5 -4/5)

(conjugate #--C(0.0D0 -1.0D0)) ⇒ #--C(0.0D0 1.0D0)

(conjugate 3.7) ⇒ 3.7

[Function]gcd &rest integers

This returns the greatest common divisor of all the arguments, which must be

integers. The result of gcd is always a non-negative integer. If one argument

is given, its absolute value is returned. If no arguments are given, gcd returns

0, which is an identity for this operation. For three or more arguments,

(gcd a b c ... z) ≡ (gcd (gcd a b) c ... z)

Here are some examples of the use of gcd:

(gcd 91 -49) ⇒ 7

(gcd 63 -42 35) ⇒ 7

(gcd 5) ⇒ 5

(gcd -4) ⇒ 4

(gcd) ⇒ 0

[Function]lcm integer &rest more-integers

This returns the least common multiple of its arguments, which must be in-

tegers. The result of lcm is always a non-negative integer. For two arguments

that are not both zero,



NUMBERS 319

(lcm a b) ≡ (/ (abs (* a b)) (gcd a b))

If one or both arguments are zero,

(lcm a 0) ≡ (lcm 0 a) ≡ 0

For one argument, lcm returns the absolute value of that argument. For

three or more arguments,

(lcm a b c ... z) ≡ (lcm (lcm a b) c ... z)

Some examples:

(lcm 14 35) ⇒ 70

(lcm 0 5) ⇒ 0

(lcm 1 2 3 4 5 6) ⇒ 60

Mathematically, (lcm) should return infinity. Because Common Lisp does

not have a representation for infinity, lcm, unlike gcd, always requires at least

one argument.

X3J13 voted in January 1989 〈107〉 to specify that (lcm) ⇒ 1.

This is one of my biggest boners. The identity for lcm is of course 1, not

infinity, and so (lcm) ought to have been defined to return 1. Sorry about
that, though in point of fact very few users have complained to me that this

mistake in the first edition has cramped their programming style.

12.5. Irrational and Transcendental Functions

Common Lisp provides no data type that can accurately represent irrational

numerical values. The functions in this section are described as if the results

were mathematically accurate, but actually they all produce floating-point

approximations to the true mathematical result in the general case. In some
places mathematical identities are set forth that are intended to elucidate the

meanings of the functions; however, two mathematically identical expressions

may be computationally different because of errors inherent in the floating-

point approximation process.

When the arguments to a function in this section are all rational and the
true mathematical result is also (mathematically) rational, then unless oth-

erwise noted an implementation is free to return either an accurate result of

type rational or a single-precision floating-point approximation. If the argu-

ments are all rational but the result cannot be expressed as a rational number,

then a single-precision floating-point approximation is always returned.
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X3J13 voted in March 1989 〈29〉 to clarify that the provisions of the previ-

ous paragraph apply to complex numbers. If the arguments to a function are

all of type (or rational (complex rational)) and the true mathematical

result is (mathematically) a complex number with rational real and imagi-

nary parts, then unless otherwise noted an implementation is free to return
either an accurate result of type (or rational (complex rational)) or a

single-precision floating-point approximation of type single-float (permis-

sible only if the imaginary part of the true mathematical result is zero) or

(complex single-float). If the arguments are all of type (or rational

(complex rational)) but the result cannot be expressed as a rational or

complex rational number, then the returned value will be of type single-

float (permissible only if the imaginary part of the true mathematical result

is zero) or (complex single-float).

The rules of floating-point contagion and complex contagion are effectively

obeyed by all the functions in this section except expt, which treats some cases
of rational exponents specially. When, possibly after contagious conversion,

all of the arguments are of the same floating-point or complex floating-point

type, then the result will be of that same type unless otherwise noted.

Implementation note: There is a “floating-point cookbook” by Cody and Waite
[14] that may be a useful aid in implementing the functions defined in this section.

12.5.1. Exponential and Logarithmic Functions

Along with the usual one-argument and two-argument exponential and loga-

rithm functions, sqrt is considered to be an exponential function, because it

raises a number to the power 1/2.

[Function]exp number

Returns e raised to the power number, where e is the base of the natural

logarithms.

[Function]expt base-number power-number

Returns base-number raised to the power power-number. If the base-number

is of type rational and the power-number is an integer, the calculation will

be exact and the result will be of type rational; otherwise a floating-point

approximation may result.
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X3J13 voted in March 1989 〈29〉 to clarify that provisions similar to those

of the previous paragraph apply to complex numbers. If the base-number

is of type (complex rational) and the power-number is an integer, the

calculation will also be exact and the result will be of type (or rational

(complex rational)); otherwise a floating-point or complex floating-point
approximation may result.

When power-number is 0 (a zero of type integer), then the result is always

the value 1 in the type of base-number, even if the base-number is zero (of any

type). That is:

(expt x 0) ≡ (coerce 1 (type-of x))

If the power-number is a zero of any other data type, then the result is also the

value 1, in the type of the arguments after the application of the contagion
rules, with one exception: it is an error if base-number is zero when the power-

number is a zero not of type integer.

Implementations of expt are permitted to use different algorithms for the

cases of a rational power-number and a floating-point power-number; the mo-

tivation is that in many cases greater accuracy can be achieved for the case of
a rational power-number. For example, (expt pi 16) and (expt pi 16.0)

may yield slightly different results if the first case is computed by repeated

squaring and the second by the use of logarithms. Similarly, an implementa-

tion might choose to compute (expt x 3/2) as if it had been written (sqrt

(expt x 3)), perhaps producing a more accurate result than would (expt x

1.5). It is left to the implementor to determine the best strategies.

X3J13 voted in January 1989 〈75〉 to clarify that the preceding remark is

in error, because (sqrt (expt x 3)) does not produce the same value as

(expt x 3/2) in most cases, and to specify that the specification of the prin-
cipal value of expt as given in section 12.5.3 should be regarded as definitive.

As an example of the difficulty, let x = cis 2π
3 = − 1

2 +
√

3
2 i . Then

√
x 3 =√

1 = 1, but x 3/2 = e(3/2) log x = e(3/2)(2π/3)i = eπi = −1. Another example

is x = −1; then
√

x 3 =
√
−1 = i , but x 3/2 = e(3/2) log x = e(3/2)πi = −i .

The result of expt can be a complex number, even when neither argument

is complex, if base-number is negative and power-number is not an integer.

The result is always the principal complex value. Note that (expt -8 1/3)

is not permitted to return -2; while -2 is indeed one of the cube roots of -8,

it is not the principal cube root, which is a complex number approximately

equal to #--C(1.0 1.73205).

Notice of correction. The first edition gave the incorrect value #--C(0.5

1.73205) for the principal cube root of -8. The correct value is #--C(1.0
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1.73205), that is, 1 +
√

3i . I simply don’t know what I was thinking of!

[Function]log number &optional base

Returns the logarithm of number in the base base, which defaults to e, the

base of the natural logarithms. For example:

(log 8.0 2) ⇒ 3.0

(log 100.0 10) ⇒ 2.0

The result of (log 8 2) may be either 3 or 3.0, depending on the implemen-

tation.

Note that log may return a complex result when given a non-complex

argument if the argument is negative. For example:

(log -1.0) ≡ (complex 0.0 (float pi 0.0))

X3J13 voted in January 1989 〈101〉 to specify certain floating-point be-

havior when minus zero is supported. As a part of that vote it approved

a mathematical definition of complex logarithm in terms of real logarithm,

absolute value, arc tangent of two real arguments, and the phase function as

Logarithm log |z |+ i phase z

This specifies the branch cuts precisely whether minus zero is supported or

not; see phase and atan.

[Function]sqrt number

Returns the principal square root of number. If the number is not complex
but is negative, then the result will be a complex number. For example:

(sqrt 9.0) ⇒ 3.0

(sqrt -9.0) ⇒ #--c(0.0 3.0)

The result of (sqrt 9) may be either 3 or 3.0, depending on the implemen-

tation. The result of (sqrt -9) may be either #--c(0 3) or #--c(0.0 3.0).

X3J13 voted in January 1989 〈101〉 to specify certain floating-point be-
havior when minus zero is supported. As a part of that vote it approved a

mathematical definition of complex square root in terms of complex logarithm

and exponential functions as

Square root e(log z)/2
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This specifies the branch cuts precisely whether minus zero is supported or

not; see phase and atan.

[Function]isqrt integer

Integer square root: the argument must be a non-negative integer, and the

result is the greatest integer less than or equal to the exact positive square

root of the argument. For example:

(isqrt 9) ⇒ 3

(isqrt 12) ⇒ 3

(isqrt 300) ⇒ 17

(isqrt 325) ⇒ 18

12.5.2. Trigonometric and Related Functions

Some of the functions in this section, such as abs and signum, are appar-

ently unrelated to trigonometric functions when considered as functions of

real numbers only. The way in which they are extended to operate on com-
plex numbers makes the trigonometric connection clear.

[Function]abs number

Returns the absolute value of the argument. For a non-complex number x,

(abs x) ≡ (if (minusp x) (- x) x)

and the result is always of the same type as the argument.

For a complex number z, the absolute value may be computed as

(sqrt (+ (expt (realpart z) 2) (expt (imagpart z) 2)))

Implementation note: The careful implementor will not use this formula directly
for all complex numbers but will instead handle very large or very small components
specially to avoid intermediate overflow or underflow.

For example:

(abs #--c(3.0 -4.0)) ⇒ 5.0
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The result of (abs #--c(3 4)) may be either 5 or 5.0, depending on the im-

plementation.

[Function]phase number

The phase of a number is the angle part of its polar representation as a

complex number. That is,

(phase z) ≡ (atan (imagpart z) (realpart z))

The result is in radians, in the range −π (exclusive) to π (inclusive). The
........................................................................................................................................................................................................

phase of a positive non-complex number is zero; that of a negative non-

complex number is π. The phase of zero is arbitrarily defined to be zero.

X3J13 voted in January 1989 〈101〉 to specify certain floating-point behavior

when minus zero is supported; phase is still defined in terms of atan as above,

but thanks to a change in atan the range of phase becomes −π inclusive to π

inclusive. The value −π results from an argument whose real part is negative
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and whose imaginary part is minus zero. The phase function therefore has a

branch cut along the negative real axis. The phase of +0+0i is +0, of +0−0i

is −0, of −0 + 0i is +π, and of −0− 0i is −π.

If the argument is a complex floating-point number, the result is a floating-

point number of the same type as the components of the argument. If the
argument is a floating-point number, the result is a floating-point number

of the same type. If the argument is a rational number or complex rational

number, the result is a single-format floating-point number.

[Function]signum number

By definition,

(signum x) ≡ (if (zerop x) x (/ x (abs x)))

For a rational number, signum will return one of -1, 0, or 1 according to
whether the number is negative, zero, or positive. For a floating-point number,

the result will be a floating-point number of the same format whose value is

−1, 0, or 1. For a complex number z, (signum z) is a complex number of

the same phase but with unit magnitude, unless z is a complex zero, in which
case the result is z. For example:

(signum 0) ⇒ 0

(signum -3.7L5) ⇒ -1.0L0

(signum 4/5) ⇒ 1

(signum #--C(7.5 10.0)) ⇒ #--C(0.6 0.8)

(signum #--C(0.0 -14.7)) ⇒ #--C(0.0 -1.0)

For non-complex rational numbers, signum is a rational function, but it may

be irrational for complex arguments.

[Function]sin radians

[Function]cos radians

[Function]tan radians

sin returns the sine of the argument, cos the cosine, and tan the tangent.
The argument is in radians. The argument may be complex.

[Function]cis radians

This computes e i·radians. The name cis means “cos + i sin,” because e iθ =

cos θ + i sin θ. The argument is in radians and may be any non-complex
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number. The result is a complex number whose real part is the cosine of the

argument and whose imaginary part is the sine. Put another way, the result

is a complex number whose phase is the equal to the argument (mod 2π) and

whose magnitude is unity.

Implementation note: Often it is cheaper to calculate the sine and cosine of a
single angle together than to perform two disjoint calculations.

[Function]asin number

[Function]acos number

asin returns the arc sine of the argument, and acos the arc cosine. The result

is in radians. The argument may be complex.

The arc sine and arc cosine functions may be defined mathematically for

an argument z as follows:

Arc sine −i log
(

iz +
√

1− z 2
)

Arc cosine −i log
(

z + i
√

1− z 2
)

Note that the result of asin or acos may be complex even if the argument is

not complex; this occurs when the absolute value of the argument is greater

than 1.

Kahan [25] suggests for acos the defining formula

Arc cosine
2 log

(√

1+z
2 + i

√

1−z
2

)

i

or even the much simpler (π/2)−arcsin z . Both equations are mathematically
equivalent to the formula shown above.

Implementation note: These formulae are mathematically correct, assuming com-
pletely accurate computation. They may be terrible methods for floating-point
computation. Implementors should consult a good text on numerical analysis. The
formulae given above are not necessarily the simplest ones for real-valued compu-
tations, either; they are chosen to define the branch cuts in desirable ways for the
complex case.

[Function]atan y &optional x

An arc tangent is calculated and the result is returned in radians.
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With two arguments y and x, neither argument may be complex. The

result is the arc tangent of the quantity y/x. The signs of y and x are used to

derive quadrant information; moreover, x may be zero provided y is not zero.

The value of atan is always between −π (exclusive) and π (inclusive). The

following table details various special cases.

Condition Cartesian Locus Range of Result

y = 0 x > 0 Positive x-axis 0

y > 0 x > 0 Quadrant I 0 < result < π/2

y > 0 x = 0 Positive y-axis π/2

y > 0 x < 0 Quadrant II π/2 < result < π

y = 0 x < 0 Negative x-axis π
y < 0 x < 0 Quadrant III −π < result < −π/2

y < 0 x = 0 Negative y-axis −π/2

y < 0 x > 0 Quadrant IV −π/2 < result < 0

y = 0 x = 0 Origin error

X3J13 voted in January 1989 〈101〉 to specify certain floating-point behavior
when minus zero is supported. When there is a minus zero, the preceding table

must be modified slightly:

Condition Cartesian Locus Range of Result

y = +0 x > 0 Just above positive x-axis +0

y > 0 x > 0 Quadrant I +0 < result < π/2

y > 0 x = ±0 Positive y-axis π/2
y > 0 x < 0 Quadrant II π/2 < result < π

y = +0 x < 0 Just below negative x-axis π

y = −0 x < 0 Just above negative x-axis π

y < 0 x < 0 Quadrant III −π < result < −π/2
y < 0 x = ±0 Negative y-axis −π/2

y < 0 x > 0 Quadrant IV −π/2 < result < −0

y = −0 x > 0 Just below positive x-axis −0

y = +0 x = +0 Near origin +0

y = −0 x = +0 Near origin −0
y = +0 x = −0 Near origin π

y = −0 x = −0 Near origin −π

Note that the case y = 0, x = 0 is an error in the absence of minus zero,

but the four cases y = ±0, x = ±0 are defined in the presence of minus zero.

With only one argument y, the argument may be complex. The result is
........................................................................................................................................................................................................

the arc tangent of y, which may be defined by the following formula:
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Arc tangent −i log
(

(1 + iy)
√

1/(1 + y2)
)
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Implementation note: This formula is mathematically correct, assuming com-
pletely accurate computation. It may be a terrible method for floating-point com-
putation. Implementors should consult a good text on numerical analysis. The
formula given above is not necessarily the simplest one for real-valued computa-
tions, either; it is chosen to define the branch cuts in desirable ways for the complex
case.

X3J13 voted in January 1989 〈28〉 to replace the preceding formula with

the formula

Arc tangent
log(1 + iy) − log(1− iy)

2i

This change alters the direction of continuity for the branch cuts, which alters
the result returned by atan only for arguments on the imaginary axis that

are of magnitude greater than 1. See section 12.5.3 for further details.

For a non-complex argument y, the result is non-complex and lies between

−π/2 and π/2 (both exclusive).

Compatibility note: MacLisp has a function called atan whose range is from 0 to
2π. Almost every other programming language (ANSI Fortran, IBM PL/1, Interlisp)
has a two-argument arc tangent function with range −π to π. Lisp Machine Lisp
provides two two-argument arc tangent functions, atan (compatible with MacLisp)
and atan2 (compatible with all others).

Common Lisp makes two-argument atan the standard one with range −π to
π. Observe that this makes the one-argument and two-argument versions of atan
compatible in the sense that the branch cuts do not fall in different places. The
Interlisp one-argument function arctan has a range from 0 to π, while nearly every
other programming language provides the range −π/2 to π/2 for one-argument arc
tangent! Nevertheless, since Interlisp uses the standard two-argument version of arc
tangent, its branch cuts are inconsistent anyway.

[Constant ]pi

This global variable has as its value the best possible approximation to π in

long floating-point format. For example:

(defun sind (x) ;The argument is in degrees
(sin (* x (/ (float pi x) 180))))

An approximation to π in some other precision can be obtained by writing

(float pi x), where x is a floating-point number of the desired precision,
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or by writing (coerce pi type), where type is the name of the desired type,

such as short-float.



NUMBERS 331

[Function]sinh number

[Function]cosh number

[Function]tanh number

[Function]asinh number

[Function]acosh number
[Function]atanh number

These functions compute the hyperbolic sine, cosine, tangent, arc sine, arc
........................................................................................................................................................................................................

cosine, and arc tangent functions, which are mathematically defined for an

argument z as follows:

Hyperbolic sine (ez − e−z)/2

Hyperbolic cosine (ez + e−z)/2
Hyperbolic tangent (ez − e−z)/(ez + e−z)

Hyperbolic arc sine log
(

z +
√

1 + z 2
)

Hyperbolic arc cosine log
(

z + (z + 1)
√

(z − 1)/(z + 1)
)

Hyperbolic arc tangent log
(

(1 + z )
√

1− 1/z 2
)

WRONG!

WARNING! The formula shown above for hyperbolic arc tangent is incor-
rect. It is not a matter of incorrect branch cuts; it simply does not compute

anything like a hyperbolic arc tangent. This unfortunate error in the first edi-

tion was the result of mistranscribing a (correct) APL formula from Penfield’s

paper [36]. The formula should have been transcribed as

Hyperbolic arc tangent log
(

(1 + z )
√

1/(1− z 2)
)

A proposal was submitted to X3J13 in September 1989 to replace the formulae

for acosh and atanh. See section 12.5.3 for further discussion.

Note that the result of acosh may be complex even if the argument is not

complex; this occurs when the argument is less than 1. Also, the result of
atanh may be complex even if the argument is not complex; this occurs when

the absolute value of the argument is greater than 1.

Implementation note: These formulae are mathematically correct, assuming com-
pletely accurate computation. They may be terrible methods for floating-point
computation. Implementors should consult a good text on numerical analysis. The
formulae given above are not necessarily the simplest ones for real-valued compu-
tations, either; they are chosen to define the branch cuts in desirable ways for the
complex case.
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12.5.3. Branch Cuts, Principal Values, and Boundary Con-
ditions in the Complex Plane

Many of the irrational and transcendental functions are multiply defined in

the complex domain; for example, there are in general an infinite number of

complex values for the logarithm function. In each such case, a principal value

must be chosen for the function to return. In general, such values cannot be
chosen so as to make the range continuous; lines in the domain called branch

cuts must be defined, which in turn define the discontinuities in the range.

Common Lisp defines the branch cuts, principal values, and boundary con-
ditions for the complex functions following a proposal for complex functions

in APL [36]. The contents of this section are borrowed largely from that

proposal.

Compatibility note: The branch cuts defined here differ in a few very minor re-
spects from those advanced by W. Kahan, who considers not only the “usual” defini-
tions but also the special modifications necessary for IEEE proposed floating-point
arithmetic, which has infinities and minus zero as explicit computational objects.
For example, he proposes that

√
−4 + 0i = 2i , but

√
−4− 0i = −2i .

It may be that the differences between the APL proposal and Kahan’s proposal
will be ironed out. If so, Common Lisp may be changed as necessary to be compatible
with these other groups. Any changes from the specification below are likely to be
quite minor, probably concerning primarily questions of which side of a branch cut
is continuous with the cut itself.

Indeed, X3J13 voted in January 1989 〈28〉 to alter the direction of continuity
for the branch cuts of atan, and also 〈101〉 to address the treatment of branch

cuts in implementations that have a distinct floating-point minus zero.

The treatment of minus zero centers in two-argument atan. If there is no

minus zero, then the branch cut runs just below the negative real axis as

before, and the range of two-argument atan is (−π, π]. If there is a minus

zero, however, then the branch cut runs precisely on the negative real axis,

skittering between pairs of numbers of the form −x ± 0i , and the range of
two-argument atan is [−π, π].

The treatment of minus zero by all other irrational and transcendental func-
tions is then specified by defining those functions in terms of two-argument

atan. First, phase is defined in terms of two-argument atan, and complex

abs in terms of real sqrt; then complex log is defined in terms of phase,

abs, and real log; then complex sqrt in terms of complex log; and finally all

others are defined in terms of these.
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Kahan [25] treats these matters in some detail and also suggests specific

algorithms for implementing irrational and transcendental functions in IEEE

standard floating-point arithmetic [23].

Remarks in the first edition about the direction of the continuity of branch

cuts continue to hold in the absence of minus zero and may be ignored if minus

zero is supported; since all branch cuts happen to run along the principal
axes, they run between plus zero and minus zero, and so each sort of zero is

associated with the obvious quadrant.

sqrt

The branch cut for square root lies along the negative real axis, continuous

with quadrant II. The range consists of the right half-plane, including the
non-negative imaginary axis and excluding the negative imaginary axis.

X3J13 voted in January 1989 〈101〉 to specify certain floating-point be-

havior when minus zero is supported. As a part of that vote it approved a

mathematical definition of complex square root:

√
z = e(log z)/2

This defines the branch cuts precisely, whether minus zero is supported or
not.

phase

The branch cut for the phase function lies along the negative real axis, con-

tinuous with quadrant II. The range consists of that portion of the real axis
between −π (exclusive) and π (inclusive).

X3J13 voted in January 1989 〈101〉 to specify certain floating-point be-

havior when minus zero is supported. As a part of that vote it approved a

mathematical definition of phase:

phase z = arctan(=z ,<z )

where =z is the imaginary part of z and <z the real part of z . This defines
the branch cuts precisely, whether minus zero is supported or not.

log

The branch cut for the logarithm function of one argument (natural logarithm)

lies along the negative real axis, continuous with quadrant II. The domain

excludes the origin. For a complex number z , log z is defined to be
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log z = (log |z |) + i(phase z )

Therefore the range of the one-argument logarithm function is that strip of

the complex plane containing numbers with imaginary parts between −π (ex-

clusive) and π (inclusive).

The X3J13 vote on minus zero 〈101〉 would alter that exclusive bound of

−π to be inclusive if minus zero is supported.

The two-argument logarithm function is defined as logb z = (log z )/(log b).

This defines the principal values precisely. The range of the two-argument
logarithm function is the entire complex plane. It is an error if z is zero. If z

is non-zero and b is zero, the logarithm is taken to be zero.

exp

The simple exponential function has no branch cut.

expt

The two-argument exponential function is defined as bx = ex log b. This defines

the principal values precisely. The range of the two-argument exponential

function is the entire complex plane. Regarded as a function of x , with b
fixed, there is no branch cut. Regarded as a function of b, with x fixed,

there is in general a branch cut along the negative real axis, continuous with

quadrant II. The domain excludes the origin. By definition, 00 = 1. If b = 0

and the real part of x is strictly positive, then bx = 0. For all other values of
x , 0x is an error.

asin

The following definition for arc sine determines the range and branch cuts:

arcsin z = −i log
(

iz +
√

1− z 2
)

This is equivalent to the formula

arcsin z =
arcsinh iz

i

recommended by Kahan [25].

The branch cut for the arc sine function is in two pieces: one along the

negative real axis to the left of −1 (inclusive), continuous with quadrant II,

and one along the positive real axis to the right of 1 (inclusive), continuous

with quadrant IV. The range is that strip of the complex plane containing
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numbers whose real part is between −π/2 and π/2. A number with real part

equal to −π/2 is in the range if and only if its imaginary part is non-negative;

a number with real part equal to π/2 is in the range if and only if its imaginary

part is non-positive.

acos

The following definition for arc cosine determines the range and branch cuts:

arccos z = −i log
(

z + i
√

1− z 2
)

or, which is equivalent,

arccos z = π
2 − arcsin z

The branch cut for the arc cosine function is in two pieces: one along the
negative real axis to the left of −1 (inclusive), continuous with quadrant II,

and one along the positive real axis to the right of 1 (inclusive), continuous

with quadrant IV. This is the same branch cut as for arc sine. The range is

that strip of the complex plane containing numbers whose real part is between

zero and π. A number with real part equal to zero is in the range if and only
if its imaginary part is non-negative; a number with real part equal to π is in

the range if and only if its imaginary part is non-positive.

atan

The following definition for (one-argument) arc tangent determines the range

and branch cuts:

arctan z = −i log
(

(1 + iz )
√

1/(1 + z 2)
)

........................................................................................................................................................................................................

Beware of simplifying this formula; “obvious” simplifications are likely to

alter the branch cuts or the values on the branch cuts incorrectly.

The branch cut for the arc tangent function is in two pieces: one along

the positive imaginary axis above i (exclusive), continuous with quadrant II,

and one along the negative imaginary axis below −i (exclusive), continuous
with quadrant IV. The points i and −i are excluded from the domain. The

range is that strip of the complex plane containing numbers whose real part

is between −π/2 and π/2. A number with real part equal to −π/2 is in the

range if and only if its imaginary part is strictly positive; a number with real

part equal to π/2 is in the range if and only if its imaginary part is strictly
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negative. Thus the range of the arc tangent function is identical to that of

the arc sine function with the points −π/2 and π/2 excluded.

X3J13 voted in January 1989 〈28〉 to replace the formula shown above with

the formula

arctan z =
log(1 + iz )− log(1− iz )

2i

This is equivalent to the formula

arctan z =
arctanh iz

i

recommended by Kahan [25]. It causes the upper branch cut to be continuous

with quadrant I rather than quadrant II, and the lower branch cut to be

continuous with quadrant III rather than quadrant IV; otherwise it agrees
with the formula of the first edition. Therefore this change alters the result

returned by atan only for arguments on the positive imaginary axis that are

of magnitude greater than 1. The full description for this new formula is as

follows.

The branch cut for the arc tangent function is in two pieces: one along
the positive imaginary axis above i (exclusive), continuous with quadrant I,

and one along the negative imaginary axis below −i (exclusive), continuous

with quadrant III. The points i and −i are excluded from the domain. The

range is that strip of the complex plane containing numbers whose real part
is between −π/2 and π/2. A number with real part equal to −π/2 is in the

range if and only if its imaginary part is strictly negative; a number with real

part equal to π/2 is in the range if and only if its imaginary part is strictly

positive. Thus the range of the arc tangent function is not identical to that

of the arc sine function.

asinh

The following definition for the inverse hyperbolic sine determines the range

and branch cuts:

arcsinh z = log
(

z +
√

1 + z 2
)

The branch cut for the inverse hyperbolic sine function is in two pieces: one

along the positive imaginary axis above i (inclusive), continuous with quadrant

I, and one along the negative imaginary axis below −i (inclusive), continuous

with quadrant III. The range is that strip of the complex plane containing

numbers whose imaginary part is between −π/2 and π/2. A number with
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imaginary part equal to −π/2 is in the range if and only if its real part is

non-positive; a number with imaginary part equal to π/2 is in the range if

and only if its real part is non-negative.

acosh

The following definition for the inverse hyperbolic cosine determines the range
and branch cuts:

arccosh z = log
(

z + (z + 1)
√

(z − 1)/(z + 1)
)

Kahan [25] suggests the formula

arccosh z = 2 log
(

√

(z + 1)/2 +
√

(z − 1)/2
)

pointing out that it yields the same principal value but eliminates a gratuitous
removable singularity at z = −1. A proposal was submitted to X3J13 in

September 1989 to replace the formula acosh with that recommended by

Kahan. There is a good possibility that it will be adopted.

The branch cut for the inverse hyperbolic cosine function lies along the real

axis to the left of 1 (inclusive), extending indefinitely along the negative real
axis, continuous with quadrant II and (between 0 and 1) with quadrant I. The

range is that half-strip of the complex plane containing numbers whose real

part is non-negative and whose imaginary part is between −π (exclusive) and

π (inclusive). A number with real part zero is in the range if its imaginary
part is between zero (inclusive) and π (inclusive).

atanh

The following definition for the inverse hyperbolic tangent determines the

range and branch cuts:

arctanh z = log
(

(1 + z )
√

1− 1/z 2
)

WRONG!
........................................................................................................................................................................................................

WARNING! The formula shown above for hyperbolic arc tangent is incor-

rect. It is not a matter of incorrect branch cuts; it simply does not compute

anything like a hyperbolic arc tangent. This unfortunate error in the first edi-

tion was the result of mistranscribing a (correct) APL formula from Penfield’s
paper [36]. The formula should have been transcribed as

arctanh z = log
(

(1 + z )
√

1/(1− z 2)
)
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Beware of simplifying this formula; “obvious” simplifications are likely to
........................................................................................................................................................................................................

alter the branch cuts or the values on the branch cuts incorrectly.

The branch cut for the inverse hyperbolic tangent function is in two pieces:

one along the negative real axis to the left of −1 (inclusive), continuous with
quadrant III, and one along the positive real axis to the right of 1 (inclusive),

continuous with quadrant I. The points −1 and 1 are excluded from the do-

main. The range is that strip of the complex plane containing numbers whose

imaginary part is between −π/2 and π/2. A number with imaginary part

equal to −π/2 is in the range if and only if its real part is strictly negative;
a number with imaginary part equal to π/2 is in the range if and only if its

real part is strictly positive. Thus the range of the inverse hyperbolic tangent

function is identical to that of the inverse hyperbolic sine function with the

points −πi/2 and πi/2 excluded.

A proposal was submitted to X3J13 in September 1989 to replace the for-

mula atanh with that recommended by Kahan [25]:

arctanh z =
(log(1 + z )− log(1− z ))

2

There is a good possibility that it will be adopted. If it is, the complete

description of the branch cuts of atanh will then be as follows.

The branch cut for the inverse hyperbolic tangent function is in two pieces:

one along the negative real axis to the left of −1 (inclusive), continuous with
quadrant II, and one along the positive real axis to the right of 1 (inclusive),

continuous with quadrant IV. The points −1 and 1 are excluded from the

domain. The range is that strip of the complex plane containing numbers

whose imaginary part is between −π/2 and π/2. A number with imaginary
part equal to −π/2 is in the range if and only if its real part is strictly positive;

a number with imaginary part equal to π/2 is in the range if and only if its

real part is strictly negative. Thus the range of the inverse hyperbolic tangent

function is not the same as that of the inverse hyperbolic sine function.

With these definitions, the following useful identities are obeyed throughout

the applicable portion of the complex domain, even on the branch cuts:

sin iz = i sinh z sinh iz = i sin z arctan iz = i arctanh z

cos iz = cosh z cosh iz = cos z arcsinh iz = i arcsin z

tan iz = i tanh z arcsin iz = i arcsinh z arctanh iz = i arctan z
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I thought it would be useful to provide some graphs illustrating the behavior

of the irrational and transcendental functions in the complex plane. It also

provides an opportunity to show off the Common Lisp code that was used to

generate them.

Imagine the complex plane to be decorated as follows. The real and imag-

inary axes are painted with thick lines. Parallels from the axes on both sides

at distances of 1, 2, and 3 are painted with thin lines; these parallels are dou-
bly infinite lines, as are the axes. Four annuli (rings) are painted in gradated

shades of gray. Ring 1, the inner ring, consists of points whose radial dis-

tances from the origin lie in the range [1/4, 1/2]; ring 2 is in the radial range

[3/4, 1]; ring 3, in the range [π/2, 2]; and ring 4, in the range [3, π]. Ring j is
divided into 2j+1 equal sectors, with each sector painted a different shade of

gray, darkening as one proceeds counterclockwise from the positive real axis.

We can illustrate the behavior of a numerical function f by considering how

it maps the complex plane to itself. More specifically, consider each point z

of the decorated plane. We decorate a new plane by coloring the point f (z )

with the same color that point z had in the original decorated plane. In other

words, the newly decorated plane illustrates how the f maps the axes, other
horizontal and vertical lines, and annuli.

In each figure we will show only a fragment of the complex plane, with the
real axis horizontal in the usual manner (−∞ to the left, +∞ to the right)

and the imaginary axis vertical (−∞i below, +∞i above). Each fragment

shows a region containing points whose real and imaginary parts are in the

range [−4.1, 4.1]. The axes of the new plane are shown as very thin lines, with
large tick marks at integer coordinates and somewhat smaller tick marks at

multiples of π/2.

Figure 12-1 shows the result of plotting the identity function (quite liter-
ally); the graph exhibits the decoration of the original plane.

Figures 12-2 through 12-20 show the graphs for the functions sqrt, exp,
log, sin, asin, cos, acos, tan, atan, sinh, asinh, cosh, acosh, tanh, and

atanh, and as a bonus, the graphs for the functions
√

1− z 2,
√

1 + z 2, (z −
1)/(z + 1), and (1 + z )/(1− z ). All of these are related to the trigonometric

functions in various ways. For example, if f (z ) = (z − 1)/(z + 1), then
tanh z = f (e2z), and if g(z ) =

√
1− z 2, then cos z = g(sin z ). It is instructive

to examine the graph for
√

1− z 2 and try to visualize how it transforms the

graph for sin into the graph for cos.

Each figure is accompanied by a commentary on what maps to what and

other interesting features. None of this material is terribly new; much of it

may be found in any good textbook on complex analysis. I believe that the

particular form in which the graphs are presented is novel, as well as the fact
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that the graphs have been generated as PostScript [1] code by Common Lisp

code. This PostScript code was then fed directly to the typesetting equipment

that set the pages for this book. Samples of this PostScript code follow the

figures themselves, after which the code for the entire program is presented.

In the commentaries that accompany the figures I sometimes speak of map-
ping the points ±∞ or ±∞i . When I say that function f maps +∞ to a

certain point z , I mean that

z = lim
x→+∞

f (x + 0i)

Similarly, when I say that f maps −∞i to z , I mean that

z = lim
y→−∞

f (0 + yi)

In other words, I am considering a limit as one travels out along one of the

main axes. I also speak in a similar manner of mapping to one of these

infinities.
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Figure 12-1: Initial Decoration of the Complex Plane (Identity Function)

This figure was produced in exactly the same manner as succeeding figures, simply
by plotting the function identity instead of a numerical function. Thus the first of
these figures was produced by the last function of the first edition. I knew it would
come in handy someday!
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Figure 12-2: Illustration of the Range of the Square Root Function

The sqrt function maps the complex plane into the right half of the plane by slitting
it along the negative real axis and then sweeping it around as if half-closing a folding
fan. The fan also shrinks, as if it were made of cotton and had gotten wetter at
the periphery than at the center. The positive real axis is mapped onto itself. The
negative real axis is mapped onto the positive imaginary axis (but if minus zero is
supported, then −x + 0i is mapped onto the positive imaginary axis and −x − 0i
onto the negative imaginary axis, assuming x > 0). The positive imaginary axis
is mapped onto the northeast diagonal, and the negative imaginary axis onto the
southeast diagonal. More generally, lines are mapped to rectangular hyperbolas (or
fragments thereof ) centered on the origin; lines through the origin are mapped to
degenerate hyperbolas (perpendicular lines through the origin).
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Figure 12-3: Illustration of the Range of the Exponential Function

The exp function maps horizontal lines to radii and maps vertical lines to circles
centered at the origin. The origin is mapped to 1. (It is instructive to compare
this graph with those of other functions that map the origin to 1, for example
(1 + z )/(1 − z ), cos z , and

√
1− z 2.) The entire real axis is mapped to the positive

real axis, with −∞ mapping to the origin and +∞ to itself. The imaginary axis
is mapped to the unit circle with infinite multiplicity (period 2π); therefore the
mapping of the imaginary infinities ±∞i is indeterminate. It follows that the entire
left half-plane is mapped to the interior of the unit circle, and the right half-plane is
mapped to the exterior of the unit circle. A line at any angle other than horizontal
or vertical is mapped to a logarithmic spiral (but this is not illustrated here).
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Figure 12-4: Illustration of the Range of the Natural Logarithm Function

The log function, which is the inverse of exp, naturally maps radial lines to horizon-
tal lines and circles centered at the origin to vertical lines. The interior of the unit
circle is thus mapped to the entire left half-plane, and the exterior of the unit circle
is mapped to the right half-plane. The positive real axis is mapped to the entire
real axis, and the negative real axis to a horizontal line of height π. The positive
and negative imaginary axes are mapped to horizontal lines of height ±π/2. The
origin is mapped to −∞.
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Figure 12-5: Illustration of the Range of the Function (z − 1)/(z + 1)

A line is a degenerate circle with infinite radius; when I say “circles” here I also
mean lines. Then (z − 1)/(z + 1) maps circles into circles. All circles through −1
become lines; all lines become circles through 1. The real axis is mapped onto itself:
1 to the origin, the origin to −1, −1 to infinity, and infinity to 1. The imaginary
axis becomes the unit circle; i is mapped to itself, as is −i . Thus the entire right
half-plane is mapped to the interior of the unit circle, the unit circle interior to
the left half-plane, the left half-plane to the unit circle exterior, and the unit circle
exterior to the right half-plane. Imagine the complex plane to be a vast sea. The
Colossus of Rhodes straddles the origin, its left foot on i and its right foot on −i . It
bends down and briefly paddles water between its legs so furiously that the water
directly beneath is pushed out into the entire area behind it; much that was behind
swirls forward to either side; and all that was before is sucked in to lie between its
feet.
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Figure 12-6: Illustration of the Range of the Function (1 + z )/(1 − z )

The function h(z ) = (1 + z )/(1 − z ) is the inverse of f (z ) = (z − 1)/(z + 1); that
is, h(f (z )) = f (h(z )) = z . At first glance, the graph of h appears to be that of f
flipped left-to-right, or perhaps reflected in the origin, but careful consideration of
the shaded annuli reveals that this is not so; something more subtle is going on.
Note that f (f (z )) = h(h(z )) = g(z ) = −1/z . The functions f , g , h, and the identity
function thus form a group under composition, isomorphic to the group of the cyclic
permutations of the points −1, 0, 1, and ∞, as indeed these functions accomplish the
four possible cyclic permutations on those points. This function group is a subset of
the group of bilinear transformations (az + b)/(cz + d), all of which are conformal
(angle-preserving) and map circles onto circles. Now, doesn’t that tangle of circles
through −1 look like something the cat got into?



NUMBERS 347

Figure 12-7: Illustration of the Range of the Sine Function

We are used to seeing sin looking like a wiggly ocean wave, graphed vertically as
a function of the real axis only. Here is a different view. The entire real axis is
mapped to the segment [−1, 1] of the real axis with infinite multiplicity (period 2π).
The imaginary axis is mapped to itself as if by sinh considered as a real function.
The origin is mapped to itself. Horizontal lines are mapped to ellipses with foci at
±1 (note that two horizontal lines equidistant from the real axis will map onto the
same ellipse). Vertical lines are mapped to hyperbolas with the same foci. There
is a curious accident: the ellipse for horizontal lines at distance ±1 from the real
axis appears to intercept the real axis at ±π/2 ≈ ±1.57 . . . but this is not so; the
intercepts are actually at ±(e + 1/e)/2 ≈ ±1.54 . . . .
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Figure 12-8: Illustration of the Range of the Arc Sine Function

Just as sin grabs horizontal lines and bends them into elliptical loops around the
origin, so its inverse asin takes annuli and yanks them more or less horizontally
straight. Because sine is not injective, its inverse as a function cannot be surjective.
This is just a highfalutin way of saying that the range of the asin function doesn’t
cover the entire plane but only a strip π wide; arc sine as a one-to-many relation
would cover the plane with an infinite number of copies of this strip side by side,
looking for all the world like the tail of a peacock with an infinite number of feathers.
The imaginary axis is mapped to itself as if by asinh considered as a real function.
The real axis is mapped to a bent path, turning corners at ±π/2 (the points to
which ±1 are mapped); +∞ is mapped to π/2−∞i , and −∞ to −π/2 +∞i .
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Figure 12-9: Illustration of the Range of the Cosine Function

We are used to seeing cos looking exactly like sin, a wiggly ocean wave, only
displaced. Indeed the complex mapping of cos is also similar to that of sin, with
horizontal and vertical lines mapping to the same ellipses and hyperbolas with foci
at ±1, although mapping to them in a different manner, to be sure. The entire real
axis is again mapped to the segment [−1, 1] of the real axis, but each half of the
imaginary axis is mapped to the real axis to the right of 1 (as if by cosh considered
as a real function). Therefore ±∞i both map to +∞. The origin is mapped to 1.
Whereas sin is an odd function, cos is an even function; as a result two points in
each annulus, one the negative of the other, are mapped to the same shaded point
in this graph; the shading shown here is taken from points in the original upper
half-plane.
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Figure 12-10: Illustration of the Range of the Arc Cosine Function

The graph of acos is very much like that of asin. One might think that our nervous
peacock has shuffled half a step to the right, but the shading on the annuli shows
that we have instead caught the bird exactly in mid-flight while doing a cartwheel.
This is easily understood if we recall that arccos z = (π/2) − arcsin z ; negating
arcsin z rotates it upside down, and adding the result to π/2 translates it π/2 to the
right. The imaginary axis is mapped upside down to the vertical line at π/2. The
point +1 is mapped to the origin, and −1 to π. The image of the real axis is again
cranky; +∞ is mapped to +∞i , and −∞ to π −∞i .
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Figure 12-11: Illustration of the Range of the Tangent Function

The usual graph of tan as a real function looks like an infinite chorus line of disco
dancers, left hands pointed skyward and right hands to the floor. The tan function
is the quotient of sin and cos but it doesn’t much look like either except for having
period 2π. This goes for the complex plane as well, although the swoopy loops
produced from the annulus between π/2 and 2 look vaguely like those from the
graph of sin inside out. The real axis is mapped onto itself with infinite multiplicity
(period 2π). The imaginary axis is mapped backwards onto [−i , i ]: +∞i is mapped
to −i and −∞i to +i . Horizontal lines below or above the real axis become circles
surrounding +i or −i , respectively. Vertical lines become circular arcs from +i
to −i ; two vertical lines separated by (2k + 1)π for integer k together become a
complete circle. It seems that two arcs shown hit the real axis at ±π/2 = ±1.57 . . .
but that is a coincidence; they really hit the axis at ± tan 1 = 1.55 . . . .
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Figure 12-12: Illustration of the Range of the Arc Tangent Function

All I can say is that this peacock is a horse of another color. At first glance, the
axes seem to map in the same way as for asin and acos, but look again: this
time it’s the imaginary axis doing weird things. All infinities map multiply to the
points (2k + 1)π/2; within the strip of principal values we may say that the real
axis is mapped to the interval [−π/2, +π/2] and therefore −∞ is mapped to −π/2
and +∞ to +π/2. The point +i is mapped to +∞i , and −i to −∞i , and so the
imaginary axis is mapped into three pieces: the segment [−∞i ,−i ] is mapped to
[π/2, π/2 −∞i ]; the segment [−i , i ] is mapped to the imaginary axis [−∞i ,+∞i ];
and the segment [+i , +∞i ] is mapped to [−π/2 +∞i ,−π/2].
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Figure 12-13: Illustration of the Range of the Hyperbolic Sine Function

It would seem that the graph of sinh is merely that of sin rotated 90 degrees. If
that were so, then we would have sinh z = i sin z . Careful inspection of the shading,
however, reveals that this is not quite the case; in both graphs the lightest and
darkest shades, which initially are adjacent to the positive real axis, remain adjacent
to the positive real axis in both cases. To derive the graph of sinh from sin we
must therefore first rotate the complex plane by −90 degrees, then apply sin, then
rotate the result by 90 degrees. In other words, sinh z = i sin(−i)z ; consistently
replacing z with iz in this formula yields the familiar identity sinh iz = i sin z .
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Figure 12-14: Illustration of the Range of the Hyperbolic Arc Sine Function

The peacock sleeps. Because arcsinh iz = i arcsin z , the graph of asinh is related to
that of asin by pre- and post-rotations of the complex plane in the same way as for
sinh and sin.
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Figure 12-15: Illustration of the Range of the Hyperbolic Cosine Function

The graph of cosh does not look like that of cos rotated 90 degrees; instead it looks
like that of cos unrotated. That is because cosh iz is not equal to i cos z ; rather,
cosh iz = cos z . Interpreted, that means that the shading is pre-rotated but there is
no post-rotation.
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Figure 12-16: Illustration of the Range of the Hyperbolic Arc Cosine Function

Hmm—I’d rather not say what happened to this peacock. This feather looks a bit
mangled. Actually it is all right—the principal value for acosh is so chosen that its
graph does not look simply like a rotated version of the graph of acos, but if all
values were shown, the two graphs would fill the plane in repeating patterns related
by a rotation.
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Figure 12-17: Illustration of the Range of the Hyperbolic Tangent Function

The diagram for tanh is simply that of tan turned on its ear: i tan z = tanh iz .
The imaginary axis is mapped onto itself with infinite multiplicity (period 2π), and
the real axis is mapped onto the segment [−1, +1]: +∞ is mapped to +1, and
−∞ to −1. Vertical lines to the left or right of the real axis are mapped to circles
surrounding −1 or 1, respectively. Horizontal lines are mapped to circular arcs
anchored at −1 and +1; two horizontal lines separated by a distance (2k + 1)π for
integer k are together mapped into a complete circle. How do we know these really
are circles? Well, tanh z = ((exp 2z )−1)/((exp 2z )+1), which is the composition of
the bilinear transform (z − 1)/(z + 1), the exponential exp z , and the magnification
2z . Magnification maps lines to lines of the same slope; the exponential maps
horizontal lines to circles and vertical lines to radial lines; and a bilinear transform
maps generalized circles (including lines) to generalized circles. Q.E.D.
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Figure 12-18: Illustration of the Range of the Hyperbolic Arc Tangent Function

A sleeping peacock of another color: arctanh iz = i arctan z .
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Figure 12-19: Illustration of the Range of the Function
√

1− z 2

Here is a curious graph indeed for so simple a function! The origin is mapped to
1. The real axis segment [0, 1] is mapped backwards (and non-linearly) into itself;
the segment [1, +∞] is mapped non-linearly onto the positive imaginary axis. The
negative real axis is mapped to the same points as the positive real axis. Both
halves of the imaginary axis are mapped into [1, +∞] on the real axis. Horizontal
lines become vaguely vertical, and vertical lines become vaguely horizontal. Circles
centered at the origin are transformed into Cassinian (half-)ovals; the unit circle is
mapped to a (half-)lemniscate of Bernoulli. The outermost annulus appears to have
its inner edge at π on the real axis and its outer edge at 3 on the imaginary axis,
but this is another accident; the intercept on the real axis, for example, is not really
at π ≈ 3.14 . . . but at

√

1 − (3i)2 =
√

10 ≈ 3.16 . . . .
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Figure 12-20: Illustration of the Range of the Function
√

1 + z 2

The graph of q(z ) =
√

1 + z 2 looks like that of p(z ) =
√

1− z 2 except for the
shading. You might not expect p and q to be related in the same way that cos and
cosh are, but after a little reflection (or perhaps I should say, after turning it around
in one’s mind) one can see that q(iz ) = p(z ). This formula is indeed of exactly the
same form as cosh iz = cos z . The function

√
1 + z 2 maps both halves of the real

axis into [1, +∞] on the real axis. The segments [0, i ] and [0,−i ] of the imaginary
axis are each mapped backwards onto segment [0, 1] of the real axis; [i , +∞i ] and
[−, −∞i ] are each mapped onto the positive imaginary axis (but if minus zero is
supported then opposite sides of the imaginary axis map to opposite halves of the
imaginary axis—for example, q(+0 + 2i) =

√
5i but q(−0 + 2i) = −

√
5i).
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Here is a sample of the PostScript code that generated figure 12-1, showing

the initial scaling, translation, and clipping parameters; the code for one sec-

tor of the innermost annulus; and the code for the negative imaginary axis.

Comment lines indicate how path or boundary segments were generated sep-

arately and then spliced (in order to allow for the places that a singularity
might lurk, in which case the generating code can “inch up” to the problem-

atical argument value).

The size of the entire PostScript file for the identity function was about 68
kilobytes (2757 lines, including comments). The smallest files were the plots

for atan and atanh, about 65 kilobytes apiece; the largest were the plots for

sin, cos, sinh, and cosh, about 138 kilobytes apiece.

% PostScript file for plot of function IDENTITY

% Plot is to fit in a region 4.666666666666667 inches square

% showing axes extending 4.1 units from the origin.

40.97560975609756 40.97560975609756 scale

4.1 4.1 translate

newpath

-4.1 -4.1 moveto

4.1 -4.1 lineto

4.1 4.1 lineto

-4.1 4.1 lineto

closepath

clip

% Moby grid for function IDENTITY

% Annulus 0.25 0.5 4 0.97 0.45

% Sector from 4.7124 to 6.2832 (quadrant 3)

newpath

0.0 -0.25 moveto

0.0 -0.375 lineto

%middle radial

0.0 -0.375 lineto

0.0 -0.5 lineto

%end radial

0.0 -0.5 lineto

0.092 -0.4915 lineto

0.1843 -0.4648 lineto

0.273 -0.4189 lineto

0.3536 -0.3536 lineto

%middle circumferential

0.3536 -0.3536 lineto

0.413 -0.2818 lineto

0.4594 -0.1974 lineto
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0.4894 -0.1024 lineto

0.5 0.0 lineto

%end circumferential

0.5 0.0 lineto

0.375 0.0 lineto

%middle radial

0.375 0.0 lineto

0.25 0.0 lineto

%end radial

0.25 0.0 lineto

0.2297 -0.0987 lineto

0.1768 -0.1768 lineto

%middle circumferential

0.1768 -0.1768 lineto

0.0922 -0.2324 lineto

0.0 -0.25 lineto

%end circumferential

closepath

currentgray 0.45 setgray fill setgray

[2598 lines omitted]

% Vertical line from (0.0, -0.5) to (0.0, 0.0)

newpath

0.0 -0.5 moveto

0.0 0.0 lineto

0.05 setlinewidth 1 setlinecap stroke

% Vertical line from (0.0, -0.5) to (0.0, -1.0)

newpath

0.0 -0.5 moveto

0.0 -1.0 lineto

0.05 setlinewidth 1 setlinecap stroke

% Vertical line from (0.0, -2.0) to (0.0, -1.0)

newpath

0.0 -2.0 moveto

0.0 -1.0 lineto

0.05 setlinewidth 1 setlinecap stroke

% Vertical line from (0.0, -2.0) to (0.0, -1.1579208923731617E77)

newpath

0.0 -2.0 moveto

0.0 -6.3553 lineto

0.0 -6.378103166302659 lineto

0.0 -6.378103166302659 lineto

0.0 -6.378103166302659 lineto

0.05 setlinewidth 1 setlinecap stroke

[84 lines omitted]

% End of PostScript file for plot of function IDENTITY
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Here is the program that generated the PostScript code for the graphs

shown in figures 12-1 through 12-20. It contains a mixture of fairly general

mechanisms and ad hoc kludges for plotting functions of a single complex

argument while gracefully handling extremely large and small values, branch

cuts, singularities, and periodic behavior. The aim was to provide a simple
user interface that would not require the caller to provide special advice for

each function to be plotted. The file for figure 12-1, for example, was generated

by the call (picture ’identity), which resulted in the writing of a file

named identity-plot.ps.

The program assumes that any periodic behavior will have a period that
is a multiple of 2π; that branch cuts will fall along the real or imaginary

axis; and that singularities or very large or small values will occur only at the

origin, at ±1 or ±i , or on the boundaries of the annuli (particularly those with

radius π/2 or π). The central function is parametric-path, which accepts

four arguments: two real numbers that are the endpoints of an interval of
real numbers, a function that maps this interval into a path in the complex

plane, and the function to be plotted; the task of parametric-path is to

generate PostScript code (a series of lineto operations) that will plot an

approximation to the image of the parametric path as transformed by the
function to be plotted. Each of the functions hline, vline, -hline, -vline,

radial, and circumferential takes appropriate parameters and returns a

function suitable for use as the third argument to parametric-path. There is

some code that defends against errors (by using ignore-errors) and against

certain peculiarities of IEEE floating-point arithmetic (the code that checks
for not-a-number (NaN) results).

The program is offered here without further comment or apology.

(defparameter units-to-show 4.1)

(defparameter text-width-in-picas 28.0)

(defparameter device-pixels-per-inch 300)

(defparameter pixels-per-unit

(* (/ (/ text-width-in-picas 6)

(* units-to-show 2))

device-pixels-per-inch))

(defparameter big (sqrt (sqrt most-positive-single-float)))

(defparameter tiny (sqrt (sqrt least-positive-single-float)))

(defparameter path-really-losing 1000.0)

(defparameter path-outer-limit (* units-to-show (sqrt 2) 1.1))

(defparameter path-minimal-delta (/ 10 pixels-per-unit))

(defparameter path-outer-delta (* path-outer-limit 0.3))
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(defparameter path-relative-closeness 0.00001)

(defparameter back-off-delta 0.0005)
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(defun comment-line (stream &rest stuff)

(format stream "~%% ")

(apply #--’format stream stuff)

(format t "~%% ")

(apply #--’format t stuff))

(defun parametric-path (from to paramfn plotfn)

(assert (and (plusp from) (plusp to)))

(flet ((domainval (x) (funcall paramfn x))

(rangeval (x) (funcall plotfn (funcall paramfn x)))

(losing (x) (or (null x)

(/UU (realpart x) (realpart x)) ;NaN?

(/UU (imagpart x) (imagpart x)) ;NaN?

(> (abs (realpart x)) path-really-losing)

(> (abs (imagpart x)) path-really-losing))))

(when (> to 1000.0)

(let ((f0 (rangeval from))

(f1 (rangeval (+ from 1)))

(f2 (rangeval (+ from (* 2 pi))))

(f3 (rangeval (+ from 1 (* 2 pi))))

(f4 (rangeval (+ from (* 4 pi)))))

(flet ((close (x y)

(or (< (careful-abs (- x y)) path-minimal-delta)

(< (careful-abs (- x y))

(* (+ (careful-abs x) (careful-abs y))

path-relative-closeness)))))

(when (and (close f0 f2)

(close f2 f4)

(close f1 f3)

(or (and (close f0 f1)

(close f2 f3))

(and (not (close f0 f1))

(not (close f2 f3)))))

(format t "~&Periodicity detected.")

(setq to (+ from (* (signum (- to from)) 2 pi)))))))

(let ((fromrange (ignore-errors (rangeval from)))

(torange (ignore-errors (rangeval to))))

(if (losing fromrange)

(if (losing torange)

’()
(parametric-path (back-off from to) to paramfn plotfn))

(if (losing torange)

(parametric-path from (back-off to from) paramfn plotfn)

(expand-path (refine-path (list from to) #--’rangeval)
#--’rangeval))))))
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(defun back-off (point other)

(if (or (> point 10.0) (< point 0.1))

(let ((sp (sqrt point)))

(if (or (> point sp other) (< point sp other))

sp

(* sp (sqrt other))))

(+ point (* (signum (- other point)) back-off-delta))))

(defun careful-abs (z)

(cond ((or (> (realpart z) big)

(< (realpart z) (- big))

(> (imagpart z) big)

(< (imagpart z) (- big)))

big)

((complexp z) (abs z))

((minusp z) (- z))

(t z)))

(defparameter max-refinements 5000)

(defun refine-path (original-path rangevalfn)

(flet ((rangeval (x) (funcall rangevalfn x)))

(let ((path original-path))

(do ((j 0 (+ j 1)))

((null (rest path)))

(when (zerop (mod (+ j 1) max-refinements))

(break "Runaway path"))

(let* ((from (first path))

(to (second path))

(fromrange (rangeval from))

(torange (rangeval to))

(dist (careful-abs (- torange fromrange)))

(mid (* (sqrt from) (sqrt to)))

(midrange (rangeval mid)))

(cond ((or (and (far-out fromrange) (far-out torange))

(and (< dist path-minimal-delta)

(< (abs (- midrange fromrange))

path-minimal-delta)

;; Next test is intentionally asymmetric to

;; avoid problems with periodic functions.

(< (abs (- (rangeval (/ (+ to (* from 1.5))

2.5))

fromrange))

path-minimal-delta)))

(pop path))
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((UU mid from) (pop path))

((UU mid to) (pop path))

(t (setf (rest path) (cons mid (rest path)))))))))

original-path)

(defun expand-path (path rangevalfn)

(flet ((rangeval (x) (funcall rangevalfn x)))

(let ((final-path (list (rangeval (first path)))))

(do ((p (rest path) (cdr p)))

((null p)

(unless (rest final-path)

(break "Singleton path"))

(reverse final-path))

(let ((v (rangeval (car p))))

(cond ((and (rest final-path)

(not (far-out v))

(not (far-out (first final-path)))

(between v (first final-path)

(second final-path)))

(setf (first final-path) v))

((null (rest p)) ;Mustn’t omit last point

(push v final-path))

((< (abs (- v (first final-path))) path-minimal-delta))

((far-out v)

(unless (and (far-out (first final-path))

(< (abs (- v (first final-path)))

path-outer-delta))

(push (* 1.01 path-outer-limit (signum v))

final-path)))

(t (push v final-path))))))))

(defun far-out (x)

(> (careful-abs x) path-outer-limit))

(defparameter between-tolerance 0.000001)

(defun between (p q r)

(let ((px (realpart p)) (py (imagpart p))

(qx (realpart q)) (qy (imagpart q))

(rx (realpart r)) (ry (imagpart r)))

(and (or (<UU px qx rx) (>UU px qx rx))

(or (<UU py qy ry) (>UU py qy ry))

(< (abs (- (* (- qx px) (- ry qy))

(* (- rx qx) (- qy py))))

between-tolerance))))



368 COMMON LISP

(defun circle (radius)

#--’(lambda (angle) (* radius (cis angle))))

(defun hline (imag)

#--’(lambda (real) (complex real imag)))

(defun vline (real)

#--’(lambda (imag) (complex real imag)))

(defun -hline (imag)

#--’(lambda (real) (complex (- real) imag)))

(defun -vline (real)

#--’(lambda (imag) (complex real (- imag))))

(defun radial (phi quadrant)

#--’(lambda (rho) (repair-quadrant (* rho (cis phi)) quadrant)))

(defun circumferential (rho quadrant)

#--’(lambda (phi) (repair-quadrant (* rho (cis phi)) quadrant)))

;;; Quadrant is 0, 1, 2, or 3, meaning I, II, III, or IV.

(defun repair-quadrant (z quadrant)

(complex (* (+ (abs (realpart z)) tiny)

(case quadrant (0 1.0) (1 -1.0) (2 -1.0) (3 1.0)))

(* (+ (abs (imagpart z)) tiny)

(case quadrant (0 1.0) (1 1.0) (2 -1.0) (3 -1.0)))))

(defun clamp-real (x)

(if (far-out x)

(* (signum x) path-outer-limit)

(round-real x)))

(defun round-real (x)

(/ (round (* x 10000.0)) 10000.0))

(defun round-point (z)

(complex (round-real (realpart z)) (round-real (imagpart z))))

(defparameter hiringshade 0.97)

(defparameter loringshade 0.45)

(defparameter ticklength 0.12)

(defparameter smallticklength 0.09)
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;;; This determines the pattern of lines and annuli to be drawn.

(defun moby-grid (&optional (fn ’sqrt) (stream t))

(comment-line stream "Moby grid for function ~S" fn)

(shaded-annulus 0.25 0.5 4 hiringshade loringshade fn stream)

(shaded-annulus 0.75 1.0 8 hiringshade loringshade fn stream)

(shaded-annulus (/ pi 2) 2.0 16 hiringshade loringshade fn stream)

(shaded-annulus 3 pi 32 hiringshade loringshade fn stream)

(moby-lines :horizontal 1.0 fn stream)

(moby-lines :horizontal -1.0 fn stream)

(moby-lines :vertical 1.0 fn stream)

(moby-lines :vertical -1.0 fn stream)

(let ((tickline 0.015)

(axisline 0.008))

(flet ((tick (n) (straight-line (complex n ticklength)

(complex n (- ticklength))

tickline

stream))

(smalltick (n) (straight-line (complex n smallticklength)

(complex n (- smallticklength))

tickline

stream)))

(comment-line stream "Real axis")

(straight-line #--c(-5 0) #--c(5 0) axisline stream)

(dotimes (j (floor units-to-show))

(let ((q (+ j 1))) (tick q) (tick (- q))))

(dotimes (j (floor units-to-show (/ pi 2)))

(let ((q (* (/ pi 2) (+ j 1))))

(smalltick q)

(smalltick (- q)))))

(flet ((tick (n) (straight-line (complex ticklength n)

(complex (- ticklength) n)

tickline

stream))

(smalltick (n) (straight-line (complex smallticklength n)

(complex (- smallticklength) n)

tickline

stream)))

(comment-line stream "Imaginary axis")

(straight-line #--c(0 -5) #--c(0 5) axisline stream)

(dotimes (j (floor units-to-show))

(let ((q (+ j 1))) (tick q) (tick (- q))))

(dotimes (j (floor units-to-show (/ pi 2)))

(let ((q (* (/ pi 2) (+ j 1))))

(smalltick q)

(smalltick (- q)))))))
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(defun straight-line (from to wid stream)

(format stream

"~%newpath ~S ~S moveto ~S ~S lineto ~S ~
setlinewidth 1 setlinecap stroke"

(realpart from)

(imagpart from)

(realpart to)

(imagpart to)

wid))

;;; This function draws the lines for the pattern.

(defun moby-lines (orientation signum plotfn stream)

(let ((paramfn (ecase orientation

(:horizontal (if (< signum 0) #--’-hline #--’hline))
(:vertical (if (< signum 0) #--’-vline #--’vline)))))

(flet ((foo (from to other wid)

(ecase orientation

(:horizontal

(comment-line stream

"Horizontal line from (~S, ~S) to (~S, ~S)"
(round-real (* signum from))

(round-real other)

(round-real (* signum to))

(round-real other)))

(:vertical

(comment-line stream

"Vertical line from (~S, ~S) to (~S, ~S)"
(round-real other)

(round-real (* signum from))

(round-real other)

(round-real (* signum to)))))

(postscript-path

stream

(parametric-path from

to

(funcall paramfn other)

plotfn))

(postscript-penstroke stream wid)))

(let* ((thick 0.05)

(thin 0.02))

;; Main axis

(foo 0.5 tiny 0.0 thick)

(foo 0.5 1.0 0.0 thick)

(foo 2.0 1.0 0.0 thick)

(foo 2.0 big 0.0 thick)
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;; Parallels at 1 and -1

(foo 2.0 tiny 1.0 thin)

(foo 2.0 big 1.0 thin)

(foo 2.0 tiny -1.0 thin)

(foo 2.0 big -1.0 thin)

;; Parallels at 2, 3, -2, -3

(foo tiny big 2.0 thin)

(foo tiny big -2.0 thin)

(foo tiny big 3.0 thin)

(foo tiny big -3.0 thin)))))

(defun splice (p q)

(let ((v (car (last p)))

(w (first q)))

(and (far-out v)

(far-out w)

(>UU (abs (- v w)) path-outer-delta)

;; Two far-apart far-out points. Try to walk around

;; outside the perimeter, in the shorter direction.

(let* ((pdiff (phase (/ v w)))

(npoints (floor (abs pdiff) (asin .2)))

(delta (/ pdiff (+ npoints 1)))

(incr (cis delta)))

(do ((j 0 (+ j 1))

(p (list w "end splice") (cons (* (car p) incr) p)))

((UU j npoints) (cons "start splice" p)))))))

;;; This function draws the annuli for the pattern.

(defun shaded-annulus (inner outer sectors firstshade lastshade fn stream)

(assert (zerop (mod sectors 4)))

(comment-line stream "Annulus ~S ~S ~S ~S ~S"
(round-real inner) (round-real outer)

sectors firstshade lastshade)

(dotimes (jj sectors)

(let ((j (- sectors jj 1)))

(let* ((lophase (+ tiny (* 2 pi (/ j sectors))))

(hiphase (* 2 pi (/ (+ j 1) sectors)))

(midphase (/ (+ lophase hiphase) 2.0))

(midradius (/ (+ inner outer) 2.0))

(quadrant (floor (* j 4) sectors)))

(comment-line stream "Sector from ~S to ~S (quadrant ~S)"
(round-real lophase)

(round-real hiphase)

quadrant)
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(let ((p0 (reverse (parametric-path midradius

inner

(radial lophase quadrant)

fn)))

(p1 (parametric-path midradius

outer

(radial lophase quadrant)

fn))

(p2 (reverse (parametric-path midphase

lophase

(circumferential outer

quadrant)

fn)))

(p3 (parametric-path midphase

hiphase

(circumferential outer quadrant)

fn))

(p4 (reverse (parametric-path midradius

outer

(radial hiphase quadrant)

fn)))

(p5 (parametric-path midradius

inner

(radial hiphase quadrant)

fn))

(p6 (reverse (parametric-path midphase

hiphase

(circumferential inner

quadrant)

fn)))

(p7 (parametric-path midphase

lophase

(circumferential inner quadrant)

fn)))

(postscript-closed-path stream

(append

p0 (splice p0 p1) ’("middle radial")

p1 (splice p1 p2) ’("end radial")

p2 (splice p2 p3) ’("middle circumferential")

p3 (splice p3 p4) ’("end circumferential")

p4 (splice p4 p5) ’("middle radial")

p5 (splice p5 p6) ’("end radial")

p6 (splice p6 p7) ’("middle circumferential")

p7 (splice p7 p0) ’("end circumferential")

)))
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(postscript-shade stream

(/ (+ (* firstshade (- (- sectors 1) j))

(* lastshade j))

(- sectors 1)))))))

(defun postscript-penstroke (stream wid)

(format stream "~%~S setlinewidth 1 setlinecap stroke"

wid))

(defun postscript-shade (stream shade)

(format stream "~%currentgray ~S setgray fill setgray"

shade))

(defun postscript-closed-path (stream path)

(unless (every #--’far-out (remove-if-not #--’numberp path))

(postscript-raw-path stream path)

(format stream "~% closepath")))

(defun postscript-path (stream path)

(unless (every #--’far-out (remove-if-not #--’numberp path))

(postscript-raw-path stream path)))

;;; Print a path as a series of PostScript "lineto" commands.

(defun postscript-raw-path (stream path)

(format stream "~%newpath")
(let ((fmt "~% ~S ~S moveto"))

(dolist (pt path)

(cond ((stringp pt)

(format stream "~% %~A" pt))

(t (format stream

fmt

(clamp-real (realpart pt))

(clamp-real (imagpart pt)))

(setq fmt "~% ~S ~S lineto"))))))

;;; Definitions of functions to be plotted that are not

;;; standard Common Lisp functions.

(defun one-plus-over-one-minus (x) (/ (+ 1 x) (- 1 x)))

(defun one-minus-over-one-plus (x) (/ (- 1 x) (+ 1 x)))

(defun sqrt-square-minus-one (x) (sqrt (- 1 (* x x))))

(defun sqrt-one-plus-square (x) (sqrt (+ 1 (* x x))))
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;;; Because X3J13 voted for a new definition of the atan function,

;;; the following definition was used in place of the atan function

;;; provided by the Common Lisp implementation I was using.

(defun good-atan (x)

(/ (- (log (+ 1 (* x #--c(0 1))))

(log (- 1 (* x #--c(0 1)))))

#--c(0 2)))

;;; Because the first edition had an erroneous definition of atanh,

;;; the following definition was used in place of the atanh function

;;; provided by the Common Lisp implementation I was using.

(defun really-good-atanh (x)

(/ (- (log (+ 1 x))

(log (- 1 x)))

2))

;;; This is the main procedure that is intended to be called by a user.

(defun picture (&optional (fn #--’sqrt))
(with-open-file (stream (concatenate ’string

(string-downcase (string fn))

"-plot.ps")

:direction :output)

(format stream "% PostScript file for plot of function ~S~%" fn)

(format stream "% Plot is to fit in a region ~S inches square~%"
(/ text-width-in-picas 6.0))

(format stream

"% showing axes extending ~S units from the origin.~%"
units-to-show)

(let ((scaling (/ (* text-width-in-picas 12) (* units-to-show 2))))

(format stream "~%~S ~:*~S scale" scaling))

(format stream "~%~S ~:*~S translate" units-to-show)

(format stream "~%newpath")
(format stream "~% ~S ~S moveto" (- units-to-show) (- units-to-show))

(format stream "~% ~S ~S lineto" units-to-show (- units-to-show))

(format stream "~% ~S ~S lineto" units-to-show units-to-show)

(format stream "~% ~S ~S lineto" (- units-to-show) units-to-show)

(format stream "~% closepath")

(format stream "~%clip")
(moby-grid fn stream)

(format stream

"~%% End of PostScript file for plot of function ~S"
fn)

(terpri stream)))
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12.6. Type Conversions and Component Extractions on
Numbers

While most arithmetic functions will operate on any kind of number, coerc-

ing types if necessary, the following functions are provided to allow specific

conversions of data types to be forced when desired.

[Function]float number &optional other

This converts any non-complex number to a floating-point number. With no

second argument, if number is already a floating-point number, then number

is returned; otherwise a single-float is produced. If the argument other is

provided, then it must be a floating-point number, and number is converted

to the same format as other. See also coerce.

[Function]rational number

[Function]rationalize number

Each of these functions converts any non-complex number to a rational num-

ber. If the argument is already rational, it is returned. The two functions

differ in their treatment of floating-point numbers.

rational assumes that the floating-point number is completely accurate

and returns a rational number mathematically equal to the precise value of

the floating-point number.

rationalize assumes that the floating-point number is accurate only to

the precision of the floating-point representation and may return any rational

number for which the floating-point number is the best available approxi-

mation of its format; in doing this it attempts to keep both numerator and
denominator small.

It is always the case that

(float (rational x) x) ≡ x

and

(float (rationalize x) x) ≡ x

That is, rationalizing a floating-point number by either method and then

converting it back to a floating-point number of the same format produces

the original number. What distinguishes the two functions is that rational

typically has a simple, inexpensive implementation, whereas rationalize
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goes to more trouble to produce a result that is more pleasant to view and

simpler to compute with for some purposes.

[Function]numerator rational

[Function]denominator rational

These functions take a rational number (an integer or ratio) and return as an

integer the numerator or denominator of the canonical reduced form of the

rational. The numerator of an integer is that integer; the denominator of an
integer is 1. Note that

(gcd (numerator x) (denominator x)) ⇒ 1

The denominator will always be a strictly positive integer; the numerator may

be any integer. For example:

(numerator (/ 8 -6)) ⇒ -4

(denominator (/ 8 -6)) ⇒ 3

There is no fix function in Common Lisp because there are several inter-

esting ways to convert non-integral values to integers. These are provided by

the functions below, which perform not only type conversion but also some
non-trivial calculations as well.

[Function]floor number &optional divisor
[Function]ceiling number &optional divisor

[Function]truncate number &optional divisor

[Function]round number &optional divisor

In the simple one-argument case, each of these functions converts its argument

number (which must not be complex) to an integer. If the argument is already
an integer, it is returned directly. If the argument is a ratio or floating-point

number, the functions use different algorithms for the conversion.

floor converts its argument by truncating toward negative infinity; that

is, the result is the largest integer that is not larger than the argument.

ceiling converts its argument by truncating toward positive infinity; that

is, the result is the smallest integer that is not smaller than the argument.

truncate converts its argument by truncating toward zero; that is, the

result is the integer of the same sign as the argument and which has the

greatest integral magnitude not greater than that of the argument.
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round converts its argument by rounding to the nearest integer; if number

is exactly halfway between two integers (that is, of the form integer + 0.5),

then it is rounded to the one that is even (divisible by 2).

The following table shows what the four functions produce when given

various arguments.

Argument floor ceiling truncate round

2.6 2 3 2 3

2.5 2 3 2 2

2.4 2 3 2 2

0.7 0 1 0 1

0.3 0 1 0 0

-0.3 -1 0 0 0

-0.7 -1 0 0 -1

-2.4 -3 -2 -2 -2

-2.5 -3 -2 -2 -2

-2.6 -3 -2 -2 -3

If a second argument divisor is supplied, then the result is the appropriate

type of rounding or truncation applied to the result of dividing the number by
the divisor. For example, (floor 5 2) ≡ (floor (/ 5 2)) but is potentially

more efficient.

This statement is not entirely accurate; one should instead say that (values

(floor 5 2))≡ (values (floor (/ 5 2))), because there is a second value

to consider, as discussed below. In other words, the first values returned by
the two forms will be the same, but in general the second values will differ.

Indeed, we have

(floor 5 2) ⇒ 2 and 1

(floor (/ 5 2)) ⇒ 2 and 1/2

for this example.

The divisor may be any non-complex number.

It is generally accepted that it is an error for the divisor to be zero.

The one-argument case is exactly like the two-argument case where the

second argument is 1.

In other words, the one-argument case returns an integer and fractional

part for the number: (truncate 5.3) ⇒ 5.0 and 0.3, for example.

Each of the functions actually returns two values, whether given one or two

arguments. The second result is the remainder and may be obtained using

multiple-value-bind and related constructs. If any of these functions is
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given two arguments x and y and produces results q and r , then q ·y + r = x .

The first result q is always an integer. The remainder r is an integer if

both arguments are integers, is rational if both arguments are rational, and

is floating-point if either argument is floating-point. One consequence is that

in the one-argument case the remainder is always a number of the same type
as the argument.

When only one argument is given, the two results are exact; the mathemat-

ical sum of the two results is always equal to the mathematical value of the

argument.

Compatibility note: The names of the functions floor, ceiling, truncate, and
round are more accurate than names like fix that have heretofore been used in vari-
ous Lisp systems. The names used here are compatible with standard mathematical
terminology (and with PL/1, as it happens). In Fortran ifix means truncate. Al-
gol 68 provides round and uses entier to mean floor. In MacLisp, fix and ifix

both mean floor (one is generic, the other flonum-in/fixnum-out). In Interlisp, fix
means truncate. In Lisp Machine Lisp, fix means floor and fixr means round.
Standard Lisp provides a fix function but does not specify precisely what it does.
The existing usage of the name fix is so confused that it seemed best to avoid it
altogether.

The names and definitions given here have recently been adopted by Lisp Machine
Lisp, and MacLisp and NIL (New Implementation of Lisp) seem likely to follow suit.

[Function]mod number divisor

[Function]rem number divisor

mod performs the operation floor on its two arguments and returns the sec-

ond result of floor as its only result. Similarly, rem performs the operation

truncate on its arguments and returns the second result of truncate as its

only result.

mod and rem are therefore the usual modulus and remainder functions when

applied to two integer arguments. In general, however, the arguments may be

integers or floating-point numbers.

(mod 13 4) ⇒ 1 (rem 13 4) ⇒ 1

(mod -13 4) ⇒ 3 (rem -13 4) ⇒ -1

(mod 13 -4) ⇒ -3 (rem 13 -4) ⇒ 1

(mod -13 -4) ⇒ -1 (rem -13 -4) ⇒ -1

(mod 13.4 1) ⇒ 0.4 (rem 13.4 1) ⇒ 0.4

(mod -13.4 1) ⇒ 0.6 (rem -13.4 1) ⇒ -0.4
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Compatibility note: The Interlisp function remainder is essentially equivalent to
the Common Lisp function rem. The MacLisp function remainder is like rem but
accepts only integer arguments.

[Function]ffloor number &optional divisor

[Function]fceiling number &optional divisor

[Function]ftruncate number &optional divisor

[Function]fround number &optional divisor

These functions are just like floor, ceiling, truncate, and round, except
that the result (the first result of two) is always a floating-point number rather

than an integer. It is roughly as if ffloor gave its arguments to floor, and

then applied float to the first result before passing them both back. In

practice, however, ffloor may be implemented much more efficiently. Similar

remarks apply to the other three functions. If the first argument is a floating-
point number, and the second argument is not a floating-point number of

longer format, then the first result will be a floating-point number of the

same type as the first argument. For example:

(ffloor -4.7) ⇒ -5.0 and 0.3

(ffloor 3.5d0) ⇒ 3.0d0 and 0.5d0

[Function]decode-float float

[Function]scale-float float integer

[Function]float-radix float
[Function]float-sign float1 &optional float2

[Function]float-digits float

[Function]float-precision float

[Function]integer-decode-float float

The function decode-float takes a floating-point number and returns three

values.

The first value is a new floating-point number of the same format represent-

ing the significand; the second value is an integer representing the exponent;
and the third value is a floating-point number of the same format indicating

the sign (−1.0 or 1.0). Let b be the radix for the floating-point representation;

then decode-float divides the argument by an integral power of b so as to

bring its value between 1/b (inclusive) and 1 (exclusive) and returns the quo-

tient as the first value. If the argument is zero, however, the result is equal
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to the absolute value of the argument (that is, if there is a negative zero, its

significand is considered to be a positive zero).

The second value of decode-float is the integer exponent e to which b must
be raised to produce the appropriate power for the division. If the argument

is zero, any integer value may be returned, provided that the identity shown

below for scale-float holds.

The third value of decode-float is a floating-point number, of the same

format as the argument, whose absolute value is 1 and whose sign matches

that of the argument.

The function scale-float takes a floating-point number f (not necessarily

between 1/b and 1) and an integer k, and returns (* f (expt (float b f)

k)). (The use of scale-float may be much more efficient than using expo-
nentiation and multiplication and avoids intermediate overflow and underflow

if the final result is representable.)

Note that

(multiple-value-bind (signif expon sign)

(decode-float f)

(scale-float signif expon))

≡ (abs f)

and

(multiple-value-bind (signif expon sign)

(decode-float f)

(* (scale-float signif expon) sign))

≡ f

The function float-radix returns (as an integer) the radix b of the floating-

point argument.

The function float-sign returns a floating-point number z such that z and

float1 have the same sign and also such that z and float2 have the same ab-

solute value. The argument float2 defaults to the value of (float 1 float1);

(float-sign x) therefore always produces a 1.0 or -1.0 of appropriate for-
mat according to the sign of x. (Note that if an implementation has distinct

representations for negative zero and positive zero, then (float-sign -0.0)

⇒ -1.0.)

The function float-digits returns, as a non-negative integer, the number

of radix-b digits used in the representation of its argument (including any im-

plicit digits, such as a “hidden bit”). The function float-precision returns,

as a non-negative integer, the number of significant radix-b digits present in
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the argument; if the argument is (a floating-point) zero, then the result is (an

integer) zero. For normalized floating-point numbers, the results of float-

digits and float-precision will be the same, but the precision will be less

than the number of representation digits for a denormalized or zero number.

The function integer-decode-float is similar to decode-float but for

its first value returns, as an integer, the significand scaled so as to be an

integer. For an argument f, this integer will be strictly less than

(expt b (float-precision f))

but no less than

(expt b (- (float-precision f) 1))

except that if f is zero, then the integer value will be zero.

The second value bears the same relationship to the first value as for
decode-float:

(multiple-value-bind (signif expon sign)

(integer-decode-float f)

(scale-float (float signif f) expon))

≡ (abs f)

The third value of integer-decode-float will be 1 or -1.

Rationale: These functions allow the writing of machine-independent, or at least
machine-parameterized, floating-point software of reasonable efficiency.

[Function]complex realpart &optional imagpart

The arguments must be non-complex numbers; a number is returned that has

realpart as its real part and imagpart as its imaginary part, possibly converted

according to the rule of floating-point contagion (thus both components will

be of the same type). If imagpart is not specified, then (coerce 0 (type-of

realpart)) is effectively used. Note that if both the realpart and imagpart are

rational and the imagpart is zero, then the result is just the realpart because

of the rule of canonical representation for complex rationals. It follows that

the result of complex is not always a complex number; it may be simply a

rational.
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[Function]realpart number

[Function]imagpart number

These return the real and imaginary parts of a complex number. If number

is a non-complex number, then realpart returns its argument number and

imagpart returns (* 0 number), which has the effect that the imaginary part

of a rational is 0 and that of a floating-point number is a floating-point zero
of the same format.

A clever way to multiply a complex number z by i is to write

(complex (- (imagpart z)) (realpart z))

instead of (* z #--c(0 1)). This cleverness is not always gratuitous; it may

be of particular importance in the presence of minus zero. For example, if we
are using IEEE standard floating-point arithmetic and z = 4 + 0i , the result

of the clever expression is −0+4i , a true 90◦ rotation of z , whereas the result

of (* z #--c(0 1)) is likely to be

(4 + 0i)(+0 + i) = ((4)(+0)− (+0)(1)) + ((4)(1) + (+0)(+0))i

= ((+0)− (+0)) + ((4) + (+0))i = +0 + 4i

which could land on the wrong side of a branch cut, for example.

12.7. Logical Operations on Numbers

The logical operations in this section require integers as arguments; it is an
error to supply a non-integer as an argument. The functions all treat integers

as if they were represented in two’s-complement notation.

Implementation note: Internally, of course, an implementation of Common Lisp
may or may not use a two’s-complement representation. All that is necessary is that
the logical operations perform calculations so as to give this appearance to the user.

The logical operations provide a convenient way to represent an infinite

vector of bits. Let such a conceptual vector be indexed by the non-negative

integers. Then bit j is assigned a “weight” 2j. Assume that only a finite
number of bits are 1’s or only a finite number of bits are 0’s. A vector with

only a finite number of one-bits is represented as the sum of the weights of the

one-bits, a positive integer. A vector with only a finite number of zero-bits

is represented as -1 minus the sum of the weights of the zero-bits, a negative

integer.
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This method of using integers to represent bit-vectors can in turn be used

to represent sets. Suppose that some (possibly countably infinite) universe

of discourse for sets is mapped into the non-negative integers. Then a set

can be represented as a bit vector; an element is in the set if the bit whose

index corresponds to that element is a one-bit. In this way all finite sets can
be represented (by positive integers), as well as all sets whose complements

are finite (by negative integers). The functions logior, logand, and logxor

defined below then compute the union, intersection, and symmetric difference

operations on sets represented in this way.

[Function]logior &rest integers

This returns the bit-wise logical inclusive or of its arguments. If no argument

is given, then the result is zero, which is an identity for this operation.

[Function]logxor &rest integers

This returns the bit-wise logical exclusive or of its arguments. If no argument

is given, then the result is zero, which is an identity for this operation.

[Function]logand &rest integers

This returns the bit-wise logical and of its arguments. If no argument is given,

then the result is -1, which is an identity for this operation.

[Function]logeqv &rest integers

This returns the bit-wise logical equivalence (also known as exclusive nor) of

its arguments. If no argument is given, then the result is -1, which is an

identity for this operation.

[Function]lognand integer1 integer2
[Function]lognor integer1 integer2

[Function]logandc1 integer1 integer2

[Function]logandc2 integer1 integer2

[Function]logorc1 integer1 integer2
[Function]logorc2 integer1 integer2

These are the other six non-trivial bit-wise logical operations on two argu-

ments. Because they are not associative, they take exactly two arguments

rather than any non-negative number of arguments.
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(lognand n1 n2) ≡ (lognot (logand n1 n2))

(lognor n1 n2) ≡ (lognot (logior n1 n2))

(logandc1 n1 n2) ≡ (logand (lognot n1) n2)

(logandc2 n1 n2) ≡ (logand n1 (lognot n2))

(logorc1 n1 n2) ≡ (logior (lognot n1) n2)

(logorc2 n1 n2) ≡ (logior n1 (lognot n2))

The ten bit-wise logical operations on two integers are summarized in the

following table:

integer1 0 0 1 1

integer2 0 1 0 1 Operation Name

logand 0 0 0 1 and

logior 0 1 1 1 inclusive or

logxor 0 1 1 0 exclusive or

logeqv 1 0 0 1 equivalence (exclusive nor)
lognand 1 1 1 0 not-and

lognor 1 0 0 0 not-or

logandc1 0 1 0 0 and complement of integer1 with integer2

logandc2 0 0 1 0 and integer1 with complement of integer2

logorc1 1 1 0 1 or complement of integer1 with integer2
logorc2 1 0 1 1 or integer1 with complement of integer2
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[Function]boole op integer1 integer2

[Constant ]boole-clr

[Constant ]boole-set

[Constant ]boole-1

[Constant ]boole-2

[Constant ]boole-c1

[Constant ]boole-c2

[Constant ]boole-and

[Constant ]boole-ior

[Constant ]boole-xor

[Constant ]boole-eqv

[Constant ]boole-nand

[Constant ]boole-nor

[Constant ]boole-andc1

[Constant ]boole-andc2

[Constant ]boole-orc1

[Constant ]boole-orc2

The function boole takes an operation op and two integers, and returns an

integer produced by performing the logical operation specified by op on the

two integers. The precise values of the sixteen constants are implementation-

dependent, but they are suitable for use as the first argument to boole:

integer1 0 0 1 1

integer2 0 1 0 1 Operation Performed

boole-clr 0 0 0 0 always 0
boole-set 1 1 1 1 always 1

boole-1 0 0 1 1 integer1

boole-2 0 1 0 1 integer2

boole-c1 1 1 0 0 complement of integer1

boole-c2 1 0 1 0 complement of integer2
boole-and 0 0 0 1 and

boole-ior 0 1 1 1 inclusive or

boole-xor 0 1 1 0 exclusive or

boole-eqv 1 0 0 1 equivalence (exclusive nor)
boole-nand 1 1 1 0 not-and

boole-nor 1 0 0 0 not-or

boole-andc1 0 1 0 0 and complement of integer1 with integer2

boole-andc2 0 0 1 0 and integer1 with complement of integer2

boole-orc1 1 1 0 1 or complement of integer1 with integer2
boole-orc2 1 0 1 1 or integer1 with complement of integer2
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boole can therefore compute all sixteen logical functions on two arguments.

In general,

(boole boole-and x y) ≡ (logand x y)

and the latter is more perspicuous. However, boole is useful when it is nec-

essary to parameterize a procedure so that it can use one of several logical
operations.

[Function]lognot integer

This returns the bit-wise logical not of its argument. Every bit of the result

is the complement of the corresponding bit in the argument.

(logbitp j (lognot x)) ≡ (not (logbitp j x))

[Function]logtest integer1 integer2

logtest is a predicate that is true if any of the bits designated by the 1’s in

integer1 are 1’s in integer2.

(logtest x y) ≡ (not (zerop (logand x y)))

[Function]logbitp index integer

logbitp is true if the bit in integer whose index is index (that is, its weight

is 2index) is a one-bit; otherwise it is false. For example:

(logbitp 2 6) is true

(logbitp 0 6) is false
(logbitp k n) ≡ (ldb-test (byte 1 k) n)

X3J13 voted in January 1989 〈7〉 to clarify that the index must be a non-

negative integer.

[Function]ash integer count

This function shifts integer arithmetically left by count bit positions if count

is positive, or right by −count bit positions if count is negative. The sign of

the result is always the same as the sign of integer.

Mathematically speaking, this operation performs the computation

floor(integer · 2count).
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Logically, this moves all of the bits in integer to the left, adding zero-bits

at the bottom, or moves them to the right, discarding bits. (In this context

the question of what gets shifted in on the left is irrelevant; integers, viewed

as strings of bits, are “half-infinite,” that is, conceptually extend infinitely far

to the left.) For example:

(logbitp j (ash n k)) ≡ (and (>UU j k) (logbitp (- j k) n))

[Function]logcount integer

The number of bits in integer is determined and returned. If integer is positive,

the 1-bits in its binary representation are counted. If integer is negative, the

0-bits in its two’s-complement binary representation are counted. The result
is always a non-negative integer. For example:

(logcount 13) ⇒ 3 ;Binary representation is ...0001101

(logcount -13) ⇒ 2 ;Binary representation is ...1110011

(logcount 30) ⇒ 4 ;Binary representation is ...0011110

(logcount -30) ⇒ 4 ;Binary representation is ...1100010

The following identity always holds:

(logcount x) ≡ (logcount (- (+ x 1)))

≡ (logcount (lognot x))

[Function]integer-length integer

This function performs the computation

ceiling(log2(if integer < 0 then − integer else integer + 1))

This is useful in two different ways. First, if integer is non-negative, then its

value can be represented in unsigned binary form in a field whose width in

bits is no smaller than (integer-length integer). Second, regardless of the
sign of integer, its value can be represented in signed binary two’s-complement

form in a field whose width in bits is no smaller than (+ (integer-length

integer) 1). For example:

(integer-length 0) ⇒ 0

(integer-length 1) ⇒ 1

(integer-length 3) ⇒ 2

(integer-length 4) ⇒ 3

(integer-length 7) ⇒ 3
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(integer-length -1) ⇒ 0

(integer-length -4) ⇒ 2

(integer-length -7) ⇒ 3

(integer-length -8) ⇒ 3

Compatibility note: This function is similar to the MacLisp function haulong.
One may define haulong as

(haulong x) ≡ (integer-length (abs x))

12.8. Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of

contiguous bits appearing anywhere in an integer. Such a contiguous set of

bits is called a byte. Here the term byte does not imply some fixed number of

bits (such as eight), rather a field of arbitrary and user-specifiable width.

The byte-manipulation functions use objects called byte specifiers to desig-

nate a specific byte position within an integer. The representation of a byte

specifier is implementation-dependent; in particular, it may or may not be a

number. It is sufficient to know that the function byte will construct one, and
that the byte-manipulation functions will accept them. The function byte ac-

cepts two integers representing the position and size of the byte and returns

a byte specifier. Such a specifier designates a byte whose width is size and

whose bits have weights 2position+size−1 through 2position.

[Function]byte size position

byte takes two integers representing the size and position of a byte and returns

a byte specifier suitable for use as an argument to byte-manipulation functions.

[Function]byte-size bytespec
[Function]byte-position bytespec

Given a byte specifier, byte-size returns the size specified as an integer;
byte-position similarly returns the position. For example:

(byte-size (byte j k)) ≡ j

(byte-position (byte j k)) ≡ k
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[Function]ldb bytespec integer

bytespec specifies a byte of integer to be extracted. The result is returned as

a non-negative integer. For example:

(logbitp j (ldb (byte s p) n)) ≡ (and (< j s) (logbitp (+ j p) n))

The name of the function ldb means “load byte.”

Compatibility note: The MacLisp function haipart can be implemented in terms
of ldb as follows:

(defun haipart (integer count)

(let ((x (abs integer)))

(if (minusp count)

(ldb (byte (- count) 0) x)

(ldb (byte count (max 0 (- (integer-length x) count)))

x))))

If the argument integer is specified by a form that is a place form acceptable

to setf, then setf may be used with ldb to modify a byte within the integer

that is stored in that place. The effect is to perform a dpb operation and then
store the result back into the place.

[Function]ldb-test bytespec integer

ldb-test is a predicate that is true if any of the bits designated by the byte

specifier bytespec are 1’s in integer; that is, it is true if the designated field is

non-zero.

(ldb-test bytespec n) ≡ (not (zerop (ldb bytespec n)))

[Function]mask-field bytespec integer

This is similar to ldb; however, the result contains the specified byte of integer

in the position specified by bytespec, rather than in position 0 as with ldb.

The result therefore agrees with integer in the byte specified but has zero-bits

everywhere else. For example:

(ldb bs (mask-field bs n)) ≡ (ldb bs n)

(logbitp j (mask-field (byte s p) n))
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≡ (and (>UU j p) (< j (+ p s)) (logbitp j n))

(mask-field bs n) ≡ (logand n (dpb -1 bs 0))

If the argument integer is specified by a form that is a place form acceptable

to setf, then setf may be used with mask-field to modify a byte within the

integer that is stored in that place. The effect is to perform a deposit-field

operation and then store the result back into the place.

[Function]dpb newbyte bytespec integer

This returns a number that is the same as integer except in the bits specified

by bytespec. Let s be the size specified by bytespec; then the low s bits of

newbyte appear in the result in the byte specified by bytespec. The integer
newbyte is therefore interpreted as being right-justified, as if it were the result

of ldb. For example:

(logbitp j (dpb m (byte s p) n))

≡ (if (and (>UU j p) (< j (+ p s)))
(logbitp (- j p) m)

(logbitp j n))

The name of the function dpb means “deposit byte.”

[Function]deposit-field newbyte bytespec integer

This function is to mask-field as dpb is to ldb. The result is an integer

that contains the bits of newbyte within the byte specified by bytespec, and
elsewhere contains the bits of integer. For example:

(logbitp j (deposit-field m (byte s p) n))

≡ (if (and (>UU j p) (< j (+ p s)))

(logbitp j m)

(logbitp j n))

Implementation note: If the bytespec is a constant, one may of course construct,
at compile time, an equivalent mask m, for example by computing (deposit-field

-1 bytespec 0). Given this mask m, one may then compute

(deposit-field newbyte bytespec integer)

by computing
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(logior (logand newbyte m) (logand integer (lognot m)))

where the result of (lognot m) can of course also be computed at compile time.
However, the following expression may also be used and may require fewer temporary
registers in some situations:

(logxor integer (logand m (logxor integer newbyte)))

A related, though possibly less useful, trick is that

(let ((z (logand (logxor x y) m)))

(setq x (logxor z x))

(setq y (logxor z y)))

interchanges those bits of x and y for which the mask m is 1, and leaves alone those
bits of x and y for which m is 0.

12.9. Random Numbers

The Common Lisp facility for generating pseudo-random numbers has been

carefully defined to make its use reasonably portable. While two implementa-
tions may produce different series of pseudo-random numbers, the distribution

of values should be relatively independent of such machine-dependent aspects

as word size.

[Function]random number &optional state

(random n) accepts a positive number n and returns a number of the same
kind between zero (inclusive) and n (exclusive). The number n may be an

integer or a floating-point number. An approximately uniform choice distri-

bution is used. If n is an integer, each of the possible results occurs with

(approximate) probability 1/n. (The qualifier “approximate” is used because
of implementation considerations; in practice, the deviation from uniformity

should be quite small.)

The argument state must be an object of type random-state; it defaults to

the value of the variable *random-state*. This object is used to maintain the

state of the pseudo-random-number generator and is altered as a side effect
of the random operation.

Compatibility note: random of zero arguments as defined in MacLisp has been
omitted because its value is too implementation-dependent (limited by fixnum
range).
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Implementation note: In general, even if random of zero arguments were defined
as in MacLisp, it is not adequate to define (random n) for integral n to be simply
(mod (random) n); this fails to be uniformly distributed if n is larger than the largest
number produced by random, or even if n merely approaches this number. This is
another reason for omitting random of zero arguments in Common Lisp. Assuming
that the underlying mechanism produces “random bits” (possibly in chunks such
as fixnums), the best approach is to produce enough random bits to construct an
integer k some number d of bits larger than (integer-length n) (see integer-

length), and then compute (mod k n). The quantity d should be at least 7, and
preferably 10 or more.

To produce random floating-point numbers in the half-open range [A,B), accepted
practice (as determined by a look through the Collected Algorithms from the ACM,
particularly algorithms 133, 266, 294, and 370) is to compute X · (B−A)+A, where
X is a floating-point number uniformly distributed over [0.0, 1.0) and computed by
calculating a random integer N in the range [0, M ) (typically by a multiplicative-
congruential or linear-congruential method mod M ) and then setting X = N /M .

See also [27]. If one takes M = 2f, where f is the length of the significand of a
floating-point number (and it is in fact common to choose M to be a power of 2),
then this method is equivalent to the following assembly-language-level procedure.
Assume the representation has no hidden bit. Take a floating-point 0.5, and clobber
its entire significand with random bits. Normalize the result if necessary.

For example, on the DEC PDP-10, assume that accumulator T is completely
random (all 36 bits are random). Then the code sequence

LSH T,-9 ;Clear high 9 bits; low 27 are random
FSC T,128. ;Install exponent and normalize

will produce in T a random floating-point number uniformly distributed over
[0.0, 1.0). (Instead of the LSH instruction, one could do

TLZ T,777000 ;That’s 777000 octal

but if the 36 random bits came from a congruential random-number generator, the
high-order bits tend to be “more random” than the low-order ones, and so the LSH

would be better for uniform distribution. Ideally all the bits would be the result of
high-quality randomness.)

With a hidden-bit representation, normalization is not a problem, but dealing
with the hidden bit is. The method can be adapted as follows. Take a floating-
point 1.0 and clobber the explicit significand bits with random bits; this produces a
random floating-point number in the range [1.0, 2.0). Then simply subtract 1.0. In
effect, we let the hidden bit creep in and then subtract it away again.

For example, on the DEC VAX, assume that register T is completely random (but
a little less random than on the PDP-10, as it has only 32 random bits). Then the
code sequence
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INSV #--^X81,#--7,#--9,T ;Install correct sign bit and exponent
SUBF #--^F1.0,T ;Subtract 1.0

will produce in T a random floating-point number uniformly distributed over
[0.0, 1.0). Again, if the low-order bits are not random enough, then the instruc-
tion

ROTL #--7,T

should be performed first.
Implementors may wish to consult reference [41] for a discussion of some efficient

methods of generating pseudo-random numbers.

[Variable]*random-state*

This variable holds a data structure, an object of type random-state, that

encodes the internal state of the random-number generator that random uses

by default. The nature of this data structure is implementation-dependent. It
may be printed out and successfully read back in, but may or may not function

correctly as a random-number state object in another implementation. A call

to random will perform a side effect on this data structure. Lambda-binding

this variable to a different random-number state object will correctly save and
restore the old state object.

[Function]make-random-state &optional state

This function returns a new object of type random-state, suitable for use as

the value of the variable *random-state*. If state is nil or omitted, make-

random-state returns a copy of the current random-number state object (the
value of the variable *random-state*). If state is a state object, a copy of

that state object is returned. If state is t, then a new state object is returned

that has been “randomly” initialized by some means (such as by a time-of-day

clock).

Rationale: Common Lisp purposely provides no way to initialize a random-state

object from a user-specified “seed.” The reason for this is that the number of bits
of state information in a random-state object may vary widely from one implemen-
tation to another, and there is no simple way to guarantee that any user-specified
seed value will be “random enough.” Instead, the initialization of random-state

objects is left to the implementor in the case where the argument t is given to
make-random-state.

To handle the common situation of executing the same program many times in
a reproducible manner, where that program uses random, the following procedure
may be used:
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1. Evaluate (make-random-state t) to create a random-state object.

2. Write that object to a file, using print, for later use.

3. Whenever the program is to be run, first use read to create a copy of the random-
state object from the printed representation in the file. Then use the random-

state object newly created by the read operation to initialize the random-number
generator for the program.

It is for the sake of this procedure for reproducible execution that implementations
are required to provide a read/print syntax for objects of type random-state.

It is also possible to make copies of a random-state object directly without going
through the print/read process, simply by using the make-random-state function to
copy the object; this allows the same sequence of random numbers to be generated
many times within a single program.

Implementation note: A recommended way to implement the type random-state
is effectively to use the machinery for defstruct. The usual structure syntax may
then be used for printing random-state objects; one might look something like

#--S(RANDOM-STATE DATA #--(14 49 98436589 786345 8734658324 ...))

where the components are of course completely implementation-dependent.

[Function]random-state-p object

random-state-p is true if its argument is a random-state object, and other-

wise is false.

(random-state-p x) ≡ (typep x ’random-state)

12.10. Implementation Parameters

The values of the named constants defined in this section are implementation-

dependent. They may be useful for parameterizing code in some situations.

[Constant ]most-positive-fixnum

[Constant ]most-negative-fixnum

The value of most-positive-fixnum is that fixnum closest in value to positive

infinity provided by the implementation.

The value of most-negative-fixnum is that fixnum closest in value to

negative infinity provided by the implementation.
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X3J13 voted in January 1989 〈76〉 to specify that fixnum must be a su-

pertype of the type (signed-byte 16), and additionally that the value of

array-dimension-limit must be a fixnum. This implies that the value of

most-negative-fixnum must be less than or equal to −215, and the value of

most-positive-fixnum must be greater than or equal to both 215 − 1 and
the value of array-dimension-limit.

[Constant ]most-positive-short-float

[Constant ]least-positive-short-float

[Constant ]least-negative-short-float

[Constant ]most-negative-short-float

The value of most-positive-short-float is that short-format floating-point

number closest in value to (but not equal to) positive infinity provided by the

implementation.

The value of least-positive-short-float is that positive short-format

floating-point number closest in value to (but not equal to) zero provided by

the implementation.

The value of least-negative-short-float is that negative short-format

floating-point number closest in value to (but not equal to) zero provided by

the implementation. (Note that even if an implementation supports minus

zero as a distinct short floating-point value, least-negative-short-float

must not be minus zero.)

X3J13 voted in June 1989 〈79〉 to clarify that these definitions are to be

taken quite literally. In implementations that support denormalized numbers,

the values of least-positive-short-float and least-negative-short-

float may be denormalized.

The value of most-negative-short-float is that short-format floating-

point number closest in value to (but not equal to) negative infinity provided

by the implementation.
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[Constant ]most-positive-single-float

[Constant ]least-positive-single-float

[Constant ]least-negative-single-float

[Constant ]most-negative-single-float

[Constant ]most-positive-double-float

[Constant ]least-positive-double-float

[Constant ]least-negative-double-float

[Constant ]most-negative-double-float

[Constant ]most-positive-long-float

[Constant ]least-positive-long-float

[Constant ]least-negative-long-float

[Constant ]most-negative-long-float

These are analogous to the constants defined above for short-format floating-

point numbers.

[Constant ]least-positive-normalized-short-float

[Constant ]least-negative-normalized-short-float

X3J13 voted in June 1989 〈79〉 to add these constants to the language.

The value of least-positive-normalized-short-float is that positive

normalized short-format floating-point number closest in value to (but not
equal to) zero provided by the implementation. In implementations that do

not support denormalized numbers this may be the same as the value of

least-positive-short-float.

The value of least-negative-normalized-short-float is that negative

normalized short-format floating-point number closest in value to (but not
equal to) zero provided by the implementation. (Note that even if an im-

plementation supports minus zero as a distinct short floating-point value,

least-negative-normalized-short-float must not be minus zero.) In im-

plementations that do not support denormalized numbers this may be the

same as the value of least-positive-short-float.
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[Constant ]least-positive-normalized-single-float

[Constant ]least-negative-normalized-single-float

[Constant ]least-positive-normalized-double-float

[Constant ]least-negative-normalized-double-float

[Constant ]least-positive-normalized-long-float

[Constant ]least-negative-normalized-long-float

These are analogous to the constants defined above for short-format floating-

point numbers.

[Constant ]short-float-epsilon

[Constant ]single-float-epsilon

[Constant ]double-float-epsilon

[Constant ]long-float-epsilon

These constants have as value, for each floating-point format, the smallest

positive floating-point number e of that format such that the expression

(not (UU (float 1 e) (+ (float 1 e) e)))

is true when actually evaluated.

[Constant ]short-float-negative-epsilon

[Constant ]single-float-negative-epsilon

[Constant ]double-float-negative-epsilon

[Constant ]long-float-negative-epsilon

These constants have as value, for each floating-point format, the smallest

positive floating-point number e of that format such that the expression

(not (UU (float 1 e) (- (float 1 e) e)))

is true when actually evaluated.
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Characters

Common Lisp provides a character data type; objects of this type represent

printed symbols such as letters.

In general, characters in Common Lisp are not true objects; eq cannot be

counted upon to operate on them reliably. In particular, it is possible that

the expression

(let ((x z) (y z)) (eq x y))

may be false rather than true, if the value of z is a character.

Rationale: This odd breakdown of eq in the case of characters allows the implemen-
tor enough design freedom to produce exceptionally efficient code on conventional
architectures. In this respect the treatment of characters exactly parallels that of
numbers, as described in chapter 12.

If two objects are to be compared for “identity,” but either might be a

character, then the predicate eql is probably appropriate.

X3J13 voted in March 1989 〈11〉 to approve the following definitions and

terminology for use in discussing character facilities in Common Lisp.

A character repertoire defines a collection of characters independent of their
specific rendered image or font. (This corresponds to the mathematical notion

of a set, but the term character set is avoided here because it has been used in

the past to mean both what is here called a repertoire and what is here called

a coded character set.) Character repertoires are specified independent of
coding and their characters are identified only with a unique character label,

a graphic symbol, and a character description. As an example, table 13-1

shows the character labels, graphic symbols, and character descriptions for

all of the characters in the repertoire standard-char except for #--\Space and

#--\Newline.

398
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Table 13-1: Standard Character Labels, Glyphs, and Descriptions

SM05 @ commercial at SD13 ‘ grave accent

SP02 ! exclamation mark LA02 A capital A LA01 a small a

SP04 " quotation mark LB02 B capital B LB01 b small b

SM01 #-- number sign LC02 C capital C LC01 c small c

SC03 $ dollar sign LD02 D capital D LD01 d small d

SM02 % percent sign LE02 E capital E LE01 e small e

SM03 & ampersand LF02 F capital F LF01 f small f

SP05 ’ apostrophe LG02 G capital G LG01 g small g

SP06 ( left parenthesis LH02 H capital H LH01 h small h

SP07 ) right parenthesis LI02 I capital I LI01 i small i

SM04 * asterisk LJ02 J capital J LJ01 j small j

SA01 + plus sign LK02 K capital K LK01 k small k

SP08 , comma LL02 L capital L LL01 l small l

SP10 - hyphen or minus sign LM02 M capital M LM01 m small m

SP11 . period or full stop LN02 N capital N LN01 n small n

SP12 / solidus LO02 O capital O LO01 o small o

ND10 0 digit 0 LP02 P capital P LP01 p small p

ND01 1 digit 1 LQ02 Q capital Q LQ01 q small q

ND02 2 digit 2 LR02 R capital R LR01 r small r

ND03 3 digit 3 LS02 S capital S LS01 s small s

ND04 4 digit 4 LT02 T capital T LT01 t small t

ND05 5 digit 5 LU02 U capital U LU01 u small u

ND06 6 digit 6 LV02 V capital V LV01 v small v

ND07 7 digit 7 LW02 W capital W LW01 w small w

ND08 8 digit 8 LX02 X capital X LX01 x small x

ND09 9 digit 9 LY02 Y capital Y LY01 y small y

SP13 : colon LZ02 Z capital Z LZ01 z small z

SP14 ; semicolon SM06 [ left square bracket SM11 { left curly bracket

SA03 < less-than sign SM07 \ reverse solidus SM13 | vertical bar

SA04 UU equals sign SM08 ] right square bracket SM14 } right curly bracket

SA05 > greater-than sign SD15 ^ circumflex accent SD19 ~ tilde

SP15 ? question mark SP09 _ low line

The characters in this table plus the space and newline characters make up the
standard Common Lisp character repertoire (type standard-char). The character
labels and character descriptions shown here are taken from ISO standard 6937/2
. The first character of the label categorizes the character as Latin, Numeric, or
Special.
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Every Common Lisp implementation must support the standard char-

acter repertoire as well as repertoires named base-character, extended-

character, and character. Other repertoires may be supported as well.

X3J13 voted in June 1989 〈122〉 to specify that names of repertoires may be

used as type specifiers. Such types must be subtypes of character; that is,
in a given implementation the repertoire named character must encompass

all the character objects supported by that implementation.

A coded character set is a character repertoire plus an encoding that provides

a bijective mapping between each character in the set and a number (typically

a non-negative integer) that serves as the character representation. There are
numerous internationally standardized coded character sets.

A character may be included in one or more character repertoires. Similarly,

a character may be included in one or more coded character sets.

To ensure that each character is uniquely defined, we may use a universal

registry of characters that incorporates a collection of distinguished repertoires

called character scripts that form an exhaustive partition of all characters.
That is, each character is included in exactly one character script. (Draft ISO

10646 Coded Character Set Standard, if eventually approved as a standard,

may become the practical realization of this universal registry.)

(X3J13 voted in June 1989 〈122〉 to specify that an implementation must

document the character scripts it supports. For each script the documen-
tation should discuss character labels, glyphs, and descriptions; any canoni-

calization processes performed by the reader that result in treating distinct

characters as equivalent; any canonicalization performed by format in process-

ing directives; the behavior of char-upcase, char-downcase, and the predi-
cates alpha-char-p, upper-case-p, lower-case-p, both-case-p, graphic-

char-p, alphanumericp, char-equal, char-not-equal, char-lessp, char-

greaterp, char-not-greaterp, and char-not-lessp for characters in the

script; and behavior with respect to input and output, including coded char-

acter sets and external coding schemes.)

In Common Lisp a character data object is identified by its character code,
a unique numerical code. Each character code is composed from a character

script and a character label. The convention by which a character script

and character label compose a character code is implementation dependent.

[X3J13 did not approve all parts of the proposal from its Subcommittee on
Characters. As a result, some features that were approved appear to have no

purpose. X3J13 wished to support the standardization by ISO of character

scripts and coded character sets but declined to design facilities for use in

Common Lisp until there has been more progress by ISO in this area. The

approval of the terminology for scripts and labels gives a hint to implementors
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of likely directions for Common Lisp in the future.]

A character object that is classified as graphic, or displayable, has an as-

sociated glpyh. The glyph is the visual representation of the character. All

other character data objects are classified as non-graphic.

This terminology assigns names to Common Lisp concepts in a manner
consistent with related concepts discussed in various ISO standards for coded

character sets and provides a demarcation between standardization activi-

ties. For example, facilities for manipulating characters, character scripts,

and coded character sets are properly defined by a Common Lisp standard,
but Common Lisp should not define standard character sets or standard char-

acter scripts.

13.1. Character Attributes

Every character has three attributes: code, bits, and font. The code attribute

is intended to distinguish among the printed glyphs and formatting functions

for characters. The bits attribute allows extra flags to be associated with a
character. The font attribute permits a specification of the style of the glyphs

(such as italics).

The treatment of character attributes in Common Lisp has not been entirely

successful. The font attribute has not been widely used, for two reasons.

First, a single integer, limited in most implementations to 255 at most, is
not an adequate, convenient, or portable representation for a font. Second,

in many applications where font information matters it is more convenient

or more efficient to represent font information as shift codes that apply to

many characters, rather than attaching font information separately to each
character.

As for the bits attribute, it was intended to support character input from

extended keyboards having extra “shift” keys. This, in turn, was imagined

to support the programming of a portable EMACS-like editor in Common

Lisp. (The EMACS command set is most convenient when the keyboard has
separate “control” and “meta” keys.) The bits attribute has been used in

the implementation of such editors and other interactive interfaces. However,

software that relies crucially on these extended characters will not be portable

to Common Lisp implementations that do not support them.
X3J13 voted in March 1989 〈11〉 and in June 1989 〈122〉 to revise consid-

erably the treatment of characters in the language. The bits and font at-

tributes are eliminated; instead a character may have implementation-defined

attributes. The treatment of such attributes by existing character-handling

functions is carefully constrained by certain rules.
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Implementations are free to continue to support bits and font attributes,

but they are formally regarded as implementation-defined attributes. The

rules are generally consistent with the previous treatment of the bits and font

attributes. My guess is that the font attribute as currently defined will wither

away, but the bits attribute as defined by the first edition will continue to
be supported as a de facto standard extension, because it fills a useful small

purpose.

[Constant ]char-code-limit

The value of char-code-limit is a non-negative integer that is the upper

exclusive bound on values produced by the function char-code, which returns
the code component of a given character; that is, the values returned by char-

code are non-negative and strictly less than the value of char-code-limit.

Common Lisp does not at present explicitly guarantee that all integers

between zero and the value of char-code-limit are valid character codes,

and so it is wise in any case for the programmer to assume that the space of
assigned character codes may be sparse.

[Constant ]char-font-limit
........................................................................................................................................................................................................

The value of char-font-limit is a non-negative integer that is the upper

exclusive bound on values produced by the function char-font, which returns

the font component of a given character; that is, the values returned by char-

font are non-negative and strictly less than the value of char-font-limit.

Implementation note: No Common Lisp implementation is required to support
non-zero font attributes; if it does not, then char-font-limit should be 1.

X3J13 voted in March 1989 〈11〉 to eliminate char-font-limit.

Experience has shown that numeric codes are not an especially convenient,

let alone portable, representation for font information. A system based on
typeface names, type styles, and point sizes would be much better. (Macintosh

software developers made the same discovery and have recently converted to

a new font identification scheme.)

[Constant ]char-bits-limit
........................................................................................................................................................................................................

The value of char-bits-limit is a non-negative integer that is the upper

exclusive bound on values produced by the function char-bits, which returns
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the bits component of a given character; that is, the values returned by char-

bits are non-negative and strictly less than the value of char-bits-limit.

Note that the value of char-bits-limit will be a power of 2.

Implementation note: No Common Lisp implementation is required to support
non-zero bits attributes; if it does not, then char-bits-limit should be 1.

X3J13 voted in March 1989 〈11〉 to eliminate char-bits-limit.

13.2. Predicates on Characters

The predicate characterp may be used to determine whether any Lisp object
is a character object.

[Function]standard-char-p char

The argument char must be a character object. standard-char-p is true if

the argument is a “standard character,” that is, an object of type standard-

char.

Note that any character with a non-zero bits or font attribute is non-

standard.

[Function]graphic-char-p char

The argument char must be a character object. graphic-char-p is true if the

argument is a “graphic” (printing) character, and false if it is a “non-graphic”

(formatting or control) character. Graphic characters have a standard textual

representation as a single glyph, such as A or * or UU. By convention, the space

character is considered to be graphic. Of the standard characters all but
#--\Newline are graphic. The semi-standard characters #--\Backspace, #--\Tab,

#--\Rubout, #--\Linefeed, #--\Return, and #--\Page are not graphic.

Programs may assume that graphic characters of font 0 are all of the same

width when printed, for example, for purposes of columnar formatting. (This

does not prohibit the use of a variable-pitch font as font 0, but merely implies
that every implementation of Common Lisp must provide some mode of oper-

ation in which font 0 is a fixed-pitch font.) Portable programs should assume

that, in general, non-graphic characters and characters of other fonts may be

of varying widths.

Any character with a non-zero bits attribute is non-graphic.
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[Function]string-char-p char
........................................................................................................................................................................................................

The argument char must be a character object. string-char-p is true if char

can be stored into a string, and otherwise is false. Any character that satisfies

standard-char-p also satisfies string-char-p; others may also.

X3J13 voted in March 1989 〈11〉 to eliminate string-char-p.

[Function]alpha-char-p char

The argument char must be a character object. alpha-char-p is true if the

argument is an alphabetic character, and otherwise is false.

If a character is alphabetic, then it is perforce graphic. Therefore any

character with a non-zero bits attribute cannot be alphabetic. Whether a

character is alphabetic may depend on its font number.
Of the standard characters (as defined by standard-char-p), the letters A

through Z and a through z are alphabetic.

[Function]upper-case-p char

[Function]lower-case-p char

[Function]both-case-p char

The argument char must be a character object.

upper-case-p is true if the argument is an uppercase character, and oth-

erwise is false.

lower-case-p is true if the argument is a lowercase character, and other-
wise is false.

both-case-p is true if the argument is an uppercase character and there

is a corresponding lowercase character (which can be obtained using char-

downcase), or if the argument is a lowercase character and there is a corre-
sponding uppercase character (which can be obtained using char-upcase).

If a character is either uppercase or lowercase, it is necessarily alphabetic

(and therefore is graphic, and therefore has a zero bits attribute). However,

it is permissible in theory for an alphabetic character to be neither uppercase

nor lowercase (in a non-Roman font, for example).
Of the standard characters (as defined by standard-char-p), the letters A

through Z are uppercase and a through z are lowercase.

[Function]digit-char-p char &optional (radix 10)

The argument char must be a character object, and radix must be a non-

negative integer. If char is not a digit of the radix specified by radix, then
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digit-char-p is false; otherwise it returns a non-negative integer that is the

“weight” of char in that radix.

Digits are necessarily graphic characters.

Of the standard characters (as defined by standard-char-p), the characters

0 through 9, A through Z, and a through z are digits. The weights of 0 through

9 are the integers 0 through 9, and of A through Z (and also a through z) are

10 through 35. digit-char-p returns the weight for one of these digits if and
only if its weight is strictly less than radix. Thus, for example, the digits for

radix 16 are

0 1 2 3 4 5 6 7 8 9 A B C D E F

Here is an example of the use of digit-char-p:

(defun convert-string-to-integer (str &optional (radix 10))

"Given a digit string and optional radix, return an integer."

(do ((j 0 (+ j 1))

(n 0 (+ (* n radix)

(or (digit-char-p (char str j) radix)

(error "Bad radix-~D digit: ~C"

radix

(char str j))))))

((UU j (length str)) n)))

[Function]alphanumericp char

The argument char must be a character object. alphanumericp is true if char

is either alphabetic or numeric. By definition,

(alphanumericp x)

≡ (or (alpha-char-p x) (not (null (digit-char-p x))))

Alphanumeric characters are therefore necessarily graphic (as defined by the

predicate graphic-char-p).

Of the standard characters (as defined by standard-char-p), the characters

0 through 9, A through Z, and a through z are alphanumeric.
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[Function]charUU character &rest more-characters

[Function]char/UU character &rest more-characters

[Function]char< character &rest more-characters

[Function]char> character &rest more-characters

[Function]char<UU character &rest more-characters
[Function]char>UU character &rest more-characters

The arguments must all be character objects. These functions compare the

objects using the implementation-dependent total ordering on characters, in

a manner analogous to numeric comparisons by UU and related functions.

The total ordering on characters is guaranteed to have the following prop-
erties:

. The standard alphanumeric characters obey the following partial ordering:

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z

a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z

0<1<2<3<4<5<6<7<8<9

either 9<A or Z<0

either 9<a or z<0

This implies that alphabetic ordering holds within each case (upper and

lower), and that the digits as a group are not interleaved with letters. How-
ever, the ordering or possible interleaving of uppercase letters and lowercase

letters is unspecified. (Note that both the ASCII and the EBCDIC char-

acter sets conform to this specification. As it happens, neither ordering

interleaves uppercase and lowercase letters: in the ASCII ordering, 9<A and

Z<a, whereas in the EBCDIC ordering z<A and Z<0.)

. If two characters have the same bits and font attributes, then their ordering
........................................................................................................................................................................................................

by char< is consistent with the numerical ordering by the predicate < on

their code attributes.

. If two characters differ in any attribute (code, bits, or font), then they are

different.

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font

attributes with that of implementation-defined attributes.

. If two characters have identical implementation-defined attributes, then

their ordering by char< is consistent with the numerical ordering by the
predicate < on their codes, and similarly for char>, char<UU, and char>UU.

. If two characters differ in any implementation-defined attribute, then they

are not charUU.
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The total ordering is not necessarily the same as the total ordering on the

integers produced by applying char-int to the characters (although it is a
reasonable implementation technique to use that ordering).

While alphabetic characters of a given case must be properly ordered, they

need not be contiguous; thus (char<UU #--\a x #--\z) is not a valid way of de-

termining whether or not x is a lowercase letter. That is why a separate

lower-case-p predicate is provided.

(charUU #--\d #--\d) is true.

(char/UU #--\d #--\d) is false.

(charUU #--\d #--\x) is false.

(char/UU #--\d #--\x) is true.
(charUU #--\d #--\D) is false.

(char/UU #--\d #--\D) is true.

(charUU #--\d #--\d #--\d #--\d) is true.

(char/UU #--\d #--\d #--\d #--\d) is false.
(charUU #--\d #--\d #--\x #--\d) is false.

(char/UU #--\d #--\d #--\x #--\d) is false.

(charUU #--\d #--\y #--\x #--\c) is false.

(char/UU #--\d #--\y #--\x #--\c) is true.

(charUU #--\d #--\c #--\d) is false.
(char/UU #--\d #--\c #--\d) is false.

(char< #--\d #--\x) is true.

(char<UU #--\d #--\x) is true.

(char< #--\d #--\d) is false.
(char<UU #--\d #--\d) is true.

(char< #--\a #--\e #--\y #--\z) is true.

(char<UU #--\a #--\e #--\y #--\z) is true.

(char< #--\a #--\e #--\e #--\y) is false.

(char<UU #--\a #--\e #--\e #--\y) is true.
(char> #--\e #--\d) is true.

(char>UU #--\e #--\d) is true.

(char> #--\d #--\c #--\b #--\a) is true.

(char>UU #--\d #--\c #--\b #--\a) is true.
(char> #--\d #--\d #--\c #--\a) is false.

(char>UU #--\d #--\d #--\c #--\a) is true.

(char> #--\e #--\d #--\b #--\c #--\a) is false.

(char>UU #--\e #--\d #--\b #--\c #--\a) is false.

(char> #--\z #--\A) may be true or false.



408 COMMON LISP

(char> #--\Z #--\a) may be true or false.

There is no requirement that (eq c1 c2) be true merely because (charUU

c1 c2) is true. While eq may distinguish two character objects that charUU

does not, it is distinguishing them not as characters, but in some sense on

the basis of a lower-level implementation characteristic. (Of course, if (eq c1

c2) is true, then one may expect (charUU c1 c2) to be true.) However, eql

and equal compare character objects in the same way that charUU does.

[Function]char-equal character &rest more-characters

[Function]char-not-equal character &rest more-characters

[Function]char-lessp character &rest more-characters

[Function]char-greaterp character &rest more-characters
[Function]char-not-greaterp character &rest more-characters

[Function]char-not-lessp character &rest more-characters

The predicate char-equal is like charUU, and similarly for the others, ex-
........................................................................................................................................................................................................

cept according to a different ordering such that differences of bits attributes
and case are ignored, and font information is taken into account in an

implementation-dependent manner.

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font

attributes with that of implementation-defined attributes. The effect, if any,

of each such attribute on the behavior of char-equal, char-not-equal, char-
lessp, char-greaterp, char-not-greaterp, and char-not-lessp must be

specified as part of the definition of that attribute.

For the standard characters, the ordering is such that AUUa, BUUb, and so on,

up to ZUUz, and furthermore either 9<A or Z<0. For example:

(char-equal #--\A #--\a) is true.

(charUU #--\A #--\a) is false.
(char-equal #--\A #--\Control-A) is true.

The ordering may depend on the font information. For example, an im-
........................................................................................................................................................................................................

plementation might decree that (char-equal #--\p #--\p) be true, but that

(char-equal #--\p #--\π) be false (where #--\π is a lowercase p in some font).

Assuming italics to be in font 1 and the Greek alphabet in font 2, this is the
same as saying that (char-equal #--0\p #--1\p) may be true and at the same

time (char-equal #--0\p #--2\p) may be false.
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13.3. Character Construction and Selection

These functions may be used to extract attributes of a character and to con-

struct new characters.

[Function]char-code char

The argument char must be a character object. char-code returns the code
attribute of the character object; this will be a non-negative integer less than

the (normal) value of the variable char-code-limit.

This is usually what you need in order to treat a character as an index

into a vector. The length of the vector should then be equal to char-code-

limit. Be careful how you initialize this vector; remember that you cannot
necessarily expect all non-negative integers less than char-code-limit to be

valid character codes.

[Function]char-bits char
........................................................................................................................................................................................................

The argument char must be a character object. char-bits returns the bits

attribute of the character object; this will be a non-negative integer less than

the (normal) value of the variable char-bits-limit.

X3J13 voted in March 1989 〈11〉 to eliminate char-bits.

[Function]char-font char
........................................................................................................................................................................................................

The argument char must be a character object. char-font returns the font

attribute of the character object; this will be a non-negative integer less than

the (normal) value of the variable char-font-limit.

X3J13 voted in March 1989 〈11〉 to eliminate char-font.

The references to the “normal” values of the “variables” char-code-limit,

char-bits-limit, and char-font-limit in the descriptions of char-code,

char-bits, and char-font were an oversight on my part. Early in the design
of Common Lisp they were indeed variables, but they are at present defined

to be constants, and their values therefore are always normal and should not

change. But this point is now moot.

[Function]code-char code &optional (bits 0) (font 0)

All three arguments must be non-negative integers. If it is possible in the
........................................................................................................................................................................................................

implementation to construct a character object whose code attribute is code,
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whose bits attribute is bits, and whose font attribute is font, then such an

object is returned; otherwise nil is returned.

For any integers c, b, and f, if (code-char c b f) is not nil then

(char-code (code-char c b f)) ⇒ c

(char-bits (code-char c b f)) ⇒ b
(char-font (code-char c b f)) ⇒ f

If the font and bits attributes of a character object c are zero, then it is the

case that

(charUU (code-char (char-code c)) c)

is true.

X3J13 voted in March 1989 〈11〉 to eliminate the bits and font arguments

from the specification of code-char.

[Function]make-char char &optional (bits 0) (font 0)
........................................................................................................................................................................................................

The argument char must be a character, and bits and font must be non-

negative integers. If it is possible in the implementation to construct a char-

acter object whose code attribute is the same as the code attribute of char,

whose bits attribute is bits, and whose font attribute is font, then such an
object is returned; otherwise nil is returned.

If bits and font are zero, then make-char cannot fail. This implies that for

every character object one can “turn off” its bits and font attributes.

X3J13 voted in March 1989 〈11〉 to eliminate make-char.

13.4. Character Conversions

These functions perform various transformations on characters, including case

conversions.

[Function]character object

The function character coerces its argument to be a character if possible;

see coerce.

(character x) ≡ (coerce x ’character)
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[Function]char-upcase char

[Function]char-downcase char

The argument char must be a character object. char-upcase attempts to

convert its argument to an uppercase equivalent; char-downcase attempts to

convert its argument to a lowercase equivalent.

char-upcase returns a character object with the same font and bits at-
........................................................................................................................................................................................................

tributes as char, but with possibly a different code attribute. If the code is
different from char’s, then the predicate lower-case-p is true of char, and

upper-case-p is true of the result character. Moreover, if (charUU (char-

upcase x) x) is not true, then it is true that

(charUU (char-downcase (char-upcase x)) x)

Similarly, char-downcase returns a character object with the same font and
bits attributes as char, but with possibly a different code attribute. If the code

is different from char’s, then the predicate upper-case-p is true of char, and

lower-case-p is true of the result character. Moreover, if (charUU (char-

downcase x) x) is not true, then it is true that

(charUU (char-upcase (char-downcase x)) x)

Note that the action of char-upcase and char-downcase may depend on the
bits and font attributes of the character. In particular, they have no effect

on a character with a non-zero bits attribute, because such characters are by

definition not alphabetic. See alpha-char-p.

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font

attributes with that of implementation-defined attributes. The effect of char-

upcase and char-downcase is to preserve implementation-defined attributes.

[Function]digit-char weight &optional (radix 10) (font 0)

All arguments must be integers. digit-char determines whether or not it is
possible to construct a character object whose font attribute is font, and whose

code is such that the result character has the weight weight when considered

as a digit of the radix radix (see the predicate digit-char-p). It returns such

a character if that is possible, and otherwise returns nil.

digit-char cannot return nil if font is zero, radix is between 2 and 36

inclusive, and weight is non-negative and less than radix.

If more than one character object can encode such a weight in the given

radix, one will be chosen consistently by any given implementation; moreover,
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among the standard characters, uppercase letters are preferred to lowercase

letters. For example:

(digit-char 7) ⇒ #--\7

(digit-char 12) ⇒ nil

(digit-char 12 16) ⇒ #--\C ;not #--\c

(digit-char 6 2) ⇒ nil

(digit-char 1 2) ⇒ #--\1

Note that no argument is provided for specifying the bits component of the
returned character, because a digit cannot have a non-zero bits component.

The reasoning is that every digit is graphic (see digit-char-p) and no graphic

character has a non-zero bits component (see graphic-char-p).

X3J13 voted in March 1989 〈11〉 to eliminate the font argument from the
specification of digit-char.

[Function]char-int char

The argument char must be a character object. char-int returns a non-
negative integer encoding the character object.

If the font and bits attributes of char are zero, then char-int returns the

same integer char-code would. Also,

(charUU c1 c2) ≡ (UU (char-int c1) (char-int c2))

for characters c1 and c2.

This function is provided primarily for the purpose of hashing characters.

[Function]int-char integer
........................................................................................................................................................................................................

The argument must be a non-negative integer. int-char returns a character

object c such that (char-int c) is equal to integer, if possible; otherwise

int-char returns false.

X3J13 voted in March 1989 〈11〉 to eliminate int-char.

[Function]char-name char

The argument char must be a character object. If the character has a name,

then that name (a string) is returned; otherwise nil is returned. All characters

that have zero font and bits attributes and that are non-graphic (do not satisfy

the predicate graphic-char-p) have names. Graphic characters may or may

not have names.
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The standard newline and space characters have the respective names

Newline and Space. The semi-standard characters have the names Tab, Page,

Rubout, Linefeed, Return, and Backspace.

Characters that have names can be notated as #--\ followed by the name.

(See section 22.1.4.) Although the name may be written in any case, it is
stylish to capitalize it thus: #--\Space.

char-name will only locate “simple” character names; it will not construct

names such as Control-Space on the basis of the character’s bits attribute.

The easiest way to get a name that includes the bits attribute of a character
c is (format nil "~:C" c).

[Function]name-char name

The argument name must be an object coerceable to a string as if by the

function string. If the name is the same as the name of a character object

(as determined by string-equal), that object is returned; otherwise nil is

returned.

13.5. Character Control-Bit Functions
........................................................................................................................................................................................................

Common Lisp provides explicit names for four bits of the bits attribute: Con-

trol, Meta, Hyper, and Super. The following definitions are provided for ma-
nipulating these. Each Common Lisp implementation provides these functions

for compatibility, even if it does not support any or all of the bits named below.

[Constant ]char-control-bit
........................................................................................................................................................................................................

[Constant ]char-meta-bit

[Constant ]char-super-bit

[Constant ]char-hyper-bit

The values of these named constants are the “weights” (as integers) for the
four named control bits. The weight of the control bit is 1; of the meta bit,

2; of the super bit, 4; and of the hyper bit, 8.

If a given implementation of Common Lisp does not support a particular

bit, then the corresponding constant is zero instead.

X3J13 voted in March 1989 〈11〉 to eliminate all four of the constants char-

control-bit, char-meta-bit, char-super-bit, and char-hyper-bit.

When Common Lisp was first designed, keyboards with “extra bits” were

relatively rare. The bits attribute was originally designed to support input

from keyboards in use at Stanford and M.I.T. circa 1981.
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Since that time such extended keyboards have come into wider use. Notable

here are the keyboards associated with certain personal computers and work-

stations. For example, in some specific applications the command and option

keys of Apple Macintosh keyboards have had the connotations of control and

meta. Macintosh II extended keyboards also have keys marked control whose
use is analogous to that of hyper on the old M.I.T. keyboards. IBM PC per-

sonal computer keyboards have alt keys that function much like meta keys;

similarly, keyboards on Sun workstations have keys very much like meta keys

but labelled left and right.

[Function]char-bit char name
........................................................................................................................................................................................................

char-bit takes a character object char and the name of a bit, and returns

non-nil if the bit of that name is set in char, or nil if the bit is not set in

char. For example:

(char-bit #--\Control-X :control) ⇒ true

Valid values for name are implementation-dependent, but typically are

:control, :meta, :hyper, and :super. It is an error to give char-bit the

name of a bit not supported by the implementation.

If the argument char is specified by a form that is a place form acceptable to

setf, then setf may be used with char-bit to modify a bit of the character
stored in that place. The effect is to perform a set-char-bit operation and

then store the result back into the place.

X3J13 voted in March 1989 〈11〉 to eliminate char-bit.

[Function]set-char-bit char name newvalue
........................................................................................................................................................................................................

char-bit takes a character object char, the name of a bit, and a flag. A

character is returned that is just like char except that the named bit is set or

reset according to whether newvalue is non-nil or nil. Valid values for name

are implementation-dependent, but typically are :control, :meta, :hyper,

and :super. For example:

(set-char-bit #--\X :control t) ⇒ #--\Control-X

(set-char-bit #--\Control-X :control t) ⇒ #--\Control-X

(set-char-bit #--\Control-X :control nil) ⇒ #--\X

X3J13 voted in March 1989 〈11〉 to eliminate set-char-bit.
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Sequences

The type sequence encompasses both lists and vectors (one-dimensional ar-

rays). While these are different data structures with different structural prop-
erties leading to different algorithmic uses, they do have a common property:

each contains an ordered set of elements. Note that nil is considered to be a

sequence of length zero.

Some operations are useful on both lists and arrays because they deal with

ordered sets of elements. One may ask the number of elements, reverse the

ordering, extract a subsequence, and so on. For such purposes Common Lisp
provides a set of generic functions on sequences.

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense, and not necessarily in the

technical sense used by CLOS (see chapter 2).

elt reverse map remove

length nreverse some remove-duplicates

subseq concatenate every delete

copy-seq position notany delete-duplicates

fill find notevery substitute

replace sort reduce nsubstitute

count merge search mismatch

Some of these operations come in more than one version. Such versions are

indicated by adding a suffix (or occasionally a prefix) to the basic name of the
operation. In addition, many operations accept one or more optional keyword

arguments that can modify the operation in various ways.

If the operation requires testing sequence elements according to some cri-

terion, then the criterion may be specified in one of two ways. The basic

operation accepts an item, and elements are tested for being eql to that

item. (A test other than eql can be specified by the :test or :test-not

415
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keyword. It is an error to use both of these keywords in the same call.) The

variants formed by adding -if and -if-not to the basic operation name do

not take an item, but instead a one-argument predicate, and elements are

tested for satisfying or not satisfying the predicate. As an example,

(remove item sequence)

returns a copy of sequence from which all elements eql to item have been

removed;

(remove item sequence :test #--’equal)

returns a copy of sequence from which all elements equal to item have been

removed;

(remove-if #--’numberp sequence)

returns a copy of sequence from which all numbers have been removed.

If an operation tests elements of a sequence in any manner, the keyword

argument :key, if not nil, should be a function of one argument that will

extract from an element the part to be tested in place of the whole element.

For example, the effect of the MacLisp expression (assq item seq) could be
obtained by

(find item sequence :test #--’eq :key #--’car)

This searches for the first element of sequence whose car is eq to item.

X3J13 voted in June 1988 〈90〉 to allow the :key function to be only of
type symbol or function; a lambda-expression is no longer acceptable as a

functional argument. One must use the function special form or the abbre-

viation #--’ before a lambda-expression that appears as an explicit argument

form.

For some operations it can be useful to specify the direction in which the
sequence is conceptually processed. In this case the basic operation normally

processes the sequence in the forward direction, and processing in the reverse

direction is indicated by a non-nil value for the keyword argument :from-

end. (The processing order specified by the :from-end is purely conceptual.

Depending on the object to be processed and on the implementation, the
actual processing order may be different. For this reason a user-supplied test

function should be free of side effects.)

Many operations allow the specification of a subsequence to be operated

upon. Such operations have keyword arguments called :start and :end.

These arguments should be integer indices into the sequence, with start ≤ end
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(it is an error if start > end). They indicate the subsequence starting with and

including element start and up to but excluding element end. The length of the

subsequence is therefore end−start . If start is omitted, it defaults to zero; and

if end is omitted or nil, it defaults to the length of the sequence. Therefore

if both start and end are omitted, the entire sequence is processed by default.
For the most part, subsequence specification is permitted purely for the sake

of efficiency; one could simply call subseq instead to extract the subsequence

before operating on it. Note, however, that operations that calculate indices

return indices into the original sequence, not into the subsequence:

(position #--\b "foobar" :start 2 :end 5) ⇒ 3

(position #--\b (subseq "foobar" 2 5)) ⇒ 1

If two sequences are involved, then the keyword arguments :start1, :end1,
:start2, and :end2 are used to specify separate subsequences for each se-

quence.

X3J13 voted in June 1988 〈170〉 (and further clarification was voted in

January 1989 〈149〉) to specify that these rules apply not only to all built-in

functions that have keyword parameters named :start, :start1, :start2,
:end, :end1, or :end2 but also to functions such as subseq that take required

or optional parameters that are documented as being named start or end.

. A “start” argument must always be a non-negative integer and defaults to

zero if not supplied; it is not permissible to pass nil as a “start” argument.

. An “end” argument must be either a non-negative integer or nil (which
indicates the end of the sequence) and defaults to nil if not supplied;

therefore supplying nil is equivalent to not supplying such an argument.

. If the “end” argument is an integer, it must be no greater than the active

length of the corresponding sequence (as returned by the function length).

. The default value for the “end” argument is the active length of the corre-

sponding sequence.

. The “start” value (after defaulting, if necessary) must not be greater than

the corresponding “end” value (after defaulting, if necessary).

This may be summarized as follows. Let x be the sequence within which

indices are to be considered. Let s be the “start” argument for that sequence

of any standard function, whether explicitly specified or defaulted, through

omission, to zero. Let e be the “end” argument for that sequence of any

standard function, whether explicitly specified or defaulted, through omission
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or an explicitly passed nil value, to the active length of x, as returned by

length. Then it is an error if the test (<UU 0 s e (length x)) is not true.

For some functions, notably remove and delete, the keyword argument
:count is used to specify how many occurrences of the item should be affected.

If this is nil or is not supplied, all matching items are affected.

In the following function descriptions, an element x of a sequence “satisfies
the test” if any of the following holds:

. A basic function was called, testfn was specified by the keyword :test, and

(funcall testfn item (keyfn x)) is true.

. A basic function was called, testfn was specified by the keyword :test-not,
and (funcall testfn item (keyfn x)) is false.

. An -if function was called, and (funcall predicate (keyfn x)) is true.

. An -if-not function was called, and (funcall predicate (keyfn x)) is

false.

In each case keyfn is the value of the :key keyword argument (the default

being the identity function). See, for example, remove.

In the following function descriptions, two elements x and y taken from
sequences “match” if either of the following holds:

. testfn was specified by the keyword :test, and (funcall testfn (keyfn x)

(keyfn y)) is true.

. testfn was specified by the keyword :test-not, and (funcall testfn (keyfn
x) (keyfn y)) is false.

See, for example, search.

X3J13 voted in June 1988 〈90〉 to allow the testfn or predicate to be only

of type symbol or function; a lambda-expression is no longer acceptable as a

functional argument. One must use the function special form or the abbre-

viation #--’ before a lambda-expression that appears as an explicit argument
form.

You may depend on the order in which arguments are given to testfn; this

permits the use of non-commutative test functions in a predictable manner.
The order of the arguments to testfn corresponds to the order in which those

arguments (or the sequences containing those arguments) were given to the

sequence function in question. If a sequence function gives two elements from

the same sequence argument to testfn, they are given in the same order in

which they appear in the sequence.
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Whenever a sequence function must construct and return a new vector,

it always returns a simple vector (see section 2.5). Similarly, any strings

constructed will be simple strings.

X3J13 voted in January 1989 〈176〉 to deprecate the use of :test-not key-

word arguments and -if-not functions. This means that these features are
very likely to be retained in the forthcoming standard but are regarded as

candidates for removal in a future revision of the ANSI standard. X3J13 also

voted in January 1989 〈87〉 to add the complement function, intended to re-

duce or eliminate the need for these deprecated features. Time will tell. I
note that many features in Fortran have been deprecated but very few indeed

have actually been removed or altered incompatibly.

[Function]complement fn

Returns a function whose value is the same as that of not applied to the
result of applying the function fn to the same arguments. One could define

complement as follows:

(defun complement (fn)

#--’(lambda (&rest arguments)

(not (apply fn arguments))))

One intended use of complement is to supplant the use of :test-not argu-
ments and -if-not functions.

(remove-if-not #--’virtuous senators) ≡
(remove-if (complement #--’virtuous) senators)

(remove-duplicates telephone-book

:test-not #--’mismatch) ≡
(remove-duplicates telephone-book

:test (complement #--’mismatch))

14.1. Simple Sequence Functions

Most of the following functions perform simple operations on a single sequence;

make-sequence constructs a new sequence.
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[Function]elt sequence index

This returns the element of sequence specified by index, which must be a non-

negative integer less than the length of the sequence as returned by length.

The first element of a sequence has index 0.

(Note that elt observes the fill pointer in those vectors that have fill point-

ers. The array-specific function aref may be used to access vector elements

that are beyond the vector’s fill pointer.)

setf may be used with elt to destructively replace a sequence element
with a new value.

[Function]subseq sequence start &optional end

This returns the subsequence of sequence specified by start and end. subseq

always allocates a new sequence for a result; it never shares storage with an old

sequence. The result subsequence is always of the same type as the argument

sequence.

setf may be used with subseq to destructively replace a subsequence with

a sequence of new values; see also replace.

[Function]copy-seq sequence

A copy is made of the argument sequence; the result is equalp to the argument
but not eq to it.

(copy-seq x) ≡ (subseq x 0)

but the name copy-seq is more perspicuous when applicable.

[Function]length sequence

The number of elements in sequence is returned as a non-negative integer. If

the sequence is a vector with a fill pointer, the “active length” as specified by

the fill pointer is returned (see section 17.5).

[Function]reverse sequence

The result is a new sequence of the same kind as sequence, containing the

same elements but in reverse order. The argument is not modified.
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[Function]nreverse sequence

The result is a sequence containing the same elements as sequence but in

reverse order. The argument may be destroyed and re-used to produce the

result. The result may or may not be eq to the argument, so it is usually wise
to say something like (setq x (nreverse x)), because simply (nreverse

x) is not guaranteed to leave a reversed value in x.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of

certain operations. When the sequence is a list, nreverse is permitted to
perform a setf on any part, car or cdr, of the top-level list structure of that

list. When the sequence is an array, nreverse is permitted to re-order the

elements of the given array in order to produce the resulting array.

[Function]make-sequence type size &key :initial-element

This returns a sequence of type type and of length size, each of whose elements

has been initialized to the :initial-element argument. If specified, the
:initial-element argument must be an object that can be an element of a

sequence of type type. For example:

(make-sequence ’(vector double-float)

100

:initial-element 1d0)

If an :initial-element argument is not specified, then the sequence will be

initialized in an implementation-dependent way.

X3J13 voted in January 1989 〈7〉 to clarify that the type argument must be
a type specifier, and the size argument must be a non-negative integer less

than the value of array-dimension-limit.

X3J13 voted in June 1989 〈158〉 to specify that make-sequence should

signal an error if the sequence type specifies the number of elements and the

size argument is different.
X3J13 voted in March 1989 〈11〉 to specify that if type is string, the result is

the same as if make-string had been called with the same size and :initial-

element arguments.

14.2. Concatenating, Mapping, and Reducing Sequences

The functions in this section each operate on an arbitrary number of sequences

except for reduce, which is included here because of its conceptual relation-

ship to the mapping functions.
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[Function]concatenate result-type &rest sequences

The result is a new sequence that contains all the elements of all the sequences

in order. All of the sequences are copied from; the result does not share any

structure with any of the argument sequences (in this concatenate differs
from append). The type of the result is specified by result-type, which must

be a subtype of sequence, as for the function coerce. It must be possible for

every element of the argument sequences to be an element of a sequence of

type result-type.
If only one sequence argument is provided and it has the type specified by

result-type, concatenate is required to copy the argument rather than simply

returning it. If a copy is not required, but only possibly type conversion, then

the coerce function may be appropriate.

X3J13 voted in June 1989 〈158〉 to specify that concatenate should signal
an error if the sequence type specifies the number of elements and the sum of

the argument lengths is different.

[Function]map result-type function sequence &rest more-sequences

The function must take as many arguments as there are sequences provided;

at least one sequence must be provided. The result of map is a sequence such

that element j is the result of applying function to element j of each of the

argument sequences. The result sequence is as long as the shortest of the
input sequences.

If the function has side effects, it can count on being called first on all the

elements numbered 0, then on all those numbered 1, and so on.

The type of the result sequence is specified by the argument result-type
(which must be a subtype of the type sequence), as for the function coerce.

In addition, one may specify nil for the result type, meaning that no result

sequence is to be produced; in this case the function is invoked only for effect,

and map returns nil. This gives an effect similar to that of mapc.

X3J13 voted in June 1989 〈158〉 to specify that map should signal an error
if the sequence type specifies the number of elements and the minimum of the

argument lengths is different.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

Compatibility note: In MacLisp, Lisp Machine Lisp, Interlisp, and indeed even
Lisp 1.5, the function map has always meant a non-value-returning version. However,
standard computer science literature, including in particular the recent wave of
papers on “functional programming,” have come to use map to mean what in the past
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Lisp implementations have called mapcar. To simplify things henceforth, Common
Lisp follows current usage, and what was formerly called map is named mapl in
Common Lisp.

For example:

(map ’list #--’- ’(1 2 3 4)) ⇒ (-1 -2 -3 -4)

(map ’string

#--’(lambda (x) (if (oddp x) #--\1 #--\0))

’(1 2 3 4))

⇒ "1010"

[Function]map-into result-sequence function &rest sequences

X3J13 voted in June 1989 〈120〉 to add the function map-into. It destructively

modifies the result-sequence to contain the results of applying function to

corresponding elements of the argument sequences in turn; it then returns
result-sequence.

The arguments result-sequence and each element of sequences can each be

either a list or a vector (one-dimensional array). The function must accept

at least as many arguments as the number of argument sequences supplied

to map-into. If result-sequence and the other argument sequences are not
all the same length, the iteration terminates when the shortest sequence is

exhausted. If result-sequence is a vector with a fill pointer, the fill pointer is

ignored when deciding how many iterations to perform, and afterwards the

fill pointer is set to the number of times the function was applied.

If the function has side effects, it can count on being called first on all the

elements numbered 0, then on all those numbered 1, and so on.

If result-sequence is longer than the shortest element of sequences, extra

elements at the end of result-sequence are unchanged.

The function map-into differs from map in that it modifies an existing
sequence rather than creating a new one. In addition, map-into can be called

with only two arguments (result-sequence and function), while map requires at

least three arguments.

If result-sequence is nil, map-into immediately returns nil, because nil

is a sequence of length zero.
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[Function]some predicate sequence &rest more-sequences

[Function]every predicate sequence &rest more-sequences

[Function]notany predicate sequence &rest more-sequences

[Function]notevery predicate sequence &rest more-sequences

These are all predicates. The predicate must take as many arguments as there

are sequences provided. The predicate is first applied to the elements with

index 0 in each of the sequences, and possibly then to the elements with

index 1, and so on, until a termination criterion is met or the end of the
shortest of the sequences is reached.

If the predicate has side effects, it can count on being called first on all the

elements numbered 0, then on all those numbered 1, and so on.

some returns as soon as any invocation of predicate returns a non-nil value;

some returns that value. If the end of a sequence is reached, some returns nil.
Thus, considered as a predicate, it is true if some invocation of predicate is

true.

every returns nil as soon as any invocation of predicate returns nil. If the

end of a sequence is reached, every returns a non-nil value. Thus, considered
as a predicate, it is true if every invocation of predicate is true.

notany returns nil as soon as any invocation of predicate returns a non-nil

value. If the end of a sequence is reached, notany returns a non-nil value.

Thus, considered as a predicate, it is true if no invocation of predicate is true.

notevery returns a non-nil value as soon as any invocation of predicate
returns nil. If the end of a sequence is reached, notevery returns nil. Thus,

considered as a predicate, it is true if not every invocation of predicate is true.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

Compatibility note: The order of the arguments here is not compatible with
Interlisp and Lisp Machine Lisp. This is to stress the similarity of these functions
to map. The functions are therefore extended here to functions of more than one
argument, and to multiple sequences.

[Function]reduce function sequence &key :from-end :start :end

:initial-value

The reduce function combines all the elements of a sequence using a binary

operation; for example, using + one can add up all the elements.

The specified subsequence of the sequence is combined or “reduced” us-

ing the function, which must accept two arguments. The reduction is left-

associative, unless the :from-end argument is true (it defaults to nil), in
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which case it is right-associative. If an :initial-value argument is given, it

is logically placed before the subsequence (after it if :from-end is true) and

included in the reduction operation.

If the specified subsequence contains exactly one element and the keyword

argument :initial-value is not given, then that element is returned and the
function is not called. If the specified subsequence is empty and an :initial-

value is given, then the :initial-value is returned and the function is not

called.

If the specified subsequence is empty and no :initial-value is given, then
the function is called with zero arguments, and reduce returns whatever the

function does. (This is the only case where the function is called with other

than two arguments.)

(reduce #--’+ ’(1 2 3 4)) ⇒ 10

(reduce #--’- ’(1 2 3 4)) ≡ (- (- (- 1 2) 3) 4) ⇒ -8

(reduce #--’- ’(1 2 3 4) :from-end t) ;Alternating sum
≡ (- 1 (- 2 (- 3 4))) ⇒ -2

(reduce #--’+ ’()) ⇒ 0

(reduce #--’+ ’(3)) ⇒ 3

(reduce #--’+ ’(foo)) ⇒ foo

(reduce #--’list ’(1 2 3 4)) ⇒ (((1 2) 3) 4)

(reduce #--’list ’(1 2 3 4) :from-end t) ⇒ (1 (2 (3 4)))

(reduce #--’list ’(1 2 3 4) :initial-value ’foo)

⇒ ((((foo 1) 2) 3) 4)

(reduce #--’list ’(1 2 3 4)

:from-end t :initial-value ’foo)

⇒ (1 (2 (3 (4 foo))))

If the function produces side effects, the order of the calls to the function can

be correctly predicted from the reduction ordering demonstrated above.

The name “reduce” for this function is borrowed from APL.

X3J13 voted in March 1988 〈152〉 to extend the reduce function to take an
additional keyword argument named :key. As usual, this argument defaults

to the identity function. The value of this argument must be a function that

accepts at least one argument. This function is applied once to each element

of the sequence that is to participate in the reduction operation, in the order
implied by the :from-end argument; the values returned by this function

are combined by the reduction function. However, the :key function is not

applied to the :initial-value argument (if any).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.
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14.3. Modifying Sequences

Each of these functions alters the contents of a sequence or produces an altered

copy of a given sequence.

[Function]fill sequence item &key :start :end

The sequence is destructively modified by replacing each element of the sub-

sequence specified by the :start and :end parameters with the item. The

item may be any Lisp object but must be a suitable element for the sequence.

The item is stored into all specified components of the sequence, beginning at

the one specified by the :start index (which defaults to zero), up to but not
including the one specified by the :end index (which defaults to the length of

the sequence). fill returns the modified sequence. For example:

(setq x (vector ’a ’b ’c ’d ’e)) ⇒ #--(a b c d e)

(fill x ’z :start 1 :end 3) ⇒ #--(a z z d e)

and now x ⇒ #--(a z z d e)

(fill x ’p) ⇒ #--(p p p p p)

and now x ⇒ #--(p p p p p)

[Function]replace sequence1 sequence2 &key :start1 :end1

:start2 :end2

The sequence sequence1 is destructively modified by copying successive ele-

ments into it from sequence2. The elements of sequence2 must be of a type

that may be stored into sequence1. The subsequence of sequence2 specified

by :start2 and :end2 is copied into the subsequence of sequence1 specified

by :start1 and :end1. (The arguments :start1 and :start2 default to
zero. The arguments :end1 and :end2 default to nil, meaning the end of

the appropriate sequence.) If these subsequences are not of the same length,

then the shorter length determines how many elements are copied; the ex-

tra elements near the end of the longer subsequence are not involved in the
operation. The number of elements copied may be expressed as:

(min (- end1 start1) (- end2 start2))

The value returned by replace is the modified sequence1.

If sequence1 and sequence2 are the same (eq) object and the region being

modified overlaps the region being copied from, then it is as if the entire

source region were copied to another place and only then copied back into the

target region. However, if sequence1 and sequence2 are not the same, but the
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region being modified overlaps the region being copied from (perhaps because

of shared list structure or displaced arrays), then after the replace operation

the subsequence of sequence1 being modified will have unpredictable contents.

[Function]remove item sequence &key :from-end :test :test-not

:start :end :count :key

[Function]remove-if predicate sequence &key :from-end :start :end

:count :key

[Function]remove-if-not predicate sequence &key :from-end :start

:end :count :key

The result is a sequence of the same kind as the argument sequence that has
the same elements except that those in the subsequence delimited by :start

and :end and satisfying the test (see above) have been removed. This is a

non-destructive operation; the result is a copy of the input sequence, save that

some elements are not copied. Elements not removed occur in the same order

in the result as they did in the argument.
The :count argument, if supplied, limits the number of elements removed;

if more than :count elements satisfy the test, then of these elements only the

leftmost are removed, as many as specified by :count.

X3J13 voted in January 1989 〈148〉 to clarify that the :count argument
must be either nil or an integer, and that supplying a negative integer pro-

duces the same behavior as supplying zero.

A non-nil :from-end specification matters only when the :count argument

is provided; in that case only the rightmost :count elements satisfying the

test are removed. For example:

(remove 4 ’(1 2 4 1 3 4 5)) ⇒ (1 2 1 3 5)

(remove 4 ’(1 2 4 1 3 4 5) :count 1) ⇒ (1 2 1 3 4 5)

(remove 4 ’(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 5)

(remove 3 ’(1 2 4 1 3 4 5) :test #--’>) ⇒ (4 3 4 5)

(remove-if #--’oddp ’(1 2 4 1 3 4 5)) ⇒ (2 4 4)

(remove-if #--’evenp ’(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 5)

The result of remove may share with the argument sequence; a list result may

share a tail with an input list, and the result may be eq to the input sequence

if no elements need to be removed.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.
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[Function]delete item sequence &key :from-end :test :test-not

:start :end :count :key

[Function]delete-if predicate sequence &key :from-end

:start :end :count :key

[Function]delete-if-not predicate sequence &key :from-end

:start :end :count :key

This is the destructive counterpart to remove. The result is a sequence of the

same kind as the argument sequence that has the same elements except that
those in the subsequence delimited by :start and :end and satisfying the test

(see above) have been deleted. This is a destructive operation. The argument

sequence may be destroyed and used to construct the result; however, the

result may or may not be eq to sequence. Elements not deleted occur in the

same order in the result as they did in the argument.

The :count argument, if supplied, limits the number of elements deleted;

if more than :count elements satisfy the test, then of these elements only the

leftmost are deleted, as many as specified by :count.

X3J13 voted in January 1989 〈148〉 to clarify that the :count argument

must be either nil or an integer, and that supplying a negative integer pro-

duces the same behavior as supplying zero.

A non-nil :from-end specification matters only when the :count argument
is provided; in that case only the rightmost :count elements satisfying the

test are deleted. For example:

(delete 4 ’(1 2 4 1 3 4 5)) ⇒ (1 2 1 3 5)

(delete 4 ’(1 2 4 1 3 4 5) :count 1) ⇒ (1 2 1 3 4 5)

(delete 4 ’(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 5)

(delete 3 ’(1 2 4 1 3 4 5) :test #--’>) ⇒ (4 3 4 5)

(delete-if #--’oddp ’(1 2 4 1 3 4 5)) ⇒ (2 4 4)

(delete-if #--’evenp ’(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 5)

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects
of certain operations. When the sequence is a list, delete is permitted to

perform a setf on any part, car or cdr, of the top-level list structure of

that list. When the sequence is an array, delete is permitted to alter the

dimensions of the given array and to slide some of its elements into new

positions without permuting them in order to produce the resulting array.
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Furthermore, (delete-if predicate sequence ...) is required to behave

exactly like

(delete nil sequence
:test #--’(lambda (unused item)

(declare (ignore unused))

(funcall predicate item))

...)

Compatibility note: In MacLisp, the delete function uses an equal comparison
rather than eql, which is the default test for delete in Common Lisp. Where in
MacLisp one would write (delete x y), one must in Common Lisp write (delete

x y :test #--’equal) to get the completely identical effect. Similarly, one can get
the precise effect, and no more, of the MacLisp (delq x y) by writing in Common
Lisp (delete x y :test #--’eq).

[Function]remove-duplicates sequence &key :from-end :test

:test-not :start :end :key

[Function]delete-duplicates sequence &key :from-end :test

:test-not :start :end :key

The elements of sequence are compared pairwise, and if any two match, then

the one occurring earlier in the sequence is discarded (but if the :from-end

argument is true, then the one later in the sequence is discarded). The result

is a sequence of the same kind as the argument sequence with enough elements

removed so that no two of the remaining elements match. The order of the

elements remaining in the result is the same as the order in which they appear

in sequence.
remove-duplicates is the non-destructive version of this operation. The

result of remove-duplicates may share with the argument sequence; a list

result may share a tail with an input list, and the result may be eq to the

input sequence if no elements need to be removed.
delete-duplicates may destroy the argument sequence.

Some examples:

(remove-duplicates ’(a b c b d d e)) ⇒ (a c b d e)

(remove-duplicates ’(a b c b d d e) :from-end t) ⇒ (a b c d e)

(remove-duplicates ’((foo #--\a) (bar #--\%) (baz #--\A))

:test #--’char-equal :key #--’cadr)

⇒ ((bar #--\%) (baz #--\A))

(remove-duplicates ’((foo #--\a) (bar #--\%) (baz #--\A))
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:test #--’char-equal :key #--’cadr :from-end t)

⇒ ((foo #--\a) (bar #--\%))

These functions are useful for converting a sequence into a canonical form

suitable for representing a set.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects
of certain operations. When the sequence is a list, delete-duplicates is

permitted to perform a setf on any part, car or cdr, of the top-level list

structure of that list. When the sequence is an array, delete-duplicates is

permitted to alter the dimensions of the given array and to slide some of its
elements into new positions without permuting them in order to produce the

resulting array.

[Function]substitute newitem olditem sequence &key :from-end

:test :test-not :start :end :count :key

[Function]substitute-if newitem test sequence &key :from-end

:start :end :count :key

[Function]substitute-if-not newitem test sequence &key :from-end

:start :end :count :key

The result is a sequence of the same kind as the argument sequence that has

the same elements except that those in the subsequence delimited by :start

and :end and satisfying the test (see above) have been replaced by newitem.

This is a non-destructive operation; the result is a copy of the input sequence,

save that some elements are changed.

The :count argument, if supplied, limits the number of elements altered;

if more than :count elements satisfy the test, then of these elements only the
leftmost are replaced, as many as specified by :count.

X3J13 voted in January 1989 〈148〉 to clarify that the :count argument

must be either nil or an integer, and that supplying a negative integer pro-

duces the same behavior as supplying zero.
A non-nil :from-end specification matters only when the :count argument

is provided; in that case only the rightmost :count elements satisfying the

test are replaced. For example:

(substitute 9 4 ’(1 2 4 1 3 4 5)) ⇒ (1 2 9 1 3 9 5)

(substitute 9 4 ’(1 2 4 1 3 4 5) :count 1) ⇒ (1 2 9 1 3 4 5)

(substitute 9 4 ’(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 9 5)
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(substitute 9 3 ’(1 2 4 1 3 4 5) :test #--’>) ⇒ (9 9 4 9 3 4 5)

(substitute-if 9 #--’oddp ’(1 2 4 1 3 4 5)) ⇒ (9 2 4 9 9 4 9)

(substitute-if 9 #--’evenp ’(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 9 5)

The result of substitute may share with the argument sequence; a list result

may share a tail with an input list, and the result may be eq to the input

sequence if no elements need to be changed.

See also subst, which performs substitutions throughout a tree.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]nsubstitute newitem olditem sequence &key :from-end

:test :test-not :start :end :count :key

[Function]nsubstitute-if newitem test sequence &key :from-end

:start :end :count :key

[Function]nsubstitute-if-not newitem test sequence &key :from-end

:start :end :count :key

This is the destructive counterpart to substitute. The result is a sequence

of the same kind as the argument sequence that has the same elements except

that those in the subsequence delimited by :start and :end and satisfying
the test (see above) have been replaced by newitem. This is a destructive

operation. The argument sequence may be destroyed and used to construct

the result; however, the result may or may not be eq to sequence.

See also nsubst, which performs destructive substitutions throughout a

tree.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side ef-

fects of certain operations. When the sequence is a list, nsubstitute or
nsubstitute-if is required to perform a setf on any car of the top-level list

structure of that list whose old contents must be replaced with newitem but

is forbidden to perform a setf on any cdr of the list. When the sequence is

an array, nsubstitute or nsubstitute-if is required to perform a setf on
any element of the array whose old contents must be replaced with newitem.

These functions, therefore, may successfully be used solely for effect, the caller

discarding the returned value (though some programmers find this stylistically

distasteful).
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14.4. Searching Sequences for Items

Each of these functions searches a sequence to locate one or more elements

satisfying some test.

[Function]find item sequence &key :from-end :test :test-not

:start :end :key

[Function]find-if predicate sequence &key :from-end :start :end

:key

[Function]find-if-not predicate sequence &key :from-end

:start :end :key

If the sequence contains an element satisfying the test, then the leftmost such
element is returned; otherwise nil is returned.

If :start and :end keyword arguments are given, only the specified subse-
quence of sequence is searched.

If a non-nil :from-end keyword argument is specified, then the result is

the rightmost element satisfying the test.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]position item sequence &key :from-end :test :test-not

:start :end :key

[Function]position-if predicate sequence &key :from-end

:start :end :key

[Function]position-if-not predicate sequence &key :from-end

:start :end :key

If the sequence contains an element satisfying the test, then the index within

the sequence of the leftmost such element is returned as a non-negative integer;

otherwise nil is returned.

If :start and :end keyword arguments are given, only the specified subse-

quence of sequence is searched. However, the index returned is relative to the

entire sequence, not to the subsequence.

If a non-nil :from-end keyword argument is specified, then the result is

the index of the rightmost element satisfying the test. (The index returned,
however, is an index from the left-hand end, as usual.)

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.
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Here is a simple piece of code that uses several of the sequence functions,

notably position-if and find-if, to process strings. Note one use of loop

as well.

(defun debug-palindrome (s)

(flet ((match (x) (char-equal (first x) (third x))))

(let* ((pairs (loop for c across s

for j from 0

when (alpha-char-p c)

collect (list c j)))

(quads (mapcar #--’append pairs (reverse pairs)))

(diffpos (position-if (complement #--’match) quads)))

(when diffpos

(let* ((diff (elt quads diffpos))

(same (find-if #--’match quads

:start (+ diffpos 1))))

(if same

(format nil

"/~A/ (at ~D) is not the reverse of /~A/"

(subseq s (second diff) (second same))

(second diff)

(subseq s (+ (fourth same) 1)

(+ (fourth diff) 1)))

"This palindrome is completely messed up!"))))))

Here is an example of its behavior.

(setq panama ;A putative palindrome?

"A man, a plan, a canoe, pasta, heros, rajahs,

a coloratura, maps, waste, percale, macaroni, a gag,

a banana bag, a tan, a tag, a banana bag again

(or a camel), a crepe, pins, Spam, a rut, a Rolo,

cash, a jar, sore hats, a peon, a canal--Panama!")

(debug-palindrome panama)

⇒ "/wast/ (at 73) is not the reverse of /, pins/"
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(replace panama "snipe" :start1 73) ;Repair it

⇒ "A man, a plan, a canoe, pasta, heros, rajahs,

a coloratura, maps, snipe, percale, macaroni, a gag,

a banana bag, a tan, a tag, a banana bag again

(or a camel), a crepe, pins, Spam, a rut, a Rolo,

cash, a jar, sore hats, a peon, a canal--Panama!"

(debug-palindrome panama) ⇒ nil ;Copacetic—a true palindrome

(debug-palindrome "Rubber baby buggy bumpers")

⇒ "/Rubber / (at 0) is not the reverse of /umpers/"

(debug-palindrome "Common Lisp: The Language")

⇒ "/Commo/ (at 0) is not the reverse of /guage/"

(debug-palindrome "Complete mismatches are hard to find")

⇒
"/Complete mism/ (at 0) is not the reverse of /re hard to find/"

(debug-palindrome "Waltz, nymph, for quick jigs vex Bud")

⇒ "This palindrome is completely messed up!"

(debug-palindrome "Doc, note: I dissent. A fast never

prevents a fatness. I diet on cod.")

⇒nil ;Another winner

(debug-palindrome "Top step’s pup’s pet spot") ⇒ nil

[Function]count item sequence &key :from-end :test :test-not

:start :end :key

[Function]count-if predicate sequence &key :from-end

:start :end :key

[Function]count-if-not predicate sequence &key :from-end

:start :end :key

The result is always a non-negative integer, the number of elements in the
specified subsequence of sequence satisfying the test.

The :from-end argument does not affect the result returned; it is accepted

purely for compatibility with other sequence functions.
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X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]mismatch sequence1 sequence2 &key :from-end :test

:test-not :key :start1 :start2 :end1 :end2

The specified subsequences of sequence1 and sequence2 are compared element-

wise. If they are of equal length and match in every element, the result is

nil. Otherwise, the result is a non-negative integer. This result is the index

within sequence1 of the leftmost position at which the two subsequences fail

to match; or, if one subsequence is shorter than and a matching prefix of the
other, the result is the index relative to sequence1 beyond the last position

tested.

If a non-nil :from-end keyword argument is given, then one plus the index

of the rightmost position in which the sequences differ is returned. In effect,

the (sub)sequences are aligned at their right-hand ends; then, the last elements

are compared, the penultimate elements, and so on. The index returned is
again an index relative to sequence1.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]search sequence1 sequence2 &key :from-end :test

:test-not :key :start1 :start2 :end1 :end2

A search is conducted for a subsequence of sequence2 that element-wise

matches sequence1. If there is no such subsequence, the result is nil; if

there is, the result is the index into sequence2 of the leftmost element of the

leftmost such matching subsequence.

If a non-nil :from-end keyword argument is given, the index of the leftmost

element of the rightmost matching subsequence is returned.

The implementation may choose to search the sequence in any order; there is

no guarantee on the number of times the test is made. For example, search
with a non-nil :from-end argument might actually search a list from left

to right instead of from right to left (but in either case would return the

rightmost matching subsequence, of course). Therefore it is a good idea for a

user-supplied predicate to be free of side effects.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.
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14.5. Sorting and Merging

These functions may destructively modify argument sequences in order to put

a sequence into sorted order or to merge two already sorted sequences.

[Function]sort sequence predicate &key :key

[Function]stable-sort sequence predicate &key :key

The sequence is destructively sorted according to an order determined by the

predicate. The predicate should take two arguments, and return non-nil if and

only if the first argument is strictly less than the second (in some appropriate

sense). If the first argument is greater than or equal to the second (in the
appropriate sense), then the predicate should return nil.

The sort function determines the relationship between two elements by
giving keys extracted from the elements to the predicate. The :key argument,

when applied to an element, should return the key for that element. The :key

argument defaults to the identity function, thereby making the element itself

be the key.

The :key function should not have any side effects. A useful example of

a :key function would be a component selector function for a defstruct

structure, used in sorting a sequence of structures.

(sort a p :key s) ≡ (sort a #--’(lambda (x y) (p (s x) (s y))))

While the above two expressions are equivalent, the first may be more effi-

cient in some implementations for certain types of arguments. For example,

an implementation may choose to apply s to each item just once, putting

the resulting keys into a separate table, and then sort the parallel tables, as
opposed to applying s to an item every time just before applying the predicate.

If the :key and predicate functions always return, then the sorting operation
will always terminate, producing a sequence containing the same elements as

the original sequence (that is, the result is a permutation of sequence). This is

guaranteed even if the predicate does not really consistently represent a total

order (in which case the elements will be scrambled in some unpredictable
way, but no element will be lost). If the :key function consistently returns

meaningful keys, and the predicate does reflect some total ordering criterion

on those keys, then the elements of the result sequence will be properly sorted

according to that ordering.

The sorting operation performed by sort is not guaranteed stable. Elements

considered equal by the predicate may or may not stay in their original order.

(The predicate is assumed to consider two elements x and y to be equal if
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(funcall predicate x y) and (funcall predicate y x) are both false.) The

function stable-sort guarantees stability but may be slower than sort in

some situations.

The sorting operation may be destructive in all cases. In the case of an

array argument, this is accomplished by permuting the elements in place. In
the case of a list, the list is destructively reordered in the same manner as for

nreverse. Thus if the argument should not be destroyed, the user must sort

a copy of the argument.

Should execution of the :key function or the predicate cause an error, the
state of the list or array being sorted is undefined. However, if the error is

corrected, the sort will, of course, proceed correctly.

Note that since sorting requires many comparisons, and thus many calls to

the predicate, sorting will be much faster if the predicate is a compiled function

rather than interpreted.
An example:

(setq foovector (sort foovector #--’string-lessp :key #--’car))

If foovector contained these items before the sort

("Tokens" "The Lion Sleeps Tonight")

("Carpenters" "Close to You")

("Rolling Stones" "Brown Sugar")

("Beach Boys" "I Get Around")

("Mozart" "Eine Kleine Nachtmusik" (K 525))

("Beatles" "I Want to Hold Your Hand")

then after the sort foovector would contain

("Beach Boys" "I Get Around")

("Beatles" "I Want to Hold Your Hand")

("Carpenters" "Close to You")

("Mozart" "Eine Kleine Nachtmusik" (K 525))

("Rolling Stones" "Brown Sugar")

("Tokens" "The Lion Sleeps Tonight")

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]merge result-type sequence1 sequence2 predicate &key :key

The sequences sequence1 and sequence2 are destructively merged according

to an order determined by the predicate. The result is a sequence of type
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result-type, which must be a subtype of sequence, as for the function coerce.

The predicate should take two arguments and return non-nil if and only if

the first argument is strictly less than the second (in some appropriate sense).

If the first argument is greater than or equal to the second (in the appropriate

sense), then the predicate should return nil.

The merge function determines the relationship between two elements by

giving keys extracted from the elements to the predicate. The :key function,
when applied to an element, should return the key for that element; the :key

function defaults to the identity function, thereby making the element itself

be the key.

The :key function should not have any side effects. A useful example of

a :key function would be a component selector function for a defstruct

structure, used to merge a sequence of structures.

If the :key and predicate functions always return, then the merging opera-

tion will always terminate. The result of merging two sequences x and y is a

new sequence z, such that the length of z is the sum of the lengths of x and y,
and z contains all the elements of x and y. If x1 and x2 are two elements of x,

and x1 precedes x2 in x, then x1 precedes x2 in z, and similarly for elements

of y. In short, z is an interleaving of x and y.

Moreover, if x and y were correctly sorted according to the predicate, then

z will also be correctly sorted, as shown in this example.

(merge ’list ’(1 3 4 6 7) ’(2 5 8) #--’<) ⇒ (1 2 3 4 5 6 7 8)

If x or y is not so sorted then z will not be sorted, but will nevertheless be an

interleaving of x and y.

The merging operation is guaranteed stable; if two or more elements are

considered equal by the predicate, then the elements from sequence1 will pre-

cede those from sequence2 in the result. (The predicate is assumed to consider

two elements x and y to be equal if (funcall predicate x y) and (funcall

predicate y x) are both false.) For example:

(merge ’string "BOY" "nosy" #--’char-lessp) ⇒ "BnOosYy"

The result can not be "BnoOsYy", "BnOosyY", or "BnoOsyY". The function

char-lessp ignores case, and so considers the characters Y and y to be equal,

for example; the stability property then guarantees that the character from

the first argument (Y) must precede the one from the second argument (y).

X3J13 voted in June 1989 〈158〉 to specify that merge should signal an

error if the sequence type specifies the number of elements and the sum of the

lengths of the two sequence arguments is different.
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X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.
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Lists

A cons, or dotted pair, is a compound data object having two components

called the car and cdr. Each component may be any Lisp object. A list is a
chain of conses linked by cdr fields; the chain is terminated by some atom (a

non-cons object). An ordinary list is terminated by nil, the empty list (also

written ()). A list whose cdr chain is terminated by some non-nil atom is

called a dotted list.

The recommended predicate for testing for the end of a list is endp.

15.1. Conses

These are the basic operations on conses viewed as pairs rather than as the

constituents of a list.

[Function]car list

This returns the car of list, which must be a cons or (); that is, list must

satisfy the predicate listp. By definition, the car of () is (). If the cons is

regarded as the first cons of a list, then car returns the first element of the

list. For example:

(car ’(a b c)) ⇒ a

See first. The car of a cons may be altered by using rplaca or setf.

[Function]cdr list

This returns the cdr of list, which must be a cons or (); that is, list must

satisfy the predicate listp. By definition, the cdr of () is (). If the cons is

regarded as the first cons of a list, then cdr returns the rest of the list, which

is a list with all elements but the first of the original list. For example:

440



LISTS 441

(cdr ’(a b c)) ⇒ (b c)

See rest. The cdr of a cons may be altered by using rplacd or setf.

[Function]caar list

[Function]cadr list

[Function]cdar list

[Function]cddr list
[Function]caaar list

[Function]caadr list

[Function]cadar list

[Function]caddr list
[Function]cdaar list

[Function]cdadr list

[Function]cddar list

[Function]cdddr list

[Function]caaaar list
[Function]caaadr list

[Function]caadar list

[Function]caaddr list

[Function]cadaar list
[Function]cadadr list

[Function]caddar list

[Function]cadddr list

[Function]cdaaar list

[Function]cdaadr list
[Function]cdadar list

[Function]cdaddr list

[Function]cddaar list

[Function]cddadr list
[Function]cdddar list

[Function]cddddr list

All of the compositions of up to four car and cdr operations are defined as

separate Common Lisp functions. The names of these functions begin with c

and end with r, and in between is a sequence of a and d letters corresponding

to the composition performed by the function. For example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

If the argument is regarded as a list, then cadr returns the second element of

the list, caddr the third, and cadddr the fourth. If the first element of a list
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is a list, then caar is the first element of the sublist, cdar is the rest of that

sublist, and cadar is the second element of the sublist, and so on.

As a matter of style, it is often preferable to define a function or macro to

access part of a complicated data structure, rather than to use a long car/cdr

string. For example, one might define a macro to extract the list of parameter
variables from a lambda-expression:

(defmacro lambda-vars (lambda-exp) ‘(cadr ,lambda-exp))

and then use lambda-vars for this purpose instead of cadr. See also

defstruct, which will automatically define new record data types and ac-

cess functions for instances of them.

Any of these functions may be used to specify a place for setf.

[Function]cons x y

cons is the primitive function to create a new cons whose car is x and whose

cdr is y. For example:

(cons ’a ’b) ⇒ (a . b)

(cons ’a (cons ’b (cons ’c ’()))) ⇒ (a b c)

(cons ’a ’(b c d)) ⇒ (a b c d)

cons may be thought of as creating a cons, or as adding a new element to the

front of a list.

[Function]tree-equal x y &key :test :test-not

This is a predicate that is true if x and y are isomorphic trees with identical

leaves, that is, if x and y are atoms that satisfy the test (by default eql), or if

they are both conses and their car’s are tree-equal and their cdr’s are tree-
equal. Thus tree-equal recursively compares conses (but not any other

objects that have components). See equal, which does recursively compare

certain other structured objects, such as strings.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-
tion 7.9.

15.2. Lists

The following functions perform various operations on lists.

The list is one of the original Lisp data types. The very name “Lisp” is an
abbreviation for “LISt Processing.”
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[Function]endp object

The predicate endp is the recommended way to test for the end of a list. It is

false of conses, true of nil, and an error for all other arguments.

Implementation note: Implementations are encouraged to signal an error, espe-
cially in the interpreter, for a non-list argument. The endp function is defined so as
to allow compiled code to perform simply an atom check or a null check if speed is
more important than safety.

[Function]list-length list

list-length returns, as an integer, the length of list. list-length differs

from length when the list is circular; length may fail to return, whereas

list-length will return nil. For example:

(list-length ’()) ⇒ 0

(list-length ’(a b c d)) ⇒ 4

(list-length ’(a (b c) d)) ⇒ 3

(let ((x (list ’a b c)))

(rplacd (last x) x)

(list-length x)) ⇒ nil

list-length could be implemented as follows:

(defun list-length (x)

(do ((n 0 (+ n 2)) ;Counter

(fast x (cddr fast)) ;Fast pointer: leaps by 2
(slow x (cdr slow))) ;Slow pointer: leaps by 1

(nil)

;; If fast pointer hits the end, return the count.

(when (endp fast) (return n))

(when (endp (cdr fast)) (return (+ n 1)))

;; If fast pointer eventually equals slow pointer,

;; then we must be stuck in a circular list.

;; (A deeper property is the converse: if we are

;; stuck in a circular list, then eventually the

;; fast pointer will equal the slow pointer.

;; That fact justifies this implementation.)

(when (and (eq fast slow) (> n 0)) (return nil))))

See length, which will return the length of any sequence.
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[Function]nth n list

(nth n list) returns the nth element of list, where the car of the list is the

“zeroth” element. The argument n must be a non-negative integer. If the

length of the list is not greater than n, then the result is (), that is, nil.

(This is consistent with the idea that the car and cdr of () are each ().) For
example:

(nth 0 ’(foo bar gack)) ⇒ foo

(nth 1 ’(foo bar gack)) ⇒ bar

(nth 3 ’(foo bar gack)) ⇒ ()

Compatibility note: This is not the same as the Interlisp function called nth,
which is similar to but not exactly the same as the Common Lisp function nthcdr.
This definition of nth is compatible with Lisp Machine Lisp and NIL (New Imple-
mentation of Lisp). Also, some people have used macros and functions called nth

of their own in their old MacLisp programs, which may not work the same way.

nth may be used to specify a place to setf; when nth is used in this way,

the argument n must be less than the length of the list.

Note that the arguments to nth are reversed from the order used by most

other sequence selector functions such as elt.

[Function]first list

[Function]second list

[Function]third list
[Function]fourth list

[Function]fifth list

[Function]sixth list

[Function]seventh list

[Function]eighth list
[Function]ninth list

[Function]tenth list

These functions are sometimes convenient for accessing particular elements

of a list. first is the same as car, second is the same as cadr, third is

the same as caddr, and so on. Note that the ordinal numbering used here is
one-origin, as opposed to the zero-origin numbering used by nth:

(fifth x) ≡ (nth 4 x)
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setf may be used with each of these functions to store into the indicated

position of a list.

[Function]rest list

rest means the same as cdr but mnemonically complements first. setf

may be used with rest to replace the cdr of a list with a new value.

[Function]nthcdr n list

(nthcdr n list) performs the cdr operation n times on list, and returns the
result. For example:

(nthcdr 0 ’(a b c)) ⇒ (a b c)

(nthcdr 2 ’(a b c)) ⇒ (c)

(nthcdr 4 ’(a b c)) ⇒ ()

In other words, it returns the nth cdr of the list.

Compatibility note: This is similar to the Interlisp function nth, except that the
Interlisp function is one-based instead of zero-based.

(car (nthcdr n x)) ≡ (nth n x)

X3J13 voted in January 1989 〈7〉 to clarify that the argument n must be a
non-negative integer.

[Function]last list
........................................................................................................................................................................................................

last returns the last cons (not the last element!) of list. If list is (), it returns

(). For example:

(setq x ’(a b c d))

(last x) ⇒ (d)

(rplacd (last x) ’(e f))

x ⇒ ’(a b c d e f)

(last ’(a b c . d)) ⇒ (c . d)

X3J13 voted in June 1988 〈106〉 to extend the last function to accept

an optional second argument. The effect is to make last complementary in

operation to butlast. The new description (with some additional examples)

would be as follows.
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[Function]last list &optional (n 1)

last returns the tail of the list consisting of the last n conses of list. The list

may be a dotted list. It is an error if the list is circular.

The argument n must be a non-negative integer. If n is zero, then the atom

that terminates the list is returned. If n is not less than the number of cons

cells making up the list, then the list itself is returned.

For example:

(setq x ’(a b c d))

(last x) ⇒ (d)

(rplacd (last x) ’(e f))

x ⇒ ’(a b c d e f)

(last x 3) ⇒ (d e f)

(last ’()) ⇒ ()

(last ’(a b c . d)) ⇒ (c . d)

(last ’(a b c . d) 0) ⇒ d

(last ’(a b c . d) 2) ⇒ (b c . d)

(last ’(a b c . d) 1729) ⇒ (a b c . d)

[Function]list &rest args

list constructs and returns a list of its arguments. For example:

(list 3 4 ’a (car ’(b . c)) (+ 6 -2)) ⇒ (3 4 a b 4)

(list) ⇒ ()

(list (list ’a ’b) (list ’c ’d ’e)) ⇒ ((a b) (c d e))

[Function]list* arg &rest others

list* is like list except that the last cons of the constructed list is “dotted.”

The last argument to list* is used as the cdr of the last cons constructed;

this need not be an atom. If it is not an atom, then the effect is to add several
new elements to the front of a list. For example:

(list* ’a ’b ’c ’d) ⇒ (a b c . d)

This is like

(cons ’a (cons ’b (cons ’c ’d)))

Also:
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(list* ’a ’b ’c ’(d e f)) ⇒ (a b c d e f)

(list* x) ≡ x

[Function]make-list size &key :initial-element

This creates and returns a list containing size elements, each of which is

initialized to the :initial-element argument (which defaults to nil). size
should be a non-negative integer. For example:

(make-list 5) ⇒ (nil nil nil nil nil)

(make-list 3 :initial-element ’rah) ⇒ (rah rah rah)

[Function]append &rest lists

The arguments to append are lists. The result is a list that is the concatenation

of the arguments. The arguments are not destroyed. For example:

(append ’(a b c) ’(d e f) ’() ’(g)) ⇒ (a b c d e f g)

Note that append copies the top-level list structure of each of its arguments

except the last. The function concatenate can perform a similar operation,

but always copies all its arguments. See also nconc, which is like append but

destroys all arguments but the last.

The last argument actually need not be a list but may be any Lisp object,
which becomes the tail end of the constructed list. For example, (append ’(a

b c) ’d) ⇒ (a b c . d).

(append x ’()) is an idiom once frequently used to copy the list x, but the

copy-list function is more appropriate to this task.

[Function]copy-list list

This returns a list that is equal to list, but not eq. Only the top level of

list structure is copied; that is, copy-list copies in the cdr direction but not

in the car direction. If the list is “dotted,” that is, (cdr (last list)) is a

non-nil atom, this will be true of the returned list also. See also copy-seq

and copy-tree.

[Function]copy-alist list

copy-alist is for copying association lists. The top level of list structure of

list is copied, just as for copy-list. In addition, each element of list that is

a cons is replaced in the copy by a new cons with the same car and cdr.



448 COMMON LISP

[Function]copy-tree object

copy-tree is for copying trees of conses. The argument object may be any

Lisp object. If it is not a cons, it is returned; otherwise the result is a new

cons of the results of calling copy-tree on the car and cdr of the argument. In
other words, all conses in the tree are copied recursively, stopping only when

non-conses are encountered. Circularities and the sharing of substructure are

not preserved.

Compatibility note: This function is called copy in Interlisp.

[Function]revappend x y

(revappend x y) is exactly the same as (append (reverse x) y) except
that it is potentially more efficient. Both x and y should be lists. The argu-

ment x is copied, not destroyed. Compare this with nreconc, which destroys

its first argument.

[Function]nconc &rest lists

nconc takes lists as arguments. It returns a list that is the arguments concate-

nated together. The arguments are changed rather than copied. (Compare

this with append, which copies arguments rather than destroying them.) For

example:

(setq x ’(a b c))

(setq y ’(d e f))

(nconc x y) ⇒ (a b c d e f)

x ⇒ (a b c d e f)

Note, in the example, that the value of x is now different, since its last cons

has been rplacd’d to the value of y. If one were then to evaluate (nconc x

y) again, it would yield a piece of “circular” list structure, whose printed rep-

resentation would be (a b c d e f d e f d e f ...), repeating forever; if

the *print-circle* switch were non-nil, it would be printed as (a b c .

#--1UU(d e f . #--1#--)).
X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of

certain operations. The side-effect behavior of nconc is specified by a recursive

relationship outlined in the following table, in which a call to nconc matching

the earliest possible pattern on the left is required to have side-effect behavior

equivalent to the corresponding expression on the right.
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(nconc) nil ;No side effects

(nconc nil . r) (nconc . r)

(nconc x) x
(nconc x y) (let ((p x) (q y))

(rplacd (last p) q)

p)

(nconc x y . r) (nconc (nconc x y) . r)
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[Function]nreconc x y

(nreconc x y) is exactly the same as (nconc (nreverse x) y) except that

it is potentially more efficient. Both x and y should be lists. The argument x

is destroyed. Compare this with revappend.

(setq planets ’(jupiter mars earth venus mercury))

(setq more-planets ’(saturn uranus pluto neptune))

(nreconc more-planets planets)

⇒ (neptune pluto uranus saturn jupiter mars earth venus mercury)

and now the value of more-planets is not well defined

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of
certain operations; (nreconc x y) is permitted and required to have side-

effect behavior equivalent to that of (nconc (nreverse x) y).

[Macro]push item place

The form place should be the name of a generalized variable containing a list;

item may refer to any Lisp object. The item is consed onto the front of the

list, and the augmented list is stored back into place and returned. The form

place may be any form acceptable as a generalized variable to setf. If the list
held in place is viewed as a push-down stack, then push pushes an element

onto the top of the stack. For example:

(setq x ’(a (b c) d))

(push 5 (cadr x)) ⇒ (5 b c) and now x ⇒ (a (5 b c) d)

The effect of (push item place) is roughly equivalent to

(setf place (cons item place))

except that the latter would evaluate any subforms of place twice, while push

takes care to evaluate them only once. Moreover, for certain place forms push
may be significantly more efficient than the setf version.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-

tion 7.2). Note that item is fully evaluated before any part of place is evalu-

ated.

[Macro]pushnew item place &key :test :test-not :key

The form place should be the name of a generalized variable containing a list;

item may refer to any Lisp object. If the item is not already a member of the
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list (as determined by comparisons using the :test predicate, which defaults

to eql), then the item is consed onto the front of the list, and the augmented

list is stored back into place and returned; otherwise the unaugmented list

is returned. The form place may be any form acceptable as a generalized

variable to setf. If the list held in place is viewed as a set, then pushnew

adjoins an element to the set; see adjoin.

The keyword arguments to pushnew follow the conventions for the generic

sequence functions. See chapter 14. In effect, these keywords are simply

passed on to the adjoin function.

pushnew returns the new contents of the place. For example:

(setq x ’(a (b c) d))

(pushnew 5 (cadr x)) ⇒ (5 b c) and now x ⇒ (a (5 b c) d)

(pushnew ’b (cadr x)) ⇒ (5 b c) and x is unchanged

The effect of

(pushnew item place :test p)

is roughly equivalent to

(setf place (adjoin item place :test p))

except that the latter would evaluate any subforms of place twice, while

pushnew takes care to evaluate them only once. Moreover, for certain place
forms pushnew may be significantly more efficient than the setf version.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-

tion 7.2). Note that item is fully evaluated before any part of place is evalu-

ated.

[Macro]pop place

The form place should be the name of a generalized variable containing a list.

The result of pop is the car of the contents of place, and as a side effect the

cdr of the contents is stored back into place. The form place may be any form
acceptable as a generalized variable to setf. If the list held in place is viewed

as a push-down stack, then pop pops an element from the top of the stack

and returns it. For example:

(setq stack ’(a b c))

(pop stack) ⇒ a and now stack ⇒ (b c)

The effect of (pop place) is roughly equivalent to
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(prog1 (car place) (setf place (cdr place)))

except that the latter would evaluate any subforms of place three times, while

pop takes care to evaluate them only once. Moreover, for certain place forms

pop may be significantly more efficient than the setf version.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-
tion 7.2).

[Function]butlast list &optional n

This creates and returns a list with the same elements as list, excepting the
last n elements. n defaults to 1. The argument is not destroyed. If the list

has fewer than n elements, then () is returned. For example:

(butlast ’(a b c d)) ⇒ (a b c)

(butlast ’((a b) (c d))) ⇒ ((a b))

(butlast ’(a)) ⇒ ()

(butlast nil) ⇒ ()

The name is from the phrase “all elements but the last.”

[Function]nbutlast list &optional n

This is the destructive version of butlast; it changes the cdr of the cons n+1

from the end of the list to nil. n defaults to 1. If the list has fewer than

n elements, then nbutlast returns (), and the argument is not modified.

(Therefore one normally writes (setq a (nbutlast a)) rather than simply

(nbutlast a).) For example:

(setq foo ’(a b c d))

(nbutlast foo) ⇒ (a b c)

foo ⇒ (a b c)

(nbutlast ’(a)) ⇒ ()

(nbutlast ’nil) ⇒ ()

[Function]ldiff list sublist

list should be a list, and sublist should be a sublist of list, that is, one of the
conses that make up list. ldiff (meaning “list difference”) will return a new

(freshly consed) list, whose elements are those elements of list that appear

before sublist. If sublist is not a tail of list (and in particular if sublist is nil),

then a copy of the entire list is returned. The argument list is not destroyed.

For example:
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(setq x ’(a b c d e))

(setq y (cdddr x)) ⇒ (d e)

(ldiff x y) ⇒ (a b c)

but (ldiff ’(a b c d) ’(c d)) ⇒ (a b c d)

since the sublist was not eq to any part of the list.

15.3. Alteration of List Structure

The functions rplaca and rplacd may be used to make alterations in already
existing list structure, that is, to change the car or cdr of an existing cons.

One may also use setf in conjunction with car and cdr.

The structure is not copied but is destructively altered; hence caution

should be exercised when using these functions, as strange side effects can

occur if portions of list structure become shared. The nconc, nreverse,

nreconc, and nbutlast functions, already described, have the same prop-

erty, as do certain of the generic sequence functions such as delete. How-
ever, they are normally not used for this side effect; rather, the list-structure

modification is purely for efficiency, and compatible non-modifying functions

are provided.

[Function]rplaca x y

(rplaca x y) changes the car of x to y and returns (the modified) x. x must

be a cons, but y may be any Lisp object. For example:

(setq g ’(a b c))

(rplaca (cdr g) ’d) ⇒ (d c)

Now g ⇒ (a d c)

[Function]rplacd x y

(rplacd x y) changes the cdr of x to y and returns (the modified) x. x must

be a cons, but y may be any Lisp object. For example:

(setq x ’(a b c))

(rplacd x ’d) ⇒ (a . d)

Now x ⇒ (a . d)
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The functions rplaca and rplacd go back to the earliest origins of Lisp,

along with car, cdr, and cons. Nowadays, however, they seem to be falling by

the wayside. More and more Common Lisp programmers use setf for nearly

all structure modifications: (rplaca x y) is rendered as (setf (car x) y)

or perhaps as (setf (first x) y). Even more likely is that a defstruct

structure or a CLOS class is used in place of a list, if the data structure is at

all complicated; in this case setf is used with a slot accessor.
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15.4. Substitution of Expressions

A number of functions are provided for performing substitutions within a
tree. All take a tree and a description of old subexpressions to be replaced by

new ones. They come in non-destructive and destructive varieties and specify

substitution either by two arguments or by an association list.

The naming conventions for these functions and for their keyword argu-

ments generally follow the conventions for the generic sequence functions. See

chapter 14.

[Function]subst new old tree &key :test :test-not :key

[Function]subst-if new test tree &key :key

[Function]subst-if-not new test tree &key :key

(subst new old tree) makes a copy of tree, substituting new for every subtree

or leaf of tree (whether the subtree or leaf is a car or a cdr of its parent) such

that old and the subtree or leaf satisfy the test. It returns the modified copy

of tree. The original tree is unchanged, but the result tree may share with

parts of the argument tree.

Compatibility note: In MacLisp, subst is guaranteed not to share with the tree
argument, and the idiom (subst nil nil x) was used to copy a tree x. In Common
Lisp, the function copy-tree should be used to copy a tree, as the subst idiom will
not work.

For example:

(subst ’tempest ’hurricane

’(shakespeare wrote (the hurricane)))

⇒ (shakespeare wrote (the tempest))

(subst ’foo ’nil ’(shakespeare wrote (twelfth night)))

⇒ (shakespeare wrote (twelfth night . foo) . foo)

(subst ’(a . cons) ’(old . pair)

’((old . spice) ((old . shoes) old . pair) (old . pair))

:test #--’equal)

⇒ ((old . spice) ((old . shoes) a . cons) (a . cons))

This function is not destructive; that is, it does not change the car or cdr of

any already existing list structure. One possible definition of subst:
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(defun subst (old new tree &rest x &key test test-not key)

(cond ((satisfies-the-test old tree :test test

:test-not test-not :key key)

new)

((atom tree) tree)

(t (let ((a (apply #--’subst old new (car tree) x))

(d (apply #--’subst old new (cdr tree) x)))

(if (and (eql a (car tree))

(eql d (cdr tree)))

tree

(cons a d))))))

See also substitute, which substitutes for top-level elements of a sequence.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]nsubst new old tree &key :test :test-not :key

[Function]nsubst-if new test tree &key :key

[Function]nsubst-if-not new test tree &key :key

nsubst is a destructive version of subst. The list structure of tree is altered

by destructively replacing with new each leaf or subtree of the tree such that

old and the leaf or subtree satisfy the test.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]sublis alist tree &key :test :test-not :key

sublis makes substitutions for objects in a tree (a structure of conses). The

first argument to sublis is an association list. The second argument is the

tree in which substitutions are to be made, as for subst. sublis looks at
all subtrees and leaves of the tree; if a subtree or leaf appears as a key in

the association list (that is, the key and the subtree or leaf satisfy the test),

it is replaced by the object with which it is associated. This operation is

non-destructive. In effect, sublis can perform several subst operations si-

multaneously. For example:
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(sublis ’((x . 100) (z . zprime))

’(plus x (minus g z x p) 4 . x))

⇒ (plus 100 (minus g zprime 100 p) 4 . 100)

(sublis ’(((+ x y) . (- x y)) ((- x y) . (+ x y)))

’(* (/ (+ x y) (+ x p)) (- x y))

:test #--’equal)

⇒ (* (/ (- x y) (+ x p)) (+ x y))

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]nsublis alist tree &key :test :test-not :key

nsublis is like sublis but destructively modifies the relevant parts of the

tree.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

15.5. Using Lists as Sets

Common Lisp includes functions that allow a list of items to be treated as a

set. There are functions to add, remove, and search for items in a list, based
on various criteria. There are also set union, intersection, and difference

functions.

The naming conventions for these functions and for their keyword argu-

ments generally follow the conventions that apply to the generic sequence

functions. See chapter 14.

[Function]member item list &key :test :test-not :key

[Function]member-if predicate list &key :key

[Function]member-if-not predicate list &key :key

The list is searched for an element that satisfies the test. If none is found, nil

is returned; otherwise, the tail of list beginning with the first element that

satisfied the test is returned. The list is searched on the top level only. These
functions are suitable for use as predicates.

For example:
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(member ’snerd ’(a b c d)) ⇒ nil

(member-if #--’numberp ’(a #--\Space 5/3 foo)) ⇒ (5/3 foo)

(member ’a ’(g (a y) c a d e a f)) ⇒ (a d e a f)

Note, in the last example, that the value returned by member is eq to the

portion of the list beginning with a. Thus rplaca on the result of member

may be used to alter the found list element, if a check is first made that

member did not return nil.
See also find and position.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

Compatibility note: In MacLisp, the member function uses an equal comparison
rather than eql, which is the default test for member in Common Lisp. Where in
MacLisp one would write (member x y), in Common Lisp one must write (member

x y :test #--’equal) to get a completely identical effect. Similarly, one can get the
precise effect, and no more, of the MacLisp (memq x y) by writing in Common Lisp
(member x y :test #--’eq).

[Function]tailp sublist list

This predicate is true if sublist is a sublist of list (that is, one of the conses

that makes up list); otherwise it is false. Another way to look at this is that
tailp is true if (nthcdr n list) is sublist, for some value of n. See ldiff.

X3J13 voted in January 1989 〈175〉 to strike the parenthetical remark that

suggests that the sublist must be a cons, to clarify that tailp is true if and

only if there exists an integer n such that

(eql sublist (nthcdr n list))

and to specify that list may be a dotted list (implying that implementations

must use atom and not endp to check for the end of the list).

[Function]adjoin item list &key :test :test-not :key

adjoin is used to add an element to a set, provided that it is not already a

member. The equality test defaults to eql.

(adjoin item list) ≡ (if (member item list) list (cons item list))

In general, the test may be any predicate; the item is added to the list only if

there is no element of the list that “satisfies the test.”
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adjoin deviates from the usual rules described in chapter 14 for the treat-

ment of arguments named item and :key. If a :key function is specified, it is

applied to item as well as to each element of the list. The rationale is that if

the item is not yet in the list, it soon will be, and so the test is more properly

viewed as being between two elements rather than between a separate item
and an element.

(adjoin item list :key fn)
≡ (if (member (funcall fn item) list :key fn) list (cons item list))

See pushnew.
Notice of correction. In the first edition, the form (fn item) appeared in

this example without the required funcall.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]union list1 list2 &key :test :test-not :key

[Function]nunion list1 list2 &key :test :test-not :key

union takes two lists and returns a new list containing everything that is an

element of either of the lists. If there is a duplication between two lists, only

one of the duplicate instances will be in the result. If either of the arguments
has duplicate entries within it, the redundant entries may or may not appear

in the result. For example:

(union ’(a b c) ’(f a d))

⇒ (a b c f d) or (b c f a d) or (d f a b c) or ...

(union ’((x 5) (y 6)) ’((z 2) (x 4)) :key #--’car)

⇒ ((x 5) (y 6) (z 2)) or ((x 4) (y 6) (z 2)) or ...

There is no guarantee that the order of elements in the result will reflect

the ordering of the arguments in any particular way. The implementation is
therefore free to use any of a variety of strategies. The result list may share

cells with, or be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the union operation may be

described as follows. For all possible ordered pairs consisting of one element
from list1 and one element from list2, the test is used to determine whether

they “match.” For every matching pair, at least one of the two elements of the

pair will be in the result. Moreover, any element from either list that matches

no element of the other will appear in the result. All this is very general, but

probably not particularly useful unless the test is an equivalence relation.
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The :test-not argument can be useful when the test function is the log-

ical negation of an equivalence test. A good example of this is the function

mismatch, which is logically inverted so that possibly useful information can

be returned if the arguments do not match. This additional “useful infor-

mation” is discarded in the following example; mismatch is used purely as a
predicate.

(union ’(#--(a b) #--(5 0 6) #--(f 3))

’(#--(5 0 6) (a b) #--(g h))

:test-not

#--’mismatch)

⇒ (#--(a b) #--(5 0 6) #--(f 3) #--(g h)) ;One possible result

⇒ ((a b) #--(f 3) #--(5 0 6) #--(g h)) ;Another possible result

Using :test-not #--’mismatch differs from using :test #--’equalp, for exam-

ple, because mismatch will determine that #--(a b) and (a b) are the same,
while equalp would regard them as not the same.

nunion is the destructive version of union. It performs the same operation

but may destroy the argument lists, perhaps in order to use their cells to

construct the result.
X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of

certain operations; nunion is permitted to perform a setf on any part, car

or cdr, of the top-level list structure of any of the argument lists.

[Function]intersection list1 list2 &key :test :test-not :key

[Function]nintersection list1 list2 &key :test :test-not :key

intersection takes two lists and returns a new list containing everything

that is an element of both argument lists. If either list has duplicate entries,
the redundant entries may or may not appear in the result. For example:

(intersection ’(a b c) ’(f a d)) ⇒ (a)

There is no guarantee that the order of elements in the result will reflect

the ordering of the arguments in any particular way. The implementation is
therefore free to use any of a variety of strategies. The result list may share

cells with, or be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the intersection operation

may be described as follows. For all possible ordered pairs consisting of one

element from list1 and one element from list2, the test is used to determine
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whether they “match.” For every matching pair, exactly one of the two el-

ements of the pair will be put in the result. No element from either list

appears in the result that does not match an element from the other list. All

this is very general, but probably not particularly useful unless the test is an

equivalence relation.
nintersection is the destructive version of intersection. It performs

the same operation, but may destroy list1, perhaps in order to use its cells to

construct the result. (The argument list2 is not destroyed.)

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-
tion 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of

certain operations; nintersection is permitted to perform a setf on any

part, car or cdr, of the top-level list structure of any of the argument lists.

[Function]set-difference list1 list2 &key :test :test-not :key

[Function]nset-difference list1 list2 &key :test :test-not :key

set-difference returns a list of elements of list1 that do not appear in list2.

This operation is not destructive.

There is no guarantee that the order of elements in the result will reflect

the ordering of the arguments in any particular way. The implementation is
therefore free to use any of a variety of strategies. The result list may share

cells with, or be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the set difference operation

may be described as follows. For all possible ordered pairs consisting of one

element from list1 and one element from list2, the test is used to determine
whether they “match.” An element of list1 appears in the result if and only

if it does not match any element of list2. This is very general and permits

interesting applications. For example, one can remove from a list of strings

all those strings containing one of a given list of characters:

;; Remove all flavor names that contain "c" or "w".

(set-difference ’("strawberry" "chocolate" "banana"

"lemon" "pistachio" "rhubarb")

’(#--\c #--\w)

:test

#--’(lambda (s c) (find c s)))

⇒ ("banana" "rhubarb" "lemon") ;One possible ordering

nset-difference is the destructive version of set-difference. This op-

eration may destroy list1.
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X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

Compatibility note: An approximately equivalent Interlisp function is
ldifference.

[Function]set-exclusive-or list1 list2 &key :test :test-not :key

[Function]nset-exclusive-or list1 list2 &key :test :test-not :key

set-exclusive-or returns a list of elements that appear in exactly one of
list1 and list2. This operation is not destructive.

There is no guarantee that the order of elements in the result will reflect

the ordering of the arguments in any particular way. The implementation is

therefore free to use any of a variety of strategies. The result list may share

cells with, or be eq to, either of the arguments if appropriate.
In general, the test may be any predicate, and the set-exclusive-or operation

may be described as follows. For all possible ordered pairs consisting of one

element from list1 and one element from list2, the test is used to determine

whether they “match.” The result contains precisely those elements of list1
and list2 that appear in no matching pair.
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nset-exclusive-or is the destructive version of set-exclusive-or. Both

lists may be destroyed in producing the result.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-
tion 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of
certain operations; nset-exclusive-or is permitted to perform a setf on

any part, car or cdr, of the top-level list structure of any of the argument

lists.

[Function]subsetp list1 list2 &key :test :test-not :key

subsetp is a predicate that is true if every element of list1 appears in

(“matches” some element of) list2, and false otherwise.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

15.6. Association Lists

An association list, or a-list, is a data structure used very frequently in Lisp.

An a-list is a list of pairs (conses); each pair is an association. The car of a

pair is called the key, and the cdr is called the datum.

An advantage of the a-list representation is that an a-list can be incre-

mentally augmented simply by adding new entries to the front. Moreover,

because the searching function assoc searches the a-list in order, new entries

can “shadow” old entries. If an a-list is viewed as a mapping from keys to
data, then the mapping can be not only augmented but also altered in a

non-destructive manner by adding new entries to the front of the a-list.

Sometimes an a-list represents a bijective mapping, and it is desirable to

retrieve a key given a datum. For this purpose, the “reverse” searching func-

tion rassoc is provided. Other variants of a-list searches can be constructed

using the function find or member.

It is permissible to let nil be an element of an a-list in place of a pair. Such

an element is not considered to be a pair but is simply passed over when the

a-list is searched by assoc.

[Function]acons key datum a-list

acons constructs a new association list by adding the pair (key . datum) to

the old a-list.
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(acons x y a) ≡ (cons (cons x y) a)

This is a trivial convenience function, but I find I use it a lot.
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[Function]pairlis keys data &optional a-list

pairlis takes two lists and makes an association list that associates elements

of the first list to corresponding elements of the second list. It is an error if the
two lists keys and data are not of the same length. If the optional argument

a-list is provided, then the new pairs are added to the front of it.

The new pairs may appear in the resulting a-list in any order; in particular,

either forward or backward order is permitted. Therefore the result of the call

(pairlis ’(one two) ’(1 2) ’((three . 3) (four . 19)))

might be

((one . 1) (two . 2) (three . 3) (four . 19))

but could equally well be

((two . 2) (one . 1) (three . 3) (four . 19))

[Function]assoc item a-list &key :test :test-not :key

[Function]assoc-if predicate a-list
[Function]assoc-if-not predicate a-list

X3J13 voted in March 1988 〈9〉 to allow assoc-if and assoc-if-not also
to take a keyword argument named :key, to be used to determine whether a

pair “satisfies the test” in the same manner as for sequence functions. The

new function descriptions are therefore as follows:

[Function]assoc-if predicate a-list &key :key

[Function]assoc-if-not predicate a-list &key :key

The omission of :key arguments for these functions in the first edition was

probably an oversight.

Each of these searches the association list a-list. The value is the first pair

in the a-list such that the car of the pair satisfies the test, or nil if there is
no such pair in the a-list. For example:

(assoc ’r ’((a . b) (c . d) (r . x) (s . y) (r . z)))

⇒ (r . x)

(assoc ’goo ’((foo . bar) (zoo . goo))) ⇒ nil

(assoc ’2 ’((1 a b c) (2 b c d) (-7 x y z))) ⇒ (2 b c d)
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It is possible to rplacd the result of assoc provided that it is not nil, in

order to “update” the “table” that was assoc’s second argument. (However,

it is often better to update an a-list by adding new pairs to the front, rather

than altering old pairs.) For example:

(setq values ’((x . 100) (y . 200) (z . 50)))

(assoc ’y values) ⇒ (y . 200)

(rplacd (assoc ’y values) 201)

(assoc ’y values) ⇒ (y . 201) now

A typical trick is to say (cdr (assoc x y)). Because the cdr of nil is guar-

anteed to be nil, this yields nil if no pair is found or if a pair is found whose
cdr is nil. This is useful if nil serves its usual role as a “default value.”

The two expressions

(assoc item list :test fn)

and

(find item list :test fn :key #--’car)

are equivalent in meaning with one important exception: if nil appears in

the a-list in place of a pair, and the item being searched for is nil, find will

blithely compute the car of the nil in the a-list, find that it is equal to the

item, and return nil, whereas assoc will ignore the nil in the a-list and
continue to search for an actual pair (cons) whose car is nil. See find and

position.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

Compatibility note: In MacLisp, the assoc function uses an equal comparison
rather than eql, which is the default test for assoc in Common Lisp. Where in
MacLisp one would write (assoc x y), in Common Lisp one must write (assoc x

y :test #--’equal) to get the completely identical effect. Similarly, one can get the
precise effect, and no more, of the MacLisp (assq x y) by writing in Common Lisp
(assoc x y :test #--’eq).

In Interlisp, assoc uses an eq test, and sassoc uses an Interlisp equal test.

[Function]rassoc item a-list &key :test :test-not :key

[Function]rassoc-if predicate a-list

[Function]rassoc-if-not predicate a-list

X3J13 voted in March 1988 〈9〉 to allow rassoc-if and rassoc-if-not also
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to take a keyword argument named :key, to be used to determine whether a

pair “satisfies the test” in the same manner as for sequence functions. The

new function descriptions are therefore as follows:

[Function]rassoc-if predicate a-list &key :key

[Function]rassoc-if-not predicate a-list &key :key

The omission of :key arguments for these functions in the first edition was

probably an oversight.

rassoc is the reverse form of assoc; it searches for a pair whose cdr satisfies

the test, rather than the car. If the a-list is considered to be a mapping, then

rassoc treats the a-list as representing the inverse mapping. For example:

(rassoc ’a ’((a . b) (b . c) (c . a) (z . a))) ⇒ (c . a)

The expressions

(rassoc item list :test fn)

and

(find item list :test fn :key #--’cdr)

are equivalent in meaning, except when the item is nil and nil appears in
place of a pair in the a-list. See the discussion of the function assoc.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.
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Hash Tables

A hash table is a Lisp object that can efficiently map a given Lisp object

to another Lisp object. Each hash table has a set of entries, each of which

associates a particular key with a particular value. The basic functions that
deal with hash tables can create entries, delete entries, and find the value that

is associated with a given key. Finding the value is very fast, even if there are

many entries, because hashing is used; this is an important advantage of hash

tables over property lists.

A given hash table can associate only one value with a given key; if you

try to add a second value, it will replace the first. Also, adding a value to a
hash table is a destructive operation; the hash table is modified. By contrast,

association lists can be augmented non-destructively.

Hash tables come in three kinds, the difference being whether the keys are

compared with eq, eql, or equal. In other words, there are hash tables that

hash on Lisp objects (using eq or eql) and there are hash tables that hash on
tree structure (using equal).

Hash tables are created with the function make-hash-table, which takes

various options, including which kind of hash table to make (the default being

the eql kind). To look up a key and find the associated value, use gethash.

New entries are added to hash tables using setf with gethash. To remove

an entry, use remhash. Here is a simple example.

(setq a (make-hash-table))

(setf (gethash ’color a) ’brown)

(setf (gethash ’name a) ’fred)

(gethash ’color a) ⇒ brown

(gethash ’name a) ⇒ fred

(gethash ’pointy a) ⇒ nil

In this example, the symbols color and name are being used as keys, and
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the symbols brown and fred are being used as the associated values. The

hash table has two items in it, one of which associates from color to brown,

and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any Lisp object. Similarly,

values can be any Lisp object.
When a hash table is first created, it has a size, which is the maximum

........................................................................................................................................................................................................

number of entries it can hold. Usually the actual capacity of the table is

somewhat less, since the hashing is not perfectly collision-free. With the

maximum possible bad luck, the capacity could be very much less, but this
rarely happens. If so many entries are added that the capacity is exceeded,

the hash table will automatically grow, and the entries will be rehashed (new

hash values will be recomputed, and everything will be rearranged so that the

fast hash lookup still works). This is transparent to the caller; it all happens

automatically.
There is a discrepancy between the preceding description of the size of a

hash table and the description of the :size argument in the specification

below of make-hash-table.

X3J13 voted in June 1989 〈99〉 to regard the latter description as defini-
tive: the :size argument is approximately the number of entries that can be

inserted without having to enlarge the hash table. This definition is certainly

more convenient for the user.

Compatibility note: This hash table facility is compatible with Lisp Machine Lisp.
It is similar to the hasharray facility of Interlisp, and some of the function names
are the same. However, it is not compatible with Interlisp. The exact details and
the order of arguments are designed to be consistent with the rest of MacLisp rather
than with Interlisp. For instance, the order of arguments to maphash is different,
there is no “system hash table,” and there is not the Interlisp restriction that keys
and values may not be nil.

16.1. Hash Table Functions

This section documents the functions for hash tables, which use objects as
keys and associate other objects with them.

[Function]make-hash-table &key :test :size :rehash-size

:rehash-threshold

This function creates and returns a new hash table. The :test argument

determines how keys are compared; it must be one of the three values #--’eq,
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#--’eql, or #--’equal, or one of the three symbols eq, eql, or equal. If no test

is specified, eql is assumed.

X3J13 voted in January 1989 〈100〉 to add a fourth type of hash table:

the value of #--’equalp and the symbol equalp are to be additional valid

possibilities for the :test argument.

Note that one consequence of the vote to change the rules of floating-point

contagion 〈37〉 (described in section 12.1) is to require UU, and therefore also

equalp, to compare the values of numbers exactly and not approximately,

making equalp a true equivalence relation on numbers.

Another valuable use of equalp hash tables is case-insensitive comparison
of keys that are strings.

The :size argument sets the initial size of the hash table, in entries. (The

actual size may be rounded up from the size you specify to the next “good”

size, for example to make it a prime number.) You won’t necessarily be able

to store precisely this many entries into the table before it overflows and
becomes bigger, but this argument does serve as a hint to the implementation

of approximately how many entries you intend to store.

X3J13 voted in January 1989 〈7〉 to clarify that the :size argument must

be a non-negative integer.

X3J13 voted in June 1989 〈99〉 to regard the preceding description of the
:size argument as definitive: it is approximately the number of entries that

can be inserted without having to enlarge the hash table.

The :rehash-size argument specifies how much to increase the size of the

hash table when it becomes full. This can be an integer greater than zero,

which is the number of entries to add, or it can be a floating-point number
greater than 1, which is the ratio of the new size to the old size. The default

value for this argument is implementation-dependent.

The :rehash-threshold argument specifies how full the hash table can
........................................................................................................................................................................................................

get before it must grow. This can be an integer greater than zero and less

than the :rehash-size (in which case it will be scaled whenever the table is
grown), or it can be a floating-point number between zero and 1. The default

value for this argument is implementation-dependent.

X3J13 voted in June 1989 〈99〉 to replace the preceding specification of the

:rehash-threshold argument with the following: The :rehash-threshold

argument specifies how full the hash table can get before it must grow. It may
be any real number between 0 and 1, inclusive. It indicates the maximum

desired level of hash table occupancy. An implementation is permitted to

ignore this argument. The default value for this argument is implementation-

dependent.

An example of the use of make-hash-table:
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(make-hash-table :rehash-size 1.5

:size (* number-of-widgets 43))

[Function]hash-table-p object

hash-table-p is true if its argument is a hash table, and otherwise is false.

(hash-table-p x) ≡ (typep x ’hash-table)

[Function]gethash key hash-table &optional default

gethash finds the entry in hash-table whose key is key and returns the asso-
ciated value. If there is no such entry, gethash returns default, which is nil

if not specified.

gethash actually returns two values, the second being a predicate value

that is true if an entry was found, and false if no entry was found.

setf may be used with gethash to make new entries in a hash table. If
an entry with the specified key already exists, it is removed before the new

entry is added. The default argument may be specified to gethash in this

context; it is ignored by setf but may be useful in such macros as incf that

are related to setf:

(incf (gethash a-key table 0))

means approximately the same as

(setf (gethash a-key table 0)

(+ (gethash a-key table 0) 1))

which in turn would be treated as simply

(setf (gethash a-key table)

(+ (gethash a-key table 0) 1))

[Function]remhash key hash-table

remhash removes any entry for key in hash-table. This is a predicate that is

true if there was an entry or false if there was not.

[Function]maphash function hash-table

For each entry in hash-table, maphash calls function on two arguments: the

key of the entry and the value of the entry; maphash then returns nil. If
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entries are added to or deleted from the hash table while a maphash is in

progress, the results are unpredictable, with one exception: if the function

calls remhash to remove the entry currently being processed by the function,

or performs a setf of gethash on that entry to change the associated value,

then those operations will have the intended effect. For example:

;;; Alter every entry in MY-HASH-TABLE, replacing the value with

;;; its square root. Entries with negative values are removed.

(maphash #--’(lambda (key val)

(if (minusp val)

(remhash key my-hash-table)

(setf (gethash key my-hash-table) (sqrt val))))

my-hash-table)

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Function]clrhash hash-table

This removes all the entries from hash-table and returns the hash table itself.

[Function]hash-table-count hash-table

This returns the number of entries in the hash-table. When a hash table is
first created or has been cleared, the number of entries is zero.

[Macro]with-hash-table-iterator (mname hash-table) { form}∗

X3J13 voted in January 1989 〈98〉 to add the macro with-hash-table-

iterator.

The name mname is bound and defined as if by macrolet, with the body
forms as its lexical scope, to be a “generator macro” such that successive

invocations (mname) will return entries, one by one, from the hash table that

is the value of the expression hash-table (which is evaluated exactly once).

At each invocation of the generator macro, there are two possibilities. If

there is yet another unprocessed entry in the hash table, then three values are
returned: t, the key of the hash table entry, and the associated value of the

hash table entry. On the other hand, if there are no more unprocessed entries

in the hash table, then one value is returned: nil.

The implicit interior state of the iteration over the hash table entries has

dynamic extent. While the name mname has lexical scope, it is an error to
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invoke the generator macro once the with-hash-table-iterator form has

been exited.

Invocations of with-hash-table-iterator and related macros may be

nested, and the generator macro of an outer invocation may be called from

within an inner invocation (assuming that its name is visible or otherwise
made available).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

Rationale: This facility is a bit more flexible than maphash. It makes possible a
portable and efficient implementation of loop clauses for iterating over hash tables
(see chapter 26).
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(setq turtles (make-hash-table :size 9 :test ’eq))

(setf (gethash ’howard-kaylan turtles) ’(musician lead-singer))

(setf (gethash ’john-barbata turtles) ’(musician drummer))

(setf (gethash ’leonardo turtles) ’(ninja leader blue))

(setf (gethash ’donatello turtles) ’(ninja machines purple))

(setf (gethash ’al-nichol turtles) ’(musician guitarist))

(setf (gethash ’mark-volman turtles) ’(musician great-hair))

(setf (gethash ’raphael turtles) ’(ninja cool rude red))

(setf (gethash ’michaelangelo turtles) ’(ninja party-dude orange))

(setf (gethash ’jim-pons turtles) ’(musician bassist))

(with-hash-table-iterator (get-turtle turtles)

(labels ((try (got-one &optional key value)

(when got-one ;Remember, keys may show up in any order
(when (eq (first value) ’ninja)

(format t "~%~:(~A~): ~{~A~̂ , ~}"

key (rest value)))

(multiple-value-call #--’try (get-turtle)))))

(multiple-value-call #--’try (get-turtle)))) ;Prints 4 lines

Michaelangelo: PARTY-DUDE, ORANGE

Leonardo: LEADER, BLUE

Raphael: COOL, RUDE, RED

Donatello: MACHINES, PURPLE

⇒ nil

[Function]hash-table-rehash-size hash-table

[Function]hash-table-rehash-threshold hash-table

[Function]hash-table-size hash-table
[Function]hash-table-test hash-table

X3J13 voted in March 1989 〈97〉 to add four accessor functions that return

values suitable for use in a call to make-hash-table in order to produce a

new hash table with state corresponding to the current state of the argument

hash table.

hash-table-rehash-size returns the current rehash size of a hash table.

hash-table-rehash-threshold returns the current rehash threshold.

hash-table-size returns the current size of a hash table.

hash-table-test returns the test used for comparing keys. If the test is

one of the standard test functions, then the result will always be a symbol,
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even if the function itself was specified when the hash-table was created. For

example:

(hash-table-test (make-hash-table :test #--’equal)) ⇒ equal

Implementations that extend make-hash-table by providing additional pos-
sibilities for the :test argument may determine how the value returned by

hash-table-test is related to such additional tests.

16.2. Primitive Hash Function

The function sxhash is a convenient tool for the user who needs to create

more complicated hashed data structures than are provided by hash-table

objects.

[Function]sxhash object

sxhash computes a hash code for an object and returns the hash code as a
non-negative fixnum. A property of sxhash is that (equal x y) implies (UU

(sxhash x) (sxhash y)).

The manner in which the hash code is computed is implementation-

dependent but independent of the particular “incarnation” or “core image.”

Hash values produced by sxhash may be written out to files, for example,
and meaningfully read in again into an instance of the same implementation.
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Arrays

An array is an object with components arranged according to a rectilinear

coordinate system. In principle, an array in Common Lisp may have any
number of dimensions, including zero. (A zero-dimensional array has exactly

one element.) In practice, an implementation may limit the number of di-

mensions supported, but every Common Lisp implementation must support

arrays of up to seven dimensions. Each dimension is a non-negative integer;

if any dimension of an array is zero, the array has no elements.
An array may be a general array, meaning each element may be any Lisp

object, or it may be a specialized array, meaning that each element must be

of a given restricted type.

One-dimensional arrays are called vectors. General vectors may contain any
........................................................................................................................................................................................................

Lisp object. Vectors whose elements are restricted to type string-char are

called strings. Vectors whose elements are restricted to type bit are called

bit-vectors.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and

to redefine the type string to be the union of one or more specialized vector
types, the types of whose elements are subtypes of the type character.

17.1. Array Creation

Do not be daunted by the many options of the function make-array. All

that is required to construct an array is a list of the dimensions; most of the

options are for relatively esoteric applications.

[Function]make-array dimensions &key :element-type

:initial-element :initial-contents :adjustable

:fill-pointer :displaced-to :displaced-index-offset

This is the primitive function for making arrays. The dimensions argument
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should be a list of non-negative integers that are to be the dimensions of

the array; the length of the list will be the dimensionality of the array. Each

dimension must be smaller than array-dimension-limit, and the product of

all the dimensions must be smaller than array-total-size-limit. Note that

if dimensions is nil, then a zero-dimensional array is created. For convenience
when making a one-dimensional array, the single dimension may be provided

as an integer rather than as a list of one integer.

An implementation of Common Lisp may impose a limit on the rank of an

array, but this limit may not be smaller than 7. Therefore, any Common Lisp
program may assume the use of arrays of rank 7 or less. The implementation-

dependent limit on array rank is reflected in array-rank-limit.

The keyword arguments for make-array are as follows:

:element-type

This argument should be the name of the type of the elements of the array;
an array is constructed of the most specialized type that can nevertheless

accommodate elements of the given type. The type t specifies a general

array, one whose elements may be any Lisp object; this is the default type.

X3J13 voted in January 1989 〈8〉 to change typep and subtypep so that
the specialized array type specifier means the same thing for discrimination

purposes as for declaration purposes: it encompasses those arrays that can

result by specifying element-type as the element type to the function make-

array. Therefore we may say that if type is the :element-type argument,

then the result will be an array of type (array type); put another way, for
any type A,

(typep (make-array ... :element-type ’A ...)

’(array A)))

is always true. See upgraded-array-element-type.

:initial-element

This argument may be used to initialize each element of the array. The

value must be of the type specified by the :element-type argument. If the

:initial-element option is omitted, the initial values of the array elements

are undefined (unless the :initial-contents or :displaced-to option is
used). The :initial-element option may not be used with the :initial-

contents or :displaced-to option.

:initial-contents
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This argument may be used to initialize the contents of the array. The value

is a nested structure of sequences. If the array is zero-dimensional, then the

value specifies the single element. Otherwise, the value must be a sequence

whose length is equal to the first dimension; each element must be a nested

structure for an array whose dimensions are the remaining dimensions, and
so on. For example:

(make-array ’(4 2 3)

:initial-contents

’(((a b c) (1 2 3))

((d e f) (3 1 2))

((g h i) (2 3 1))

((j k l) (0 0 0))))

The numbers of levels in the structure must equal the rank of the array.

Each leaf of the nested structure must be of the type specified by the :type

option. If the :initial-contents option is omitted, the initial values of the

array elements are undefined (unless the :initial-element or :displaced-
to option is used). The :initial-contents option may not be used with

the :initial-element or :displaced-to option.

:adjustable

This argument, if specified and not nil, indicates that it must be possible to

alter the array’s size dynamically after it is created. This argument defaults
to nil.

X3J13 voted in June 1989 〈3〉 to clarify that if this argument is non-nil

then the predicate adjustable-array-p will necessarily be true when ap-

plied to the resulting array; but if this argument is nil (or omitted) then the

resulting array may or may not be adjustable, depending on the implemen-
tation, and therefore adjustable-array-p may be correspondingly true or

false of the resulting array. Common Lisp provides no portable way to create

a non-adjustable array, that is, an array for which adjustable-array-p is

guaranteed to be false.

:fill-pointer

This argument specifies that the array should have a fill pointer. If this option

is specified and not nil, the array must be one-dimensional. The value is used

to initialize the fill pointer for the array. If the value t is specified, the length of

the array is used; otherwise the value must be an integer between 0 (inclusive)

and the length of the array (inclusive). This argument defaults to nil.
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:displaced-to

This argument, if specified and not nil, specifies that the array will be a
displaced array. The argument must then be an array; make-array will create

an indirect or shared array that shares its contents with the specified array.

In this case the :displaced-index-offset option may be useful. It is an

error if the array given as the :displaced-to argument does not have the
same :element-type as the array being created. The :displaced-to option

may not be used with the :initial-element or :initial-contents option.

This argument defaults to nil.

:displaced-index-offset

This argument may be used only in conjunction with the displaced-to op-

tion. It must be a non-negative integer (it defaults to zero); it is made to be
the index-offset of the created shared array.

When an array A is given as the :displaced-to argument to make-array

when creating array B, then array B is said to be displaced to array A. Now
the total number of elements in an array, called the total size of the array, is

calculated as the product of all the dimensions (see array-total-size). It is

required that the total size of A be no smaller than the sum of the total size

of B plus the offset n specified by the :displaced-index-offset argument.

The effect of displacing is that array B does not have any elements of its own
but instead maps accesses to itself into accesses to array A. The mapping

treats both arrays as if they were one-dimensional by taking the elements in

row-major order, and then maps an access to element k of array B to an access

to element k+n of array A.

If make-array is called with each of the :adjustable, :fill-pointer, and

:displaced-to arguments either unspecified or nil, then the resulting array

is guaranteed to be a simple array (see section 2.5).

X3J13 voted in June 1989 〈3〉 to clarify that if one or more of the

:adjustable, :fill-pointer, and :displaced-to arguments is true, then

whether the resulting array is simple is unspecified.

Here are some examples of the use of make-array:

;;; Create a one-dimensional array of five elements.

(make-array 5)

;;; Create a two-dimensional array, 3 by 4, with four-bit elements.

(make-array ’(3 4) :element-type ’(mod 16))
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;;; Create an array of single-floats.

(make-array 5 :element-type ’single-float))

;;; Making a shared array.

(setq a (make-array ’(4 3)))

(setq b (make-array 8 :displaced-to a

:displaced-index-offset 2))

;;; Now it is the case that:

(aref b 0) ≡ (aref a 0 2)

(aref b 1) ≡ (aref a 1 0)

(aref b 2) ≡ (aref a 1 1)

(aref b 3) ≡ (aref a 1 2)

(aref b 4) ≡ (aref a 2 0)

(aref b 5) ≡ (aref a 2 1)

(aref b 6) ≡ (aref a 2 2)

(aref b 7) ≡ (aref a 3 0)

The last example depends on the fact that arrays are, in effect, stored in

row-major order for purposes of sharing. Put another way, the indices for the

elements of an array are ordered lexicographically.

Compatibility note: Both Lisp Machine Lisp, as described in reference [55], and
Fortran [15, 3] store arrays in column-major order.

[Constant ]array-rank-limit

The value of array-rank-limit is a positive integer that is the upper exclu-
sive bound on the rank of an array. This bound depends on the implementa-

tion but will not be smaller than 8; therefore every Common Lisp implementa-

tion supports arrays whose rank is between 0 and 7 (inclusive). (Implementors

are encouraged to make this limit as large as practicable without sacrificing

performance.)

[Constant ]array-dimension-limit

The value of array-dimension-limit is a positive integer that is the upper

exclusive bound on each individual dimension of an array. This bound depends

on the implementation but will not be smaller than 1024. (Implementors

are encouraged to make this limit as large as practicable without sacrificing

performance.)
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X3J13 voted in January 1989 〈76〉 to specify that the value of array-

dimension-limit must be of type fixnum. This in turn implies that all

valid array indices will be fixnums.

[Constant ]array-total-size-limit

The value of array-total-size-limit is a positive integer that is the upper
exclusive bound on the total number of elements in an array. This bound

depends on the implementation but will not be smaller than 1024. (Imple-

mentors are encouraged to make this limit as large as practicable without

sacrificing performance.)

The actual limit on array size imposed by the implementation may vary
according to the :element-type of the array; in this case the value of array-

total-size-limit will be the smallest of these individual limits.

[Function]vector &rest objects

The function vector is a convenient means for creating a simple general vector
with specified initial contents. It is analogous to the function list.

(vector a1 a2 ... an)

≡ (make-array (list n) :element-type t

:initial-contents (list a1 a2 ... an))

17.2. Array Access

The function aref is normally used for accessing an element of an array.

Other access functions, such as svref, char, and bit, may be more efficient
in specialized circumstances.

[Function]aref array &rest subscripts

This accesses and returns the element of array specified by the subscripts. The

number of subscripts must equal the rank of the array, and each subscript must

be a non-negative integer less than the corresponding array dimension.
aref is unusual among the functions that operate on arrays in that it com-

pletely ignores fill pointers. aref can access without error any array element,

whether active or not. The generic sequence function elt, however, observes

the fill pointer; accessing an element beyond the fill pointer with elt is an

error.
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Note that this remark, predating the design of the Common Lisp Object

System, uses the term “generic” in a generic sense and not necessarily in the

technical sense used by CLOS (see chapter 2).

setf may be used with aref to destructively replace an array element with

a new value.

Under some circumstances it is desirable to write code that will extract an
element from an array a given a list z of the indices, in such a way that the

code works regardless of the rank of the array. This is easy using apply:

(apply #--’aref a z)

(The length of the list must of course equal the rank of the array.) This

construction may be used with setf to alter the element so selected to some

new value w:

(setf (apply #--’aref a z) w)

[Function]svref simple-vector index

The first argument must be a simple general vector, that is, an object of type

simple-vector. The element of the simple-vector specified by the integer
index is returned.

The index must be non-negative and less than the length of the vector.

setf may be used with svref to destructively replace a simple-vector ele-

ment with a new value.

svref is identical to aref except that it requires its first argument to be

a simple vector. In some implementations of Common Lisp, svref may be
faster than aref in situations where it is applicable. See also schar and sbit.

17.3. Array Information

The following functions extract from an array interesting information other

than the elements.

[Function]array-element-type array

array-element-type returns a type specifier for the set of objects that can

be stored in the array. This set may be larger than the set requested when

the array was created; for example, the result of

(array-element-type (make-array 5 :element-type ’(mod 5)))
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could be (mod 5), (mod 8), fixnum, t, or any other type of which (mod 5)

is a subtype. See subtypep.

[Function]array-rank array

This returns the number of dimensions (axes) of array. This will be a non-

negative integer. See array-rank-limit.

Compatibility note: In Lisp Machine Lisp, this is called array-#---dims. This
name causes problems in other Lisp dialects because of the #-- character.

[Function]array-dimension array axis-number

The length of dimension number axis-number of the array is returned. array
may be any kind of array, and axis-number should be a non-negative integer

less than the rank of array. If the array is a vector with a fill pointer, array-

dimension returns the total size of the vector, including inactive elements,

not the size indicated by the fill pointer. (The function length will return

the size indicated by the fill pointer.)

Compatibility note: This is similar to the Lisp Machine Lisp function array-

dimension-n, but takes its arguments in the other order, and is zero-origin for
consistency instead of one-origin. In Lisp Machine Lisp (array-dimension-n 0)

returns the length of the array leader.

[Function]array-dimensions array

array-dimensions returns a list whose elements are the dimensions of array.

[Function]array-total-size array

array-total-size returns the total number of elements in the array, calcu-

lated as the product of all the dimensions.

(array-total-size x)

≡ (apply #--’* (array-dimensions x))

≡ (reduce #--’* (array-dimensions x))
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Note that the total size of a zero-dimensional array is 1. The total size of a

one-dimensional array is calculated without regard for any fill pointer.

[Function]array-in-bounds-p array &rest subscripts

This predicate checks whether the subscripts are all legal subscripts for array.

The predicate is true if they are all legal; otherwise it is false. The subscripts

must be integers. The number of subscripts supplied must equal the rank of

the array. Like aref, array-in-bounds-p ignores fill pointers.

[Function]array-row-major-index array &rest subscripts

This function takes an array and valid subscripts for the array and returns a

single non-negative integer less than the total size of the array that identifies

the accessed element in the row-major ordering of the elements. The number
of subscripts supplied must equal the rank of the array. Each subscript must

be a non-negative integer less than the corresponding array dimension. Like

aref, array-row-major-index ignores fill pointers.

A possible definition of array-row-major-index, with no error checking,
would be

(defun array-row-major-index (a &rest subscripts)

(apply #--’+ (maplist #--’(lambda (x y)

(* (car x) (apply #--’* (cdr y))))

subscripts

(array-dimensions a))))

For a one-dimensional array, the result of array-row-major-index always
equals the supplied subscript.

[Function]row-major-aref array index

X3J13 voted in March 1988 〈6〉 to add the function row-major-aref. This
allows any array element to be accessed as if the containing array were one-

dimensional. The index must be a non-negative integer less than the total

size of the array. It indexes into the array as if its elements were arranged

one-dimensionally in row-major order. It may be understood in terms of aref

as follows:
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(row-major-aref array index) ≡
(aref (make-array (array-total-size array))

:displaced-to array

:element-type (array-element-type array))

index)

In other words, one may treat an array as one-dimensional by creating a new

one-dimensional array that is displaced to the old one and then accessing the

new array. Alternatively, aref may be understood in terms of row-major-

aref:

(aref array i0 i1 ... in−1) ≡
(row-major-aref array

(array-row-major-index array i0 i1 ... in−1)

That is, a multidimensional array access is equivalent to a row-major access

using an equivalent row-major index.

Like aref, row-major-aref completely ignores fill pointers. A call to row-

major-setf is suitable for use as a place for setf.

This operation makes it easier to write code that efficiently processes arrays

of any rank. Suppose, for example, that one wishes to set every element of an

array tennis-scores to zero. One might write

(fill (make-array (array-total-size tennis-scores)

:element-type (array-element-type tennis-scores)

:displaced-to tennis-scores)

0)

Unfortunately, this incurs the overhead of creating a displaced array, and fill

cannot be applied to multidimensional arrays. Another approach would be to

handle each possible rank separately:

(ecase (array-rank tennis-scores)

(0 (setf (aref tennis-scores) 0))

(1 (dotimes (i0 (array-dimension tennis-scores 0))

(setf (aref tennis-scores i0) 0)))

(2 (dotimes (i0 (array-dimension tennis-scores 0))

(dotimes (i1 (array-dimension tennis-scores 1))

(setf (aref tennis-scores i0 i1) 0))))

...

(7 (dotimes (i0 (array-dimension tennis-scores 0))

(dotimes (i1 (array-dimension tennis-scores 1))
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(dotimes (i2 (array-dimension tennis-scores 1))

(dotimes (i3 (array-dimension tennis-scores 1))

(dotimes (i4 (array-dimension tennis-scores 1))

(dotimes (i5 (array-dimension tennis-scores 1))

(dotimes (i6 (array-dimension tennis-scores 1))

(setf (aref tennis-scores i0 i1 i2 i3 i4 i5 i6)

0)))))))))

)

It is easy to get tired of writing such code. Furthermore, this approach is un-

desirable because some implementations of Common Lisp will in fact correctly
support arrays of rank greater than 7 (though no implementation is required

to do so). A recursively nested loop does the job, but it is still pretty hairy:

(labels

((grok-any-rank (&rest indices)

(let ((d (- (array-rank tennis-scores) (length indices)))

(if (UU d 0)

(setf (apply #--’row-major-aref indices) 0)

(dotimes (i (array-dimension tennis-scores (- d 1)))

(apply #--’grok-any-rank i indices))))))

(grok-any-rank))

Whether this code is particularly efficient depends on many implementation
parameters, such as how &rest arguments are handled and how cleverly calls

to apply are compiled. How much easier it is to use row-major-aref!

(dotimes (i (array-total-size tennis-scores))

(setf (row-major-aref tennis-scores i) 0))

Surely this code is sweeter than the honeycomb.

[Function]adjustable-array-p array

This predicate is true if the argument (which must be an array) is adjustable,

and otherwise is false.

X3J13 voted in June 1989 〈3〉 to clarify that adjustable-array-p is true
of an array if and only if adjust-array, when applied to that array, will

return the same array, that is, an array eq to the original array. If the

:adjustable argument to make-array is non-nil when an array is created,

then adjustable-array-p must be true of that array. If an array is cre-

ated with the :adjustable argument nil (or omitted), then adjustable-
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array-p may be true or false of that array, depending on the implementation.

X3J13 further voted to define the terminology “adjustable array” to mean

precisely “an array of which adjustable-array-p is true.” See make-array

and adjust-array.

17.4. Functions on Arrays of Bits

The functions described in this section operate only on arrays of bits, that is,

specialized arrays whose elements are all 0 or 1.

[Function]bit bit-array &rest subscripts

[Function]sbit simple-bit-array &rest subscripts

bit is exactly like aref but requires an array of bits, that is, one of type

(array bit). The result will always be 0 or 1. sbit is like bit but addition-

ally requires that the first argument be a simple array (see section 2.5). Note

that bit and sbit, unlike char and schar, allow the first argument to be an
array of any rank.

setf may be used with bit or sbit to destructively replace a bit-array

element with a new value.

bit and sbit are identical to aref except for the more specific type re-

quirements on the first argument. In some implementations of Common Lisp,
bit may be faster than aref in situations where it is applicable, and sbit

may similarly be faster than bit.

[Function]bit-and bit-array1 bit-array2 &optional result-bit-array

[Function]bit-ior bit-array1 bit-array2 &optional result-bit-array
[Function]bit-xor bit-array1 bit-array2 &optional result-bit-array

[Function]bit-eqv bit-array1 bit-array2 &optional result-bit-array

[Function]bit-nand bit-array1 bit-array2 &optional result-bit-array

[Function]bit-nor bit-array1 bit-array2 &optional result-bit-array
[Function]bit-andc1 bit-array1 bit-array2 &optional result-bit-array

[Function]bit-andc2 bit-array1 bit-array2 &optional result-bit-array

[Function]bit-orc1 bit-array1 bit-array2 &optional result-bit-array

[Function]bit-orc2 bit-array1 bit-array2 &optional result-bit-array

These functions perform bit-wise logical operations on bit-arrays. All of the

arguments to any of these functions must be bit-arrays of the same rank and

dimensions. The result is a bit-array of matching rank and dimensions, such
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that any given bit of the result is produced by operating on corresponding

bits from each of the arguments.

If the third argument is nil or omitted, a new array is created to contain
the result. If the third argument is a bit-array, the result is destructively

placed into that array. If the third argument is t, then the first argument is

also used as the third argument; that is, the result is placed back in the first

array.

The following table indicates what the result bit is for each operation as a

function of the two corresponding argument bits.

argument1 0 0 1 1

argument2 0 1 0 1 Operation name

bit-and 0 0 0 1 and

bit-ior 0 1 1 1 inclusive or

bit-xor 0 1 1 0 exclusive or
bit-eqv 1 0 0 1 equivalence (exclusive nor)

bit-nand 1 1 1 0 not-and

bit-nor 1 0 0 0 not-or

bit-andc1 0 1 0 0 and complement of argument1 with argument2

bit-andc2 0 0 1 0 and argument1 with complement of argument2
bit-orc1 1 1 0 1 or complement of argument1 with argument2

bit-orc2 1 0 1 1 or argument1 with complement of argument2

For example:

(bit-and #--*1100 #--*1010) ⇒ #--*1000

(bit-xor #--*1100 #--*1010) ⇒ #--*0110

(bit-andc1 #--*1100 #--*1010) ⇒ #--*0100

See logand and related functions.

[Function]bit-not bit-array &optional result-bit-array

The first argument must be an array of bits. A bit-array of matching rank

and dimensions is returned that contains a copy of the argument with all the

bits inverted. See lognot.

If the second argument is nil or omitted, a new array is created to contain

the result. If the second argument is a bit-array, the result is destructively

placed into that array. If the second argument is t, then the first argument

is also used as the second argument; that is, the result is placed back in the
first array.
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17.5. Fill Pointers

Several functions for manipulating a fill pointer are provided in Common Lisp
to make it easy to incrementally fill in the contents of a vector and, more

generally, to allow efficient varying of the length of a vector. For example,

a string with a fill pointer has most of the characteristics of a PL/I varying

string.

The fill pointer is a non-negative integer no larger than the total number of

elements in the vector (as returned by array-dimension); it is the number of
“active” or “filled-in” elements in the vector. The fill pointer constitutes the

“active length” of the vector; all vector elements whose index is less than the

fill pointer are active, and the others are inactive. Nearly all functions that

operate on the contents of a vector will operate only on the active elements.

An important exception is aref, which can be used to access any vector
element whether in the active region of the vector or not. It is important to

note that vector elements not in the active region are still considered part of

the vector.

Implementation note: An implication of this rule is that vector elements outside
the active region may not be garbage-collected.

Only vectors (one-dimensional arrays) may have fill pointers; multidimen-

sional arrays may not. (Note, however, that one can create a multidimensional

array that is displaced to a vector that has a fill pointer.)

[Function]array-has-fill-pointer-p array

The argument must be an array. array-has-fill-pointer-p returns t if

the array has a fill pointer, and otherwise returns nil. Note that array-has-

fill-pointer-p always returns nil if the array is not one-dimensional.

[Function]fill-pointer vector

The fill pointer of vector is returned. It is an error if the vector does not have

a fill pointer.

setf may be used with fill-pointer to change the fill pointer of a vector.

The fill pointer of a vector must always be an integer between zero and the

size of the vector (inclusive).
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[Function]vector-push new-element vector

vector must be a one-dimensional array that has a fill pointer, and new-element

may be any object. vector-push attempts to store new-element in the el-
ement of the vector designated by the fill pointer, and to increase the fill

pointer by 1. If the fill pointer does not designate an element of the vector

(specifically, when it gets too big), it is unaffected and vector-push returns

nil. Otherwise, the store and increment take place and vector-push returns

the former value of the fill pointer (1 less than the one it leaves in the vector);
thus the value of vector-push is the index of the new element pushed.

It is instructive to compare vector-push, which is a function, with push,

which is a macro that requires a place suitable for setf. A vector with a fill

pointer effectively contains the place to be modified in its fill-pointer slot.

[Function]vector-push-extend new-element vector &optional

extension

vector-push-extend is just like vector-push except that if the fill pointer

gets too large, the vector is extended (using adjust-array) so that it can
contain more elements. If, however, the vector is not adjustable, then vector-

push-extend signals an error.

X3J13 voted in June 1989 〈3〉 to clarify that vector-push-extend regards

an array as not adjustable if and only if adjustable-array-p is false of that
array.

The optional argument extension, which must be a positive integer, is the

minimum number of elements to be added to the vector if it must be extended;

it defaults to a “reasonable” implementation-dependent value.

[Function]vector-pop vector

vector must be a one-dimensional array that has a fill pointer. If the fill pointer

is zero, vector-pop signals an error. Otherwise the fill pointer is decreased

by 1, and the vector element designated by the new value of the fill pointer is
returned.

17.6. Changing the Dimensions of an Array

This function may be used to resize or reshape an array. Its options are similar

to those of make-array.
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[Function]adjust-array array new-dimensions &key :element-type

:initial-element :initial-contents :fill-pointer

:displaced-to :displaced-index-offset

adjust-array takes an array and a number of other arguments as for make-

array. The number of dimensions specified by new-dimensions must equal

the rank of array.

adjust-array returns an array of the same type and rank as array, with

the specified new-dimensions. In effect, the array argument itself is modified
to conform to the new specifications, but this may be achieved either by

modifying the array or by creating a new array and modifying the array

argument to be displaced to the new array.

In the simplest case, one specifies only the new-dimensions and possibly

an :initial-element argument. Those elements of array that are still in

bounds appear in the new array. The elements of the new array that are

not in the bounds of array are initialized to the :initial-element; if this
argument is not provided, then the initial contents of any new elements are

undefined.

If :element-type is specified, then array must be such that it could have

been originally created with that type; otherwise an error is signaled. Spec-

ifying :element-type to adjust-array serves only to require such an error

check.

If :initial-contents or :displaced-to is specified, then it is treated as

for make-array. In this case none of the original contents of array appears in

the new array.

If :fill-pointer is specified, the fill pointer of the array is reset as speci-

fied. An error is signaled if array had no fill pointer already.

X3J13 voted in June 1988 〈2〉 to clarify the treatment of the :fill-pointer

argument as follows.

If the :fill-pointer argument is not supplied, then the fill pointer of the

array is left alone. It is an error to try to adjust the array to a total size that
is smaller than its fill pointer.

If the :fill-pointer argument is supplied, then its value must be either
an integer, t, or nil. If it is an integer, then it is the new value for the fill

pointer; it must be non-negative and no greater than the new size to which

the array is being adjusted. If it is t, then the fill pointer is set equal to the

new size for the array. If it is nil, then the fill pointer is left alone; it is as

if the argument had not been supplied. Again, it is an error to try to adjust
the array to a total size that is smaller than its fill pointer.

An error is signaled if a non-nil :fill-pointer value is supplied and the



492 COMMON LISP

array to be adjusted does not already have a fill pointer.

This extended treatment of the :fill-pointer argument to adjust-array

is consistent with the previously existing treatment of the :fill-pointer

argument to make-array.

adjust-array may, depending on the implementation and the arguments,
simply alter the given array or create and return a new one. In the latter case

the given array will be altered so as to be displaced to the new array and have

the given new dimensions.

It is not permitted to call adjust-array on an array that was not created
........................................................................................................................................................................................................

with the :adjustable option. The predicate adjustable-array-p may be

used to determine whether or not an array is adjustable.

X3J13 voted in January 1989 〈3〉 to allow adjust-array to be applied to

any array. If adjust-array is applied to an array that was originally created

with :adjustable true, the array returned is eq to its first argument. It is
not specified whether adjust-array returns an array eq to its first argument

for any other arrays. If the array returned by adjust-array is not eq to its

first argument, the original array is unchanged and does not share storage

with the new array.

Under this new definition, it is wise to treat adjust-array in the same
manner as delete and nconc: one should carefully retain the returned value,

for example by writing

(setq my-array (adjust-array my-array ...))

rather than relying solely on a side effect.

If adjust-array is applied to an array that is displaced to another array x,

then afterwards neither array nor the returned result is displaced to x unless

such displacement is explicitly re-specified in the call to adjust-array.

For example, suppose that the 4-by-4 array m looks like this:

#--2A( ( alpha beta gamma delta )

( epsilon zeta eta theta )

( iota kappa lambda mu )

( nu xi omicron pi ) )

Then the result of

(adjust-array m ’(3 5) :initial-element ’baz)

is a 3-by-5 array with contents

#--2A( ( alpha beta gamma delta baz )
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( epsilon zeta eta theta baz )

( iota kappa lambda mu baz ) )

Note that if array a is created displaced to array b and subsequently array b

is given to adjust-array, array a will still be displaced to array b; the effects

of this displacement and the rule of row-major storage order must be taken

into account.

X3J13 voted in June 1988 〈1〉 to clarify the interaction of adjust-array

with array displacement.

Suppose that an array A is to be adjusted. There are four cases according

to whether or not A was displaced before adjustment and whether or not the
result is displaced after adjustment.

. Suppose A is not displaced either before or after. The dimensions of A

are altered, and the contents are rearranged as appropriate. Additional
elements of A are taken from the :initial-element argument. However,

the use of the :initial-contents argument causes all old contents to be

discarded.

. Suppose A is not displaced before, but is displaced to array C after. None

of the original contents of A appears in A afterwards; A now contains (some
of) the contents of C, without any rearrangement of C.

. Suppose A is displaced to array B before the call, and is displaced to array

C after the call. (Note that B and C may be the same array.) The contents

of B do not appear in A afterwards (unless such contents also happen to be

in C, as when B and C are the same, for example). If :displaced-index-

offset is not specified in the call to adjust-array, it defaults to zero; the
old offset (into B) is not retained.

. Suppose A is displaced to array B before the call, but is not displaced

afterwards. In this case A gets a new “data region” and (some of) the

contents of B are copied into it as appropriate to maintain the existing old

contents. Additional elements of A are taken from the :initial-element

argument. However, the use of the :initial-contents argument causes

all old contents to be discarded.

If array X is displaced to array Y, and array Y is displaced to array Z, and
array Y is altered by adjust-array, array X must now refer to the adjusted

contents of Y. This means that an implementation may not collapse the chain

to make X refer to Z directly and forget that the chain of reference passes

through array Y. (Caching techniques are of course permitted, as long as they

preserve the semantics specified here.)
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If X is displaced to Y, it is an error to adjust Y in such a way that it no

longer has enough elements to satisfy X. This error may be signaled at the

time of the adjustment, but this is not required.

Note that omitting the :displaced-to argument to adjust-array is equiv-

alent to specifying :displaced-to nil; in either case, the array is not dis-
placed after the call regardless of whether it was displaced before the call.
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Strings

A string is a specialized vector (one-dimensional array) whose elements are

characters.

Specifically, the type string is identical to the type (vector string-
........................................................................................................................................................................................................

char), which in turn is the same as (array string-char (*)).

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and
to redefine the type string to be the union of one or more specialized vector

types, the types of whose elements are subtypes of the type character.

Any string-specific function defined in this chapter whose name begins with
the prefix string will accept a symbol instead of a string as an argument pro-

vided that the operation never modifies that argument; the print name of the

symbol is used. In this respect the string-specific sequence operations are

not simply specializations of generic versions; the generic sequence operations
described in chapter 14 never accept symbols as sequences. This slight inel-

egance is permitted in Common Lisp in the name of pragmatic utility. One

may get the effect of having a generic sequence function operate on either

symbols or strings by applying the coercion function string to any argument

whose data type is in doubt.

Note that this remark, predating the design of the Common Lisp Object

System, uses the term “generic” in a generic sense and not necessarily in the

technical sense used by CLOS (see chapter 2).

Also, there is a slight non-parallelism in the names of string functions.

Where the suffixes equalp and eql would be more appropriate, for histori-
cal compatibility the suffixes equal and UU are used instead to indicate case-

insensitive and case-sensitive character comparison, respectively.

Any Lisp object may be tested for being a string by the predicate stringp.

Note that strings, like all vectors, may have fill pointers (though such strings

are not necessarily simple). String operations generally operate only on the

active portion of the string (below the fill pointer). See fill-pointer and

495
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related functions.

18.1. String Access

The following functions access a single character element of a string.

[Function]char string index

[Function]schar simple-string index

The given index must be a non-negative integer less than the length of string,
which must be a string. The character at position index of the string is

returned as a character object.

(This character will necessarily satisfy the predicate string-char-p.)
........................................................................................................................................................................................................

X3J13 voted in March 1989 〈11〉 to eliminate string-char-p.
As with all sequences in Common Lisp, indexing is zero-origin. For example:

(char "Floob-Boober-Bab-Boober-Bubs" 0) ⇒ #--\F

(char "Floob-Boober-Bab-Boober-Bubs" 1) ⇒ #--\l

See aref and elt. In effect,

(char s j) ≡ (aref (the string s) j)

setf may be used with char to destructively replace a character within a
string.

For char, the string may be any string; for schar, it must be a simple

string. In some implementations of Common Lisp, the function schar may

be faster than char when it is applicable.

18.2. String Comparison

The naming conventions for these functions and for their keyword arguments

generally follow the conventions for the generic sequence functions (see chapter

14).

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense and not necessarily in the

technical sense used by CLOS (see chapter 2).

[Function]stringUU string1 string2 &key :start1 :end1 :start2 :end2

stringUU compares two strings and is true if they are the same (corresponding

characters are identical) but is false if they are not. The function equal calls

stringUU if applied to two strings.
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The keyword arguments :start1 and :start2 are the places in the strings

to start the comparison. The arguments :end1 and :end2 are the places

in the strings to stop comparing; comparison stops just before the position

specified by a limit. The “start” arguments default to zero (beginning of

string), and the “end” arguments (if either omitted or nil) default to the
lengths of the strings (end of string), so that by default the entirety of each

string is examined. These arguments are provided so that substrings can be

compared efficiently.

stringUU is necessarily false if the (sub)strings being compared are of un-
equal length; that is, if

(not (UU (- end1 start1) (- end2 start2)))

is true, then stringUU is false.

(stringUU "foo" "foo") is true

(stringUU "foo" "Foo") is false

(stringUU "foo" "bar") is false

(stringUU "together" "frog" :start1 1 :end1 3 :start2 2)

is true

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).

Compatibility note: stringUU is called strequal in Interlisp.

[Function]string-equal string1 string2 &key :start1 :end1

:start2 :end2

string-equal is just like stringUU except that differences in case are ignored;

two characters are considered to be the same if char-equal is true of them.
For example:

(string-equal "foo" "Foo") is true

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).
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[Function]string< string1 string2 &key :start1 :end1 :start2 :end2

[Function]string> string1 string2 &key :start1 :end1 :start2 :end2

[Function]string<UU string1 string2 &key :start1 :end1

:start2 :end2

[Function]string>UU string1 string2 &key :start1 :end1

:start2 :end2

[Function]string/UU string1 string2 &key :start1 :end1

:start2 :end2

These functions compare the two string arguments lexicographically, and the
result is nil unless string1 is respectively less than, greater than, less than or

equal to, greater than or equal to, or not equal to string2. If the condition is

satisfied, however, then the result is the index within the strings of the first

character position at which the strings fail to match; put another way, the
result is the length of the longest common prefix of the strings.

A string a is less than a string b if in the first position in which they differ

the character of a is less than the corresponding character of b according to

the function char<, or if string a is a proper prefix of string b (of shorter

length and matching in all the characters of a).

The keyword arguments :start1 and :start2 are the places in the strings

to start the comparison. The keyword arguments :end1 and :end2 are the

places in the strings to stop comparing; comparison stops just before the

position specified by a limit. The “start” arguments default to zero (beginning

of string), and the “end” arguments (if either omitted or nil) default to the
lengths of the strings (end of string), so that by default the entirety of each

string is examined. These arguments are provided so that substrings can be

compared efficiently. The index returned in case of a mismatch is an index

into string1.

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).
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[Function]string-lessp string1 string2 &key :start1 :end1

:start2 :end2

[Function]string-greaterp string1 string2 &key :start1 :end1

:start2 :end2

[Function]string-not-greaterp string1 string2 &key :start1 :end1

:start2 :end2

[Function]string-not-lessp string1 string2 &key :start1 :end1

:start2 :end2

[Function]string-not-equal string1 string2 &key :start1 :end1

:start2 :end2

These are exactly like string<, string>, string<UU, string>UU, and string/UU,
respectively, except that distinctions between uppercase and lowercase letters

are ignored. It is as if char-lessp were used instead of char< for comparing

characters.

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).

18.3. String Construction and Manipulation

Most of the interesting operations on strings may be performed with the

generic sequence functions described in chapter 14. The following functions

perform additional operations that are specific to strings.

Note that this remark, predating the design of the Common Lisp Object

System, uses the term “generic” in a generic sense and not necessarily in the

technical sense used by CLOS (see chapter 2).

[Function]make-string size &key :initial-element
........................................................................................................................................................................................................

This returns a string (in fact a simple string) of length size, each of whose

characters has been initialized to the :initial-element argument. If an

:initial-elementargument is not specified, then the string will be initialized

in an implementation-dependent way.

Implementation note: It may be convenient to initialize the string to null char-
acters, or to spaces, or to garbage (“whatever was there”).

A string is really just a one-dimensional array of “string characters” (that

is, those characters that are members of type string-char). More complex

character arrays may be constructed using the function make-array.
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X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and to

add a keyword argument :element-type to make-string. The new function

description is as follows.

[Function]make-string size &key :initial-element :element-type

This returns a simple string of length size, each of whose characters has

been initialized to the :initial-element argument. If an :initial-

element argument is not specified, then the string will be initialized in an

implementation-dependent way.

The :element-type argument names the type of the elements of the string;

a string is constructed of the most specialized type that can accommodate
elements of the given type. If :element-type is omitted, the type character

is the default.

X3J13 voted in January 1989 〈7〉 to clarify that the size argument must be

a non-negative integer less than the value of array-dimension-limit.

[Function]string-trim character-bag string

[Function]string-left-trim character-bag string
[Function]string-right-trim character-bag string

string-trim returns a substring of string, with all characters in character-

bag stripped off the beginning and end. The function string-left-trim is
similar but strips characters off only the beginning; string-right-trim strips

off only the end. The argument character-bag may be any sequence containing

characters. For example:

(string-trim ’(#--\Space #--\Tab #--\Newline) " garbanzo beans

") ⇒ "garbanzo beans"

(string-trim " (*)" " ( *three (silly) words* ) ")

⇒ "three (silly) words"

(string-left-trim " (*)" " ( *three (silly) words* ) ")

⇒ "three (silly) words* ) "

(string-right-trim " (*)" " ( *three (silly) words* ) ")

⇒ " ( *three (silly) words"

If no characters need to be trimmed from the string, then either the argu-

ment string itself or a copy of it may be returned, at the discretion of the

implementation.

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).
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[Function]string-upcase string &key :start :end

[Function]string-downcase string &key :start :end

[Function]string-capitalize string &key :start :end

string-upcase returns a string just like string with all lowercase characters
replaced by the corresponding uppercase characters. More precisely, each

character of the result string is produced by applying the function char-

upcase to the corresponding character of string.

string-downcase is similar, except that uppercase characters are converted
to lowercase characters (using char-downcase).

The keyword arguments :start and :end delimit the portion of the string

to be affected. The result is always of the same length as string, however.

The argument is not destroyed. However, if no characters in the argument

require conversion, the result may be either the argument or a copy of it, at
the implementation’s discretion. For example:

(string-upcase "Dr. Livingstone, I presume?")

⇒ "DR. LIVINGSTONE, I PRESUME?"

(string-downcase "Dr. Livingstone, I presume?")

⇒ "dr. livingstone, i presume?"

(string-upcase "Dr. Livingstone, I presume?" :start 6 :end 10)

⇒ "Dr. LiVINGstone, I presume?"

string-capitalize produces a copy of string such that, for every word

in the copy, the first character of the word, if case-modifiable, is uppercase
and any other case-modifiable characters in the word are lowercase. For the

purposes of string-capitalize, a word is defined to be a consecutive sub-

sequence consisting of alphanumeric characters or digits, delimited at each

end either by a non-alphanumeric character or by an end of the string. For
example:

(string-capitalize " hello ") ⇒ " Hello "

(string-capitalize

"occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION")

⇒ "Occluded Casements Forestall Inadvertent Defenestration"

(string-capitalize ’kludgy-hash-search) ⇒ "Kludgy-Hash-Search"

(string-capitalize "DON’T!") ⇒ "Don’T!" ;not "Don’t!"

(string-capitalize "pipe 13a, foo16c") ⇒ "Pipe 13a, Foo16c"

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).

Compatibility note: Some very approximate Interlisp equivalents to string-
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upcase, string-downcase, and string-capitalize are u-case, l-case with second
argument nil, and l-case with second argument t.

[Function]nstring-upcase string &key :start :end

[Function]nstring-downcase string &key :start :end

[Function]nstring-capitalize string &key :start :end

These three functions are just like string-upcase, string-downcase, and

string-capitalize but destructively modify the argument string by altering

case-modifiable characters as necessary.
The keyword arguments :start and :end delimit the portion of the string

to be affected. The argument string is returned as the result.

[Function]string x

Most of the string functions effectively apply string to such of their argu-
ments as are supposed to be strings. If x is a string, it is returned. If x is a

symbol, its print name is returned.

If x is a string character (a character of type string-char), then a string
........................................................................................................................................................................................................

containing that one character is returned.
X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and

to redefine the type string to be the union of one or more specialized vec-

tor types, the types of whose elements are subtypes of the type character.

Presumably converting a character to a string always works according to this

vote.
In any other situation, an error is signaled.

To convert a sequence of characters to a string, use coerce. (Note that

(coerce x ’string) will not succeed if x is a symbol. Conversely, string

will not convert a list or other sequence to be a string.)
To get the string representation of a number or any other Lisp object, use

prin1-to-string, princ-to-string, or format.

X3J13 voted in June 1989 〈169〉 to specify that the following functions

perform coercion on their string arguments identical to that performed by the

function string.

stringUU string-equal string-trim

string< string-lessp string-left-trim

string> string-greaterp string-right-trim

string<UU string-not-greaterp string-upcase

string>UU string-not-lessp string-downcase

string/UU string-not-equal string-capitalize
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Note that nstring-upcase, nstring-downcase, and nstring-capitalize

are absent from this list; because they modify destructively, the argument

must be a string.

As part of the same vote X3J13 specified that string may perform addi-

tional implementation-dependent coercions but the returned value must be
of type string. Only when no coercion is defined, whether standard or

implementation-dependent, is string required to signal an error, in which

case the error condition must be of type type-error.
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Structures

Common Lisp provides a facility for creating named record structures with

named components. In effect, the user can define a new data type; every data

structure of that type has components with specified names. Constructor,

access, and assignment constructs are automatically defined when the data
type is defined.

This chapter is divided into two parts. The first part discusses the basics

of the structure facility, which is very simple and allows the user to take

advantage of the type-checking, modularity, and convenience of user-defined

record data types. The second part, beginning with section 19.5, discusses a

number of specialized features of the facility that have advanced applications.
These features are completely optional, and you needn’t even know they exist

in order to take advantage of the basics.

19.1. Introduction to Structures

The structure facility is embodied in the defstruct macro, which allows the

user to create and use aggregate data types with named elements. These are

like “structures” in PL/I, or “records” in Pascal.

As an example, assume you are writing a Lisp program that deals with space

ships in a two-dimensional plane. In your program, you need to represent a

space ship by a Lisp object of some kind. The interesting things about a
space ship, as far as your program is concerned, are its position (represented

as x and y coordinates), velocity (represented as components along the x and

y axes), and mass.

A ship might therefore be represented as a record structure with five compo-

nents: x-position, y-position, x-velocity, y-velocity, and mass. This structure

could in turn be implemented as a Lisp object in a number of ways. It could be

a list of five elements; the x-position could be the car, the y-position the cadr,

504
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and so on. Equally well it could be a vector of five elements: the x-position

could be element 0, the y-position element 1, and so on. The problem with

either of these representations is that the components occupy places in the

object that are quite arbitrary and hard to remember. Someone looking at

(cadddr ship1) or (aref ship1 3) in a piece of code might find it difficult
to determine that this is accessing the y-velocity component of ship1. More-

over, if the representation of a ship should have to be changed, it would be

very difficult to find all the places in the code to be changed to match (not

all occurrences of cadddr are intended to extract the y-velocity from a ship).

Ideally components of record structures should have names. One would

like to write something like (ship-y-velocity ship1) instead of (cadddr
ship1). One would also like a more mnemonic way to create a ship than this:

(list 0 0 0 0 0)

Indeed, one would like ship to be a new data type, just like other Lisp data

types, that one could test with typep, for example. The defstruct facility
provides all of this.

defstruct itself is a macro that defines a structure. For the space ship

example, one might define the structure by saying:

(defstruct ship

x-position

y-position

x-velocity

y-velocity

mass)

This declares that every ship is an object with five named components. The
evaluation of this form does several things:

. It defines ship-x-position to be a function of one argument, a ship, that

returns the x-position of the ship; ship-y-position and the other compo-
nents are given similar function definitions. These functions are called the

access functions, as they are used to access elements of the structure.

. The symbol ship becomes the name of a data type of which instances of

ships are elements. This name becomes acceptable to typep, for example;

(typep x ’ship) is true if x is a ship and false if x is any object other than

a ship.

. A function named ship-p of one argument is defined; it is a predicate that

is true if its argument is a ship and is false otherwise.
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. A function called make-ship is defined that, when invoked, will create a

data structure with five components, suitable for use with the access func-

tions. Thus executing

(setq ship2 (make-ship))

sets ship2 to a newly created ship object. One can specify the initial

values of any desired component in the call to make-ship by using keyword
arguments in this way:

(setq ship2 (make-ship :mass *default-ship-mass*

:x-position 0

:y-position 0))

This constructs a new ship and initializes three of its components. This
function is called the constructor function because it constructs a new struc-

ture.

. The #--S syntax can be used to read instances of ship structures, and a

printer function is provided for printing out ship structures. For example,

the value of the variable ship2 shown above might be printed as

#--S(ship x-position 0 y-position 0 x-velocity nil

y-velocity nil mass 170000.0)

. A function called copy-ship of one argument is defined that, when given a

ship object, will create a new ship object that is a copy of the given one.

This function is called the copier function.

. One may use setf to alter the components of a ship:

(setf (ship-x-position ship2) 100)

This alters the x-position of ship2 to be 100. This works because defstruct

behaves as if it generates an appropriate defsetf form for each access

function.

This simple example illustrates the power of defstruct to provide abstract

record structures in a convenient manner. defstruct has many other features

as well for specialized purposes.

19.2. How to Use Defstruct

All structures are defined through the defstruct construct. A call to

defstruct defines a new data type whose instances have named slots.
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[Macro]defstruct name-and-options [doc-string] {slot-description}+

X3J13 voted in June 1988 〈58〉 to allow a defstruct definition to have no
slot-description at all; in other words, the occurrence of {slot-description}+

in the preceding header line would be replaced by {slot-description}∗ .

Such structure definitions are particularly useful if the :include option

is used, perhaps with other options; for example, one can have two struc-

tures that are exactly alike except that they print differently (having different
:print-function options).

Implementors are encouraged to permit this simple extension as soon as

convenient. Users, however, may wish to maximize portability of their code

by avoiding the use of this extension unless and until it is adopted as part of

the ANSI standard.

This defines a record-structure data type. A general call to defstruct

looks like the following example.

(defstruct (name option-1 option-2 ... option-m)

doc-string

slot-description-1

slot-description-2
...

slot-description-n)

The name must be a symbol; it becomes the name of a new data type consist-

ing of all instances of the structure. The function typep will accept and use

this name as appropriate. The name is returned as the value of the defstruct

form.

Usually no options are needed at all. If no options are specified, then one
may write simply name instead of (name) after the word defstruct. The

syntax of options and the options provided are discussed in section 19.5.

If the optional documentation string doc-string is present, then it is at-

tached to the name as a documentation string of type structure; see

documentation.

Each slot-description-j is of the form

(slot-name default-init

slot-option-name-1 slot-option-value-1

slot-option-name-2 slot-option-value-2

...

slot-option-name-kj slot-option-value-kj)
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Each slot-name must be a symbol; an access function is defined for each slot.

If no options and no default-init are specified, then one may write simply

slot-name instead of (slot-name) as the slot description.

The default-init is a form that is evaluated each time a structure is to be
........................................................................................................................................................................................................

constructed; the value is used as the initial value of the slot.

X3J13 voted in October 1988 〈54〉 to clarify that a default-init form is eval-

uated only if the corresponding argument is not supplied to the constructor

function. The preceding sentence should therefore read as follows:

The default-init is a form that is evaluated each time its value is to be used
as the initial value of the slot.

If no default-init is specified, then the initial contents of the slot are unde-
fined and implementation-dependent. The available slot-options are described

in section 19.4.

Compatibility note: Slot-options are not currently provided in Lisp Machine Lisp,
but this is an upward-compatible extension.

X3J13 voted in January 1989 〈57〉 to specify that it is an error for two

slots to have the same name; more precisely, no two slots may have names for
whose print names stringUU would be true. Under this interpretation

(defstruct lotsa-slots slot slot)

obviously is incorrect but the following one is also in error, even assuming that

the symbols coin:slot and blot:slot really are distinct (non-eql) symbols:

(defstruct no-dice coin:slot blot:slot)

To illustrate another case, the first defstruct form below is correct, but the

second one is in error.

(defstruct one-slot slot)

(defstruct (two-slots (:include one-slot)) slot)

Rationale: Print names are the criterion for slot-names being the same, rather than
the symbols themselves, because defstruct constructs names of accessor functions
from the print names and interns the resulting new names in the current package.

X3J13 recommended that expanding a defstruct form violating this re-

striction should signal an error and noted, with an eye to the Common Lisp

Object System 〈12〉, that the restriction applies only to the operation of the
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defstruct macro as such and not to the structure-class or structures de-

fined with defclass.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms nor-

mally appear at top level, it is meaningful to place them in non-top-level

contexts; defstruct must treat slot default-init forms and any initialization
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forms within the specification of a by-position constructor function as occur-

ring within the enclosing lexical environment, not within the global environ-

ment.

defstruct not only defines an access function for each slot, but also ar-

ranges for setf to work properly on such access functions, defines a predicate
named name-p, defines a constructor function named make-name, and defines

a copier function named copy-name. All names of automatically created func-

tions are interned in whatever package is current at the time the defstruct

form is processed (see *package*). Also, all such functions may be declared
inline at the discretion of the implementation to improve efficiency; if you

do not want some function declared inline, follow the defstruct form with

a notinline declaration to override any automatic inline declaration.

X3J13 voted in January 1989 〈56〉 to specify that the results of redefining a

defstruct structure (that is, evaluating more than one defstruct structure
for the same name) are undefined.

The problem is that if instances have been created under the old definition

and then remain accessible after the new definition has been evaluated, the

accessors and other functions for the new definition may be incompatible with
the old instances. Conversely, functions associated with the old definition may

have been declared inline and compiled into code that remains accessible

after the new definition has been evaluated; such code may be incompatible

with the new instances.

In practice this restriction affects the development and debugging process
rather than production runs of fully developed code. The defstruct feature is

intended to provide “the most efficient” structure class. CLOS classes defined

by defclass allow much more flexible structures to be defined and redefined.

Programming environments are allowed and encouraged to permit
defstruct redefinition, perhaps with warning messages about possible inter-

actions with other parts of the programming environment or memory state.

It is beyond the scope of the Common Lisp language standard to define those

interactions except to note that they are not portable.

19.3. Using the Automatically Defined Constructor Func-
tion

After you have defined a new structure with defstruct, you can create

instances of this structure by using the constructor function. By default,

defstruct defines this function automatically. For a structure named foo,

the constructor function is normally named make-foo; you can specify a dif-

ferent name by giving it as the argument to the :constructor option, or
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specify that you don’t want a normal constructor function at all by using nil

as the argument (in which case one or more “by-position” constructors should

be requested; see section 19.6).

A call to a constructor function, in general, has the form

(name-of-constructor-function

slot-keyword-1 form-1

slot-keyword-2 form-2

...)

All arguments are keyword arguments. Each slot-keyword should be a key-
word whose name matches the name of a slot of the structure (defstruct

determines the possible keywords simply by interning each slot-name in the

keyword package). All the keywords and forms are evaluated. In short, it

is just as if the constructor function took all its arguments as &key parame-

ters. For example, the ship structure shown in section 19.1 has a constructor
function that takes arguments roughly as if its definition were

(defun make-ship (&key x-position y-position

x-velocity y-velocity mass)

...)

If slot-keyword-j names a slot, then that element of the created structure

will be initialized to the value of form-j. If no pair slot-keyword-j and form-j
is present for a given slot, then the slot will be initialized by evaluating the

default-init form specified for that slot in the call to defstruct. (In other

words, the initialization specified in the defstruct defers to any specified in

a call to the constructor function.) If the default initialization form is used,

it is evaluated at construction time, but in the lexical environment of the
defstruct form in which it appeared. If the defstruct itself also did not

specify any initialization, the element’s initial value is undefined. You should

always specify the initialization, either in the defstruct or in the call to the

constructor function, if you care about the initial value of the slot.

Each initialization form specified for a defstruct component, when used

by the constructor function for an otherwise unspecified component, is re-

evaluated on every call to the constructor function. It is as if the initialization
forms were used as init forms for the keyword parameters of the constructor

function. For example, if the form (gensym) were used as an initialization

form, either in the constructor-function call or as the default initialization

form in the defstruct form, then every call to the constructor function would

call gensym once to generate a new symbol.
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X3J13 voted in October 1988 〈54〉 to clarify that the default value in a

defstruct slot is not evaluated unless it is needed in the creation of a particular

structure instance. If it is never needed, there can be no type-mismatch error,

even if the type of the slot is specified, and no warning should be issued.

For example, in the following sequence only the last form is in error.

(defstruct person (name .007 :type string))

(make-person :name "James")

(make-person) ;Error to give name the value .007

19.4. Defstruct Slot-Options

Each slot-description in a defstruct form may specify one or more slot-

options. A slot-option consists of a pair of a keyword and a value (which is

not a form to be evaluated, but the value itself). For example:

(defstruct ship

(x-position 0.0 :type short-float)

(y-position 0.0 :type short-float)

(x-velocity 0.0 :type short-float)

(y-velocity 0.0 :type short-float)

(mass *default-ship-mass* :type short-float :read-only t))

This specifies that each slot will always contain a short-format floating-point

number, and that the last slot may not be altered once a ship is constructed.

The available slot-options are as follows.

:type

The option :type type specifies that the contents of the slot will always be
of the specified data type. This is entirely analogous to the declaration of a

variable or function; indeed, it effectively declares the result type of the access

function. An implementation may or may not choose to check the type of the

new object when initializing or assigning to a slot. Note that the argument

form type is not evaluated; it must be a valid type specifier.

:read-only

The option :read-only x, where x is not nil, specifies that this slot may not

be altered; it will always contain the value specified at construction time. setf
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will not accept the access function for this slot. If x is nil, this slot-option

has no effect. Note that the argument form x is not evaluated.

Note that it is impossible to specify a slot-option unless a default value is

specified first.

19.5. Defstruct Options

The preceding description of defstruct is all that the average user will need

(or want) to know in order to use structures. The remainder of this chapter

discusses more complex features of the defstruct facility.

This section explains each of the options that can be given to defstruct.

A defstruct option may be either a keyword or a list of a keyword and
arguments for that keyword. (Note that the syntax for defstruct options

differs from the pair syntax used for slot-options. No part of any of these

options is evaluated.)

:conc-name

This provides for automatic prefixing of names of access functions. It is con-

ventional to begin the names of all the access functions of a structure with a
specific prefix, the name of the structure followed by a hyphen. This is the

default behavior.

The argument to the :conc-name option specifies an alternative prefix to

be used. (If a hyphen is to be used as a separator, it must be specified as part

of the prefix.) If nil is specified as an argument, then no prefix is used; then

the names of the access functions are the same as the slot-names, and it is up
to the user to name the slots reasonably.

Note that no matter what is specified for :conc-name, with a constructor
function one uses slot keywords that match the slot-names, with no prefix

attached. On the other hand, one uses the access-function name when using

setf. Here is an example:

(defstruct door knob-color width material)

(setq my-door

(make-door :knob-color ’red :width 5.0))

(door-width my-door) ⇒ 5.0

(setf (door-width my-door) 43.7)

(door-width my-door) ⇒ 43.7

(door-knob-color my-door) ⇒ red
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:constructor

This option takes one argument, a symbol, which specifies the name of the
constructor function. If the argument is not provided or if the option itself

is not provided, the name of the constructor is produced by concatenating

the string "MAKE-" and the name of the structure, putting the name in what-

ever package is current at the time the defstruct form is processed (see
*package*). If the argument is provided and is nil, no constructor function

is defined.

This option actually has a more general syntax that is explained in sec-

tion 19.6.

:copier

This option takes one argument, a symbol, which specifies the name of the
copier function. If the argument is not provided or if the option itself is

not provided, the name of the copier is produced by concatenating the string

"COPY-" and the name of the structure, putting the name in whatever package

is current at the time the defstruct form is processed (see *package*). If

the argument is provided and is nil, no copier function is defined.

The automatically defined copier function simply makes a new structure

and transfers all components verbatim from the argument into the newly

created structure. No attempt is made to make copies of the components.

Corresponding components of the old and new structures will therefore be
eql.

:predicate

This option takes one argument, which specifies the name of the type predi-

cate. If the argument is not provided or if the option itself is not provided,

the name of the predicate is made by concatenating the name of the structure

to the string "-P", putting the name in whatever package is current at the
time the defstruct form is processed (see *package*). If the argument is

provided and is nil, no predicate is defined. A predicate can be defined only

if the structure is “named”; if the :type option is specified and the :named

option is not specified, then the :predicate option must either be unspecified
or have the value nil.

:include

This option is used for building a new structure definition as an extension

of an old structure definition. As an example, suppose you have a structure

called person that looks like this:
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(defstruct person name age sex)

Now suppose you want to make a new structure to represent an astronaut.
Since astronauts are people too, you would like them also to have the at-

tributes of name, age, and sex, and you would like Lisp functions that operate

on person structures to operate just as well on astronaut structures. You

can do this by defining astronaut with the :include option, as follows:

(defstruct (astronaut (:include person)

(:conc-name astro-))

helmet-size

(favorite-beverage ’tang))

The :include option causes the structure being defined to have the same

slots as the included structure. This is done in such a way that the access

functions for the included structure will also work on the structure being

defined. In this example, an astronaut will therefore have five slots: the
three defined in person and the two defined in astronaut itself. The access

functions defined by the person structure can be applied to instances of the

astronaut structure, and they will work correctly. Moreover, astronaut will

have its own access functions for components defined by the person structure.

The following examples illustrate how you can use astronaut structures:

(setq x (make-astronaut :name ’buzz

:age 45

:sex t

:helmet-size 17.5))

(person-name x) ⇒ buzz

(astro-name x) ⇒ buzz

(astro-favorite-beverage x) ⇒ tang

The difference between the access functions person-name and astro-name

is that person-name may be correctly applied to any person, including an

astronaut, while astro-namemay be correctly applied only to an astronaut.
(An implementation may or may not check for incorrect use of access func-

tions.)

At most one :include option may be specified in a single defstruct form.

The argument to the :include option is required and must be the name
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of some previously defined structure. If the structure being defined has no

:type option, then the included structure must also have had no :type option

specified for it. If the structure being defined has a :type option, then the

included structure must have been declared with a :type option specifying

the same representation type.
If no :type option is involved, then the structure name of the including

structure definition becomes the name of a data type, of course, and therefore

a valid type specifier recognizable by typep; moreover, it becomes a subtype

of the included structure. In the above example, astronaut is a subtype of
person; hence

(typep (make-astronaut) ’person)

is true, indicating that all operations on persons will also work on astronauts.

The following is an advanced feature of the :include option. Sometimes,
when one structure includes another, the default values or slot-options for

the slots that came from the included structure are not what you want. The

new structure can specify default values or slot-options for the included slots

different from those the included structure specifies, by giving the :include

option as

(:include name slot-description-1 slot-description-2 ...)

Each slot-description-j must have a slot-name or slot-keyword that is the same

as that of some slot in the included structure. If slot-description-j has no

default-init, then in the new structure the slot will have no initial value.
Otherwise its initial value form will be replaced by the default-init in slot-

description-j. A normally writable slot may be made read-only. If a slot is

read-only in the included structure, then it must also be so in the including

structure. If a type is specified for a slot, it must be the same as, or a subtype
of, the type specified in the included structure. If it is a strict subtype, the

implementation may or may not choose to error-check assignments.

For example, if we had wanted to define astronaut so that the default age

for an astronaut is 45, then we could have said:

(defstruct (astronaut (:include person (age 45)))

helmet-size

(favorite-beverage ’tang))

X3J13 voted in June 1988 〈41〉 to require any structure type created by

defstruct (or defclass) to be disjoint from any of the types cons, symbol,
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array, number, character, hash-table, readtable, package, pathname,

stream, and random-state. A consequence of this requirement is that it

is an error to specify any of these types, or any of their subtypes, to the

defstruct :include option. (The first edition said nothing explicitly about

this. Inasmuch as using such a type with the :include option was not de-
fined to work, one might argue that such use was an error in Common Lisp

as defined by the first edition.)

:print-function

This option may be used only if the :type option is not specified. The ar-
gument to the :print-function option should be a function of three argu-

ments, in a form acceptable to the function special form, to be used to print

structures of this type. When a structure of this type is to be printed, the

function is called on three arguments: the structure to be printed, a stream to

print to, and an integer indicating the current depth (to be compared against
*print-level*). The printing function should observe the values of such

printer-control variables as *print-escape* and *print-pretty*.

If the :print-function option is not specified and the :type option also

not specified, then a default printing function is provided for the structure

that will print out all its slots using #--S syntax (see section 22.1.4).

X3J13 voted in January 1989 〈143〉 to specify that user-defined printing

functions for the defstruct :print-function option may print objects to

the supplied stream using write, print1, princ, format, or print-object

and expect circularities to be detected and printed using #--n#-- syntax (when

*print-circle* is non-nil, of course). See *print-circle*.

X3J13 voted in January 1989 〈55〉 to clarify that if the :print-function

option is not specified but the :include option is specified, then the print

function is inherited from the included structure type. Thus, for example,

an astronaut will be printed by the same printing function that is used for

person.

X3J13 in the same vote extended the print-function option as follows:

If the print-function option is specified but with no argument, then the

standard default printing function (that uses #--S syntax) will be used. This

provides a means of overriding the inheritance rule. For example, if person

and astronaut had been defined as
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(defstruct (person

(:print-function ;Special print function

(lambda (p s k)

(format s "<~A, age ~D>"

(person-name p)

(person-age p)))))

name age sex)

(defstruct (astronaut

(:include person)

(:conc-name astro-)

(:print-function)) ;Use default print function

helmet-size

(favorite-beverage ’tang))

then an ordinary person would be printed as “<Joe Schmoe, age 27>” but

an astronaut would be printed as, for example,

#--S(ASTRONAUT NAME BUZZ AGE 45 SEX T

HELMET-SIZE 17.5 FAVORITE-BEVERAGE TANG)

using the default #--S syntax (yuk).

These changes make the behavior of defstruct with respect to the

:include option a bit more like the behavior of classes in CLOS.

:type

The :type option explicitly specifies the representation to be used for the
structure. It takes one argument, which must be one of the types enumerated

below.

Specifying this option has the effect of forcing a specific representation and

of forcing the components to be stored in the order specified in the defstruct

form in corresponding successive elements of the specified representation. It
also prevents the structure name from becoming a valid type specifier recog-

nizable by typep (see section 19.7).

Normally this option is not specified, in which case the structure is repre-

sented in an implementation-dependent manner.

vector

This produces the same result as specifying (vector t). The structure is

represented as a general vector, storing components as vector elements. The
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first component is vector element 1 if the structure is :named, and element

0 otherwise.

(vector element-type)

The structure is represented as a (possibly specialized) vector, storing com-
ponents as vector elements. Every component must be of a type that can

be stored in a vector of the type specified. The first component is vector

element 1 if the structure is :named, and element 0 otherwise. The struc-

ture may be :named only if the type symbol is a subtype of the specified
element-type.

list

The structure is represented as a list. The first component is the cadr if the

structure is :named, and the car if it is :unnamed.

:named

The :named option specifies that the structure is “named”; this option takes

no argument. If no :type option is specified, then the structure is always
named; so this option is useful only in conjunction with the :type option.

See section 19.7 for a further description of this option.

:initial-offset

This allows you to tell defstruct to skip over a certain number of slots before

it starts allocating the slots described in the body. This option requires an
argument, a non-negative integer, which is the number of slots you want

defstruct to skip. The :initial-offset option may be used only if the

:type option is also specified. See section 19.7.3 for a further description of

this option.

19.6. By-Position Constructor Functions

If the :constructor option is given as (:constructor name arglist), then

instead of making a keyword-driven constructor function, defstruct defines

a “positional” constructor function, taking arguments whose meaning is de-
termined by the argument’s position rather than by a keyword. The arglist is

used to describe what the arguments to the constructor will be. In the sim-

plest case something like (:constructor make-foo (a b c)) defines make-

foo to be a three-argument constructor function whose arguments are used

to initialize the slots named a, b, and c.
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In addition, the keywords &optional, &rest, and &aux are recognized in

the argument list. They work in the way you might expect, but there are a

few fine points worthy of explanation. Consider this example:

(:constructor create-foo

(a &optional b (c ’sea) &rest d &aux e (f ’eff)))

This defines create-foo to be a constructor of one or more arguments. The

first argument is used to initialize the a slot. The second argument is used
to initialize the b slot. If there isn’t any second argument, then the default

value given in the body of the defstruct (if given) is used instead. The third

argument is used to initialize the c slot. If there isn’t any third argument, then

the symbol sea is used instead. Any arguments following the third argument

are collected into a list and used to initialize the d slot. If there are three or
fewer arguments, then nil is placed in the d slot. The e slot is not initialized;

its initial value is undefined. Finally, the f slot is initialized to contain the

symbol eff.

The actions taken in the b and e cases were carefully chosen to allow the
user to specify all possible behaviors. Note that the &aux “variables” can be

used to completely override the default initializations given in the body.

With this definition, one can write

(create-foo 1 2)

instead of

(make-foo :a 1 :b 2)

and of course create-foo provides defaulting different from that of make-foo.

It is permissible to use the :constructor option more than once, so that

you can define several different constructor functions, each taking different
parameters.

Because a constructor of this type operates By Order of Arguments, it is

sometimes known as a BOA constructor.

X3J13 voted in January 1989 〈53〉 to allow &key and &allow-other-keys

in the parameter list of a “positional” constructor. The initialization of slots
corresponding to keyword parameters is performed in the same manner as for

&optional parameters. A variant of the example shown above illustrates this:

(:constructor create-foo

(a &optional b (c ’sea)

&key p (q ’cue) ((:why y)) ((:you u) ’ewe)

&aux e (f ’eff)))
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The treatment of slots a, b, c, e, and f is the same as in the original example.

In addition, if there is a :p keyword argument, it is used to initialize the p

slot; if there isn’t any :p keyword argument, then the default value given in

the body of the defstruct (if given) is used instead. Similarly, if there is a

:q keyword argument, it is used to initialize the q slot; if there isn’t any :q

keyword argument, then the symbol cue is used instead.

In order thoroughly to flog this presumably already dead horse, we further
observe that if there is a :why keyword argument, it is used to initialize the y

slot; otherwise the default value for slot y is used instead. Similarly, if there

is a :you keyword argument, it is used to initialize the u slot; otherwise the

symbol ewe is used instead.

If memory serves me correctly, defstruct was included in the original de-

sign for Common Lisp some time before keyword arguments were approved.
The failure of positional constructors to accept keyword arguments may well

have been an oversight on my part; there is no logical reason to exclude them.

I am grateful to X3J13 for rectifying this.

A remaining difficulty is that the possibility of keyword arguments renders

the term “positional constructor” a misnomer. Worse yet, it ruins the term

“BOA constructor.” I suggest that they continue to be called BOA construc-
tors, as I refuse to abandon a good pun. (I regret appearing to have more

compassion for puns than for horses.)

As part of the same vote X3J13 also changed defstruct to allow BOA

constructors to have parameters (including supplied-p parameters) that do

not correspond to any slot. Such parameters may be used in subsequent

initialization forms in the parameter list. Consider this example:

(defstruct (ice-cream-factory

(:constructor fabricate-factory

(&key (capacity 5)

location

(local-flavors

(case location

((hawaii) ’(pineapple macadamia guava))

((massachusetts) ’(lobster baked-bean))

((california) ’(ginger lotus avocado

bean-sprout garlic))

((texas) ’(jalapeno barbecue))))
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(flavors (subseq (append local-flavors

’(vanilla

chocolate

strawberry

pistachio

maple-walnut

peppermint))

0 capacity)))))

(capacity 3)

(flavors ’(vanilla chocolate strawberry mango)))

The structure type ice-cream-factory has two constructors. The stan-
dard constructor, make-ice-cream-factory, takes two keyword arguments

named :capacity and :flavors. For this constructor, the default for the

capacity slot is 3 and the default list of flavors is America’s favorite three-

some and a dark horse (not a dead one). The BOA constructor fabricate-

factory accepts four different keyword arguments. The :capacity argument
defaults to 5, and the :flavors argument defaults in a complicated manner

based on the other three. The :local-flavors argument may be specified

directly, or may be allowed to default based on the :location of the factory.

Here are examples of various factories:

(setq houston (fabricate-factory :capacity 4 :location ’texas))

(setq cambridge (fabricate-factory :location ’massachusetts))

(setq seattle (fabricate-factory :local-flavors ’(salmon)))

(setq wheaton (fabricate-factory :capacity 4 :location ’illinois))

(setq pittsburgh (fabricate-factory :capacity 4))

(setq cleveland (make-factory :capacity 4))

(ice-cream-factory-flavors houston)

⇒ (jalapeno barbecue vanilla chocolate)
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(ice-cream-factory-flavors cambridge)

⇒ (lobster baked-bean vanilla chocolate strawberry)

(ice-cream-factory-flavors seattle)

⇒ (salmon vanilla chocolate strawberry pistachio)

(ice-cream-factory-flavors wheaton)

⇒ (vanilla chocolate strawberry pistachio)

(ice-cream-factory-flavors pittsburgh)

⇒ (vanilla chocolate strawberry pistachio)

(ice-cream-factory-flavors cleveland)

⇒ (vanilla chocolate strawberry mango)

19.7. Structures of Explicitly Specified Representational
Type

Sometimes it is important to have explicit control over the representation of

a structure. The :type option allows one to specify that a structure must
be implemented in a particular way, using a list or a specific kind of vector,

and to specify the exact allocation of structure slots to components of the

representation. A structure may also be “unnamed” or “named,” according

to whether the structure name is stored in (and thus recoverable from) the

structure.

19.7.1. Unnamed Structures

Sometimes a particular data representation is imposed by external require-
ments, and yet it is desirable to document the data format as a defstruct-

style structure. For example, consider expressions built up from numbers,

symbols, and binary operations such as + and *. An operation might be rep-

resented as it is in Lisp, as a list of the operator and the two operands. This
fact can be expressed succinctly with defstruct in this manner:

(defstruct (binop (:type list))

(operator ’? :type symbol)

operand-1

operand-2)
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This will define a constructor function make-binop and three selector func-

tions, namely binop-operator, binop-operand-1, and binop-operand-2.

(It will not, however, define a predicate binop-p, for reasons explained be-

low.)

The effect of make-binop is simply to construct a list of length 3:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5)

⇒ (+ x 5)

(make-binop :operand-2 4 :operator ’*)

⇒ (* nil 4)

It is just like the function list except that it takes keyword arguments and

performs slot defaulting appropriate to the binop conceptual data type. Sim-
ilarly, the selector functions binop-operator, binop-operand-1, and binop-

operand-2 are essentially equivalent to car, cadr, and caddr, respectively.

(They might not be completely equivalent because, for example, an imple-

mentation would be justified in adding error-checking code to ensure that the

argument to each selector function is a length-3 list.)

We speak of binop as being a “conceptual” data type because binop is

not made a part of the Common Lisp type system. The predicate typep

will not recognize binop as a type specifier, and type-of will return list

when given a binop structure. Indeed, there is no way to distinguish a data

structure constructed by make-binop from any other list that happens to have

the correct structure.

There is not even any way to recover the structure name binop from a

structure created by make-binop. This can be done, however, if the structure

is “named.”

19.7.2. Named Structures

A “named” structure has the property that, given an instance of the structure,

the structure name (that names the type) can be reliably recovered. For
structures defined with no :type option, the structure name actually becomes

part of the Common Lisp data-type system. The function type-of, when

applied to such a structure, will return the structure name as the type of the

object; the predicate typep will recognize the structure name as a valid type
specifier.

For structures defined with a :type option, type-of will return a type

specifier such as list or (vector t), depending on the type specified to the
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:type option. The structure name does not become a valid type specifier.

However, if the :named option is also specified, then the first component of

the structure (as created by a defstruct constructor function) will always

contain the structure name. This allows the structure name to be recovered

from an instance of the structure and allows a reasonable predicate for the
conceptual type to be defined: the automatically defined name-p predicate

for the structure operates by first checking that its argument is of the proper

type (list, (vector t), or whatever) and then checking whether the first

component contains the appropriate type name.

Consider the binop example shown above, modified only to include the
:named option:

(defstruct (binop (:type list) :named)

(operator ’? :type symbol)

operand-1

operand-2)

As before, this will define a constructor function make-binop and three selec-

tor functions binop-operator, binop-operand-1, and binop-operand-2. It

will also define a predicate binop-p.

The effect of make-binop is now to construct a list of length 4:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5)

⇒ (binop + x 5)

(make-binop :operand-2 4 :operator ’*)

⇒ (binop * nil 4)

The structure has the same layout as before except that the structure name

binop is included as the first list element. The selector functions binop-

operator, binop-operand-1, and binop-operand-2 are essentially equiva-

lent to cadr, caddr, and cadddr, respectively. The predicate binop-p is

more or less equivalent to the following definition.

(defun binop-p (x)

(and (consp x) (eq (car x) ’binop)))

The name binop is still not a valid type specifier recognizable to typep, but

at least there is a way of distinguishing binop structures from other similarly

defined structures.
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19.7.3. Other Aspects of Explicitly Specified Structures

The :initial-offset option allows one to specify that slots be allocated

beginning at a representational element other than the first. For example, the
form

(defstruct (binop (:type list) (:initial-offset 2))

(operator ’? :type symbol)

operand-1

operand-2)

would result in the following behavior for make-binop:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5)

⇒ (nil nil + x 5)

(make-binop :operand-2 4 :operator ’*)

⇒ (nil nil * nil 4)

The selectors binop-operator, binop-operand-1, and binop-operand-2

would be essentially equivalent to caddr, cadddr, and car of cddddr, re-

spectively. Similarly, the form

(defstruct (binop (:type list) :named (:initial-offset 2))

(operator ’? :type symbol)

operand-1

operand-2)

would result in the following behavior for make-binop:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5)

⇒ (nil nil binop + x 5)

(make-binop :operand-2 4 :operator ’*)

⇒ (nil nil binop * nil 4)

If the :include is used with the :type option, then the effect is first to

skip over as many representation elements as needed to represent the in-

cluded structure, then to skip over any additional elements specified by the

:initial-offset option, and then to begin allocation of elements from that
point. For example:

(defstruct (binop (:type list) :named (:initial-offset 2))

(operator ’? :type symbol)
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operand-1

operand-2)

(defstruct (annotated-binop (:type list)

(:initial-offset 3)

(:include binop))

commutative associative identity)

(make-annotated-binop :operator ’*

:operand-1 ’x

:operand-2 5

:commutative t

:associative t

:identity 1)

⇒ (nil nil binop * x 5 nil nil nil t t 1)

The first two nil elements stem from the :initial-offset of 2 in the defini-
tion of binop. The next four elements contain the structure name and three

slots for binop. The next three nil elements stem from the :initial-offset

of 3 in the definition of annotated-binop. The last three list elements contain

the additional slots for an annotated-binop.
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The Evaluator

The mechanism that executes Lisp programs is called the evaluator. More
precisely, the evaluator accepts a form and performs the computation specified

by the form. This mechanism is made available to the user through the

function eval.

The evaluator is typically implemented as an interpreter that traverses the

given form recursively, performing each step of the computation as it goes.

An interpretive implementation is not required, however. A permissible alter-
native approach is for the evaluator first to completely compile the form into

machine-executable code and then invoke the resulting code. This technique

virtually eliminates incompatibilities between interpreted and compiled code

but also renders the evalhook mechanism relatively useless. Various mixed

strategies are also possible. All of these approaches should produce the same
results when executing a correct program but may produce different results

for incorrect programs. For example, the approaches may differ as to when

macro calls are expanded; macro definitions should not depend on the time

at which they are expanded. Implementors should document the evaluation
strategy for each implementation.

20.1. Run-Time Evaluation of Forms

The function eval is the main user interface to the evaluator. Hooks are pro-

vided for user-supplied debugging routines to obtain control during the exe-

cution of an interpretive evaluator. The functions evalhook and applyhook

provide alternative interfaces to the evaluator mechanism for use by these

debugging routines.

528
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[Function]eval form

The form is evaluated in the current dynamic environment and a null lexical

environment. Whatever results from the evaluation is returned from the call
to eval.

Note that when you write a call to eval two levels of evaluation occur

on the argument form you write. First the argument form is evaluated, as
for arguments to any function, by the usual argument evaluation mechanism

(which involves an implicit use of eval). Then the argument is passed to the

eval function, where another evaluation occurs. For example:

(eval (list ’cdr (car ’((quote (a . b)) c)))) ⇒ b

The argument form (list ’cdr (car ’((quote (a . b)) c))) is evalu-

ated in the usual way to produce the argument (cdr (quote (a . b)));

this is then given to eval because eval is being called explicitly, and eval

evaluates its argument (cdr (quote (a . b))) to produce b.

If all that is required for some application is to obtain the current dynamic

value of a given symbol, the function symbol-value may be more efficient
than eval.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see sec-

tion 7.9.

[Variable]*evalhook*

[Variable]*applyhook*

If the value of *evalhook* is not nil, then eval behaves in a special way. The

non-nil value of *evalhook* should be a function that takes two arguments,

a form and an environment; this is called the eval hook function. When a

form is to be evaluated (any form at all, even a number or a symbol), whether
implicitly or via an explicit call to eval, no attempt is made to evaluate the

form. Instead, the hook function is invoked and is passed the form to be

evaluated as its first argument. The hook function is then responsible for

evaluating the form; whatever is returned by the hook function is assumed to
be the result of evaluating the form.

The variable *applyhook* is similar to *evalhook* but is used when a

function is about to be applied to arguments. If the value of *applyhook* is
not nil, then eval behaves in a special way.

The non-nil value of *applyhook* should be a function that takes three
........................................................................................................................................................................................................

arguments: a function, a list of arguments, and an environment; this is called

the apply hook function.
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X3J13 voted in January 1989 〈5〉 to revise the definition of *applyhook*.

Its value should be a function of two arguments, a function and a list of

arguments; no environment information is passed to an apply hook function.

This was simply a flaw in the first edition. Sorry about that.

When a function is about to be applied to a list of arguments, no attempt
is made to apply the function. Instead, the hook function is invoked and is

passed the function and the list of arguments as its first and second arguments.

The hook function is then responsible for evaluating the form; whatever is re-

turned by the hook function is assumed to be the result of evaluating the
form. The apply hook function is used only for application of ordinary func-

tions within eval. It is not used for applications via apply or funcall, for

applications by such functions as map or reduce, or for invocation of macro-

expansion functions by either eval or macroexpand.

X3J13 voted in June 1988 〈90〉 to specify that the value of *macroexpand-

hook* is first coerced to a function before being called as the expansion inter-

face hook. This vote made no mention of *evalhook* or *applyhook*, but
this may have been an oversight.

A proposal was submitted to X3J13 in September 1989 to specify that the
value of *evalhook* or *applyhook* is first coerced to a function before being

called. If this proposal is accepted, the value of either variable may be nil,

any other symbol, a lambda-expression, or any object of type function.

The last argument passed to either kind of hook function contains informa-

tion about the lexical environment in an implementation-dependent format.

These arguments are suitable for the functions evalhook, applyhook, and

macroexpand.

When either kind of hook function is invoked, both of the variables

*evalhook* and *applyhook* are rebound to the value nil around the in-

vocation of the hook function. This is so that the hook function will not be
invoked recursively on evaluations and applications that occur in the course

of executing the code of the hook function. The functions evalhook and

applyhook are useful for performing recursive evaluations and applications

within the hook function.

The hook feature is provided as an aid to debugging. The step facility is

implemented using this hook.

If a non-local exit causes a throw back to the top level of Lisp, perhaps

because an error could not be corrected, then *evalhook* and *applyhook*

are automatically reset to nil as a safety feature.
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[Function]evalhook form evalhookfn applyhookfn &optional env

[Function]applyhook function args evalhookfn applyhookfn &optional

env

The functions evalhook and applyhook are provided to make it easier to

exploit the hook feature.

In the case of evalhook, the form is evaluated. In the case of applyhook,

the function is applied to the list of arguments args. In either case, for the

duration of the operation the variable *evalhook* is bound to evalhookfn,

and *applyhook* is bound to applyhookfn. Furthermore, the env argument
is used as the lexical environment for the operation; env defaults to the null

environment. The check for a hook function is bypassed for the evaluation of

the form itself (for evalhook) or for the application of the function to the args

itself (for applyhook), but not for subsidiary evaluations and applications such

as evaluations of subforms. It is this one-shot bypass that makes evalhook

and applyhook so useful.

X3J13 voted in January 1989 〈5〉 to eliminate the optional env parameter to
applyhook, because it is not (and cannot) be useful. Any function that can be

applied carries its own environment and does not need another environment

to be specified separately. This was a flaw in the first edition.

Here is an example of a very simple tracing routine that uses just the

evalhook feature.

(defvar *hooklevel* 0)

(defun hook (x)

(let ((*evalhook* ’eval-hook-function))

(eval x)))

(defun eval-hook-function (form &rest env)

(let ((*hooklevel* (+ *hooklevel* 1)))

(format *trace-output* "~%~V@TForm: ~S"

(* *hooklevel* 2) form)

(let ((values (multiple-value-list

(evalhook form

#--’eval-hook-function

nil

env))))

(format *trace-output* "~%~V@TValue:~{ ~S~}"

(* *hooklevel* 2) values)

(values-list values))))
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Using these routines, one might see the following interaction:

(hook ’(cons (floor *print-base* 2) ’b))

Form: (CONS (FLOOR *PRINT-BASE* 2) (QUOTE B))

Form: (FLOOR *PRINT-BASE* 3)

Form: *PRINT-BASE*

Value: 10

Form: 3

Value: 3

Value: 3 1

Form: (QUOTE B)

Value: B

Value: (3 . B)

(3 . B)

[Function]constantp object

If the predicate constantp is true of an object, then that object, when con-

sidered as a form to be evaluated, always evaluates to the same thing; it is a

constant. This includes self-evaluating objects such as numbers, characters,
strings, bit-vectors, and keywords, as well as all constant symbols declared by

defconstant, such as nil, t, and pi. In addition, a list whose car is quote,

such as (quote foo), is considered to be a constant.

If constantp is false of an object, then that object, considered as a form,

might or might not always evaluate to the same thing.

20.2. The Top-Level Loop

Normally one interacts with Lisp through a “top-level read-eval-print loop,”

so called because it is the highest level of control and consists of an endless
loop that reads an expression, evaluates it, and prints the results. One has

an effect on the state of the Lisp system only by invoking actions that have

side effects.

The precise nature of the top-level loop for Common Lisp is purposely not
rigorously specified here so that implementors can experiment to improve the

user interface. For example, an implementor may choose to require line-at-a-

time input, or may provide a fancy editor or complex graphics-display inter-

face. An implementor may choose to provide explicit prompts for input, or

may choose (as MacLisp does) not to clutter up the transcript with prompts.
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The top-level loop is required to trap all throws and recover gracefully. It is

also required to print all values resulting from evaluation of a form, perhaps

on separate lines. If a form returns zero values, as little as possible should be

printed.

The following variables are maintained by the top-level loop as a limited
safety net, in case the user forgets to save an interesting input expression or

output value. (Note that the names of some of these variables violate the

convention that names of global variables begin and end with an asterisk.)

These are intended primarily for user interaction, which is why they have
short names. Use of these variables should be avoided in programs.

[Variable]+

[Variable]++

[Variable]+++

While a form is being evaluated by the top-level loop, the variable + is bound

to the previous form read by the loop. The variable ++ holds the previous

value of + (that is, the form evaluated two interactions ago), and +++ holds

the previous value of ++.

[Variable]-

While a form is being evaluated by the top-level loop, the variable - is bound

to the form itself; that is, it is the value about to be given to + once this

interaction is done.

Notice of correction. In the first edition, the name of the variable - was
inadvertently omitted.

[Variable]*

[Variable]**

[Variable]***

While a form is being evaluated by the top-level loop, the variable * is bound

to the result printed at the end of the last time through the loop; that is,

it is the value produced by evaluating the form in +. If several values were

produced, * contains the first value only; * contains nil if zero values were
produced. The variable ** holds the previous value of * (that is, the result

printed two interactions ago), and *** holds the previous value of **.

If the evaluation of + is aborted for some reason, then the values associated

with *, **, and *** are not updated; they are updated only if the printing of

values is at least begun (though not necessarily completed).



534 COMMON LISP

[Variable]/

[Variable]//

[Variable]///

While a form is being evaluated by the top-level loop, the variable / is bound
to a list of the results printed at the end of the last time through the loop;

that is, it is a list of all values produced by evaluating the form in +. The

value of * should always be the same as the car of the value of /. The variable

// holds the previous value of / (that is, the results printed two interactions
ago), and /// holds the previous value of //. Therefore the value of ** should

always be the same as the car of //, and similarly for *** and ///.

If the evaluation of + is aborted for some reason, then the values associated

with /, //, and /// are not updated; they are updated only if the printing of

values is at least begun (though not necessarily completed).

As an example of the processing of these variables, consider the following

possible transcript, where > is a prompt by the top-level loop for user input:

>(cons - -) ;Interaction 1

((CONS - -) CONS - -) ;Cute, huh?

>(values) ;Interaction 2

;Nothing to print

>(cons ’a ’b) ;Interaction 3

(A . B) ;There is a single value

>(hairy-loop) Ĝ ;Interaction 4

#--#--#-- QUIT to top level. ;(User aborts the computation.)

>(floor 13 4) ;Interaction 5
3 ;There are two values

1

At this point we have:

+++ ⇒ (cons ’a ’b) *** ⇒ NIL /// ⇒ ()

++ ⇒ (hairy-loop) ** ⇒ (A . B) // ⇒ ((A . B))

+ ⇒ (floor 13 4) * ⇒ 3 / ⇒ (3 1)
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Streams

Streams are objects that serve as sources or sinks of data. Character streams

produce or absorb characters; binary streams produce or absorb integers. The
normal action of a Common Lisp system is to read characters from a character

input stream, parse the characters as representations of Common Lisp data

objects, evaluate each object (as a form) as it is read, and print representations

of the results of evaluation to an output character stream.

Typically streams are connected to files or to an interactive terminal.

Streams, being Lisp objects, serve as the ambassadors of external devices
by which input/output is accomplished.

A stream, whether a character stream or a binary stream, may be input-
only, output-only, or bidirectional. What operations may be performed on a

stream depends on which of the six types of stream it is.

21.1. Standard Streams

There are several variables whose values are streams used by many functions in

the Lisp system. These variables and their uses are listed here. By convention,

variables that are expected to hold a stream capable of input have names

ending with -input, and variables that are expected to hold a stream capable

of output have names ending with -output. Variables expected to hold a
bidirectional stream have names ending with -io.

[Variable]*standard-input*

In the normal Lisp top-level loop, input is read from *standard-input* (that

is, whatever stream is the value of the global variable *standard-input*).

Many input functions, including read and read-char, take a stream argument

that defaults to *standard-input*.

535
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[Variable]*standard-output*

In the normal Lisp top-level loop, output is sent to *standard-output* (that

is, whatever stream is the value of the global variable *standard-output*).

Many output functions, including print and write-char, take a stream ar-
gument that defaults to *standard-output*.

[Variable]*error-output*

The value of *error-output* is a stream to which error messages should

be sent. Normally this is the same as *standard-output*, but *standard-

output* might be bound to a file and *error-output* left going to the

terminal or to a separate file of error messages.

[Variable]*query-io*

The value of *query-io* is a stream to be used when asking questions of the

user. The question should be output to this stream, and the answer read from

it. When the normal input to a program may be coming from a file, questions

such as “Do you really want to delete all of the files in your directory?” should

nevertheless be sent directly to the user; and the answer should come from
the user, not from the data file. For such purposes *query-io* should be

used instead of *standard-input* and *standard-output*. *query-io* is

used by such functions as yes-or-no-p.

[Variable]*debug-io*

The value of *debug-io* is a stream to be used for interactive debugging
purposes. This is often the same as the value of *query-io*, but need not

be.

[Variable]*terminal-io*

The value of *terminal-io* is ordinarily the stream that connects to the

user’s console. Typically, writing to this stream would cause the output to

appear on a display screen, for example, and reading from the stream would
accept input from a keyboard.

It is intended that standard input functions such as read and read-char,

when used with this stream, would cause “echoing” of the input into the

output side of the stream. (The means by which this is accomplished are of

course highly implementation-dependent.)
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[Variable]*trace-output*

The value of *trace-output* is the stream on which the trace function

prints its output.

The variables *standard-input*, *standard-output*, *error-output*,

*trace-output*, *query-io*, and *debug-io* are initially bound to syn-
onym streams that pass all operations on to the stream that is the value

of *terminal-io*. (See make-synonym-stream.) Thus any operations per-

formed on those streams will go to the terminal.

X3J13 voted in January 1989 〈165〉 to replace the requirements of the pre-
ceding paragraph with the following new requirements:

The seven standard stream variables, *standard-input*, *standard-

output*, *query-io*, *debug-io*, *terminal-io*, *error-output*, and

*trace-output*, are initially bound to open streams. (These will be called
the standard initial streams.)

The streams that are the initial values of *standard-input*, *query-io*,

*debug-io*, and *terminal-io* must support input.

The streams that are the initial values of *standard-output*, *error-
output*, *trace-output*, *query-io*, *debug-io*, and *terminal-io*

must support output.

None of the standard initial streams (including the one to which *terminal-

io* is initially bound) may be a synonym, either directly or indirectly, for any
of the standard stream variables except *terminal-io*. For example, the ini-

tial value of *trace-output* may be a synonym stream for *terminal-io*

but not a synonym stream for *standard-output* or *query-io*. (These

are examples of direct synonyms.) As another example, *query-io* may
be a two-way stream or echo stream whose input component is a synonym

for *terminal-io*, but its input component may not be a synonym for

*standard-input* or *debug-io*. (These are examples of indirect syn-

onyms.)

Any or all of the standard initial streams may be direct or indirect synonyms

for one or more common implementation-dependent streams. For example,

the standard initial streams might all be synonym streams (or two-way or

echo streams whose components are synonym streams) to a pair of hidden

terminal input and output streams maintained by the implementation.

Part of the intent of these rules is to ensure that it is always safe to bind

any standard stream variable to the value of any other standard stream vari-

able (that is, unworkable circularities are avoided) without unduly restricting

implementation flexibility.
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No user program should ever change the value of *terminal-io*. A pro-

gram that wants (for example) to divert output to a file should do so by

binding the value of *standard-output*; that way error messages sent to

*error-output* can still get to the user by going through *terminal-io*,

which is usually what is desired.

21.2. Creating New Streams

Perhaps the most important constructs for creating new streams are those that

open files; see with-open-file and open. The following functions construct

streams without reference to a file system.

[Function]make-synonym-stream symbol

make-synonym-stream creates and returns a synonym stream. Any opera-

tions on the new stream will be performed on the stream that is then the
value of the dynamic variable named by the symbol. If the value of the vari-

able should change or be bound, then the synonym stream will operate on the

new stream.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-

synonym-stream is always a stream of type synonym-stream. Note that the

type of a synonym stream is always synonym-stream, regardless of the type

of the stream for which it is a synonym.

[Function]make-broadcast-stream &rest streams

This returns a stream that works only in the output direction. Any output

sent to this stream will be sent to all of the streams given. The set of operations
that may be performed on the new stream is the intersection of those for the

given streams. The results returned by a stream operation are the values

resulting from performing the operation on the last stream in streams; the

results of performing the operation on all preceding streams are discarded. If

no streams are given as arguments, then the result is a “bit sink”; all output
to the resulting stream is discarded.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-

broadcast-stream is always a stream of type broadcast-stream.

[Function]make-concatenated-stream &rest streams

This returns a stream that works only in the input direction. Input is taken

from the first of the streams until it reaches end-of-file; then that stream is
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discarded, and input is taken from the next of the streams, and so on. If no

arguments are given, the result is a stream with no content; any input attempt

will result in end-of-file.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-

concatenated-stream is always a stream of type concatenated-stream.

[Function]make-two-way-stream input-stream output-stream

This returns a bidirectional stream that gets its input from input-stream and

sends its output to output-stream.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-two-
way-stream is always a stream of type two-way-stream.

[Function]make-echo-stream input-stream output-stream

This returns a bidirectional stream that gets its input from input-stream and
sends its output to output-stream. In addition, all input taken from input-

stream is echoed to output-stream.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-echo-

stream is always a stream of type echo-stream.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of read-char,
unread-char, and peek-char with echo streams. (See the descriptions of

those functions for details.)

X3J13 explicitly noted that the bidirectional streams that are the initial

values of *query-io*, *debug-io*, and *terminal-io*, even though they
may have some echoing behavior, conceptually are not necessarily the prod-

ucts of calls to make-echo-stream and therefore are not subject to the new

rules about echoing on echo streams. Instead, these initial interactive streams

may have implementation-dependent echoing behavior.

[Function]make-string-input-stream string &optional start end

This returns an input stream. The input stream will supply, in order, the

characters in the substring of string delimited by start and end; after the last

character has been supplied, the stream will then be at end-of-file.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-

string-input-stream is always a stream of type string-stream.

[Function]make-string-output-stream
........................................................................................................................................................................................................

This returns an output stream that will accumulate all output given it for the

benefit of the function get-output-stream-string.
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X3J13 voted in June 1989 〈122〉 to let make-string-output-stream take

an :element-type argument.

[Function]make-string-output-stream &key :element-type

This returns an output stream that will accumulate all output given it for the

benefit of the function get-output-stream-string.

The :element-type argument specifies what characters must be accepted

by the created stream. If the :element-type argument is omitted, the created

stream must accept all characters.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-

string-output-stream is always a stream of type string-stream.

[Function]get-output-stream-string string-output-stream

Given a stream produced by make-string-output-stream, this returns a
string containing all the characters output to the stream so far. The stream

is then reset; thus each call to get-output-stream-string gets only the

characters since the last such call (or the creation of the stream, if no such

previous call has been made).

[Macro]with-open-stream (var stream) {declaration}∗ { form}∗

The form stream is evaluated and must produce a stream. The variable var

is bound with the stream as its value, and then the forms of the body are
executed as an implicit progn; the results of evaluating the last form are

returned as the value of the with-open-stream form. The stream is auto-

matically closed on exit from the with-open-stream form, no matter whether

the exit is normal or abnormal; see close. The stream should be regarded as

having dynamic extent.

X3J13 voted in January 1989 〈167〉 to specify that the stream created by
with-open-stream is always of type file-stream.

[Macro]with-input-from-string (var string {keyword value}∗ )
{declaration}∗ { form}∗

The body is executed as an implicit progn with the variable var bound to a

character input stream that supplies successive characters from the value of

the form string. with-input-from-string returns the results from the last

form of the body.
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The input stream is automatically closed on exit from the with-input-

from-string form, no matter whether the exit is normal or abnormal. The

stream should be regarded as having dynamic extent.

X3J13 voted in January 1989 〈167〉 to specify that the stream created by

with-input-from-string is always of type string-stream.

The following keyword options may be used:

:index

The form after the :index keyword should be a place acceptable to setf. If

the with-input-from-string form is exited normally, then the place will

have stored into it the index into the string indicating the first character

not read (the length of the string if all characters were used). The place is
not updated as reading progresses, but only at the end of the operation.

:start

The :start keyword takes an argument indicating, in the manner usual for

sequence functions, the beginning of a substring of string to be used.

:end

The :end keyword takes an argument indicating, in the manner usual for

sequence functions, the end of a substring of string to be used.

Here is an example of the use of with-input-from-string:

(with-input-from-string (s "Animal Crackers" :index j :start 6)

(read s)) ⇒ crackers

As a side effect, the variable j is set to 15.

The :start and :index keywords may both specify the same variable,

which is a pointer within the string to be advanced, perhaps repeatedly by

some containing loop.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section

7.9.

........................................................................................................................................................................................................

[Macro]with-output-to-string (var [string] ) {declaration}∗ { form}∗

The body is executed as an implicit progn with the variable var bound to a

character output stream. All output to that stream is saved in a string. This
may be done in one of two ways.

If no string argument is provided, then the value of with-output-from-

string is a string containing all the collected output.
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If string is specified, it must be a string with a fill pointer; the output

is incrementally appended to the string, as if using vector-push-extend if

the string is adjustable, and otherwise as if using vector-push. In this case

with-output-to-string returns the results from the last form of the body.

In either case, the output stream is automatically closed on exit from the
with-output-from-string form, no matter whether the exit is normal or

abnormal. The stream should be regarded as having dynamic extent.

X3J13 voted in June 1989 〈122〉 to let with-output-to-string take an

:element-type argument.

[Macro]with-output-to-string (var [string [:element-type type] ] )

{declaration}∗ { form}∗

One may specify nil instead of a string as the string and use the :element-

type argument to specify what characters must be accepted by the created

stream. If no string argument is provided, or if it is nil and no :element-

type is specified, the created stream must accept all characters.
X3J13 voted in October 1988 〈185〉 to specify that if string is specified, it

must be a string with a fill pointer; the output is incrementally appended to

the string (as if by use of vector-push-extend).

In this way output cannot be accidentally lost. This change makes with-

output-to-string behave in the same way that format does when given a
string as its first argument.

X3J13 voted in January 1989 〈167〉 to specify that the stream created by

with-output-to-string is always of type string-stream.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section
7.9.

21.3. Operations on Streams

This section contains discussion of only those operations that are common to
all streams. Input and output is rather complicated and is discussed separately

in chapter 22. The interface between streams and the file system is discussed

in chapter 23.

[Function]streamp object

streamp is true if its argument is a stream, and otherwise is false.

(streamp x) ≡ (typep x ’stream)
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X3J13 voted in January 1989 〈15〉 to specify that streamp is unaffected by

whether its argument, if a stream, is open or closed. In either case it returns

true.

[Function]open-stream-p stream

X3J13 voted in January 1989 〈167〉 to add the predicate open-stream-p. It is
true if its argument (which must be a stream) is open, and otherwise is false.

A stream is always created open; it remains open until closed with the

close function. The macros with-open-stream, with-input-from-string,

with-output-to-string, and with-open-file automatically close the cre-
ated stream as control leaves their bodies, in effect imposing dynamic extent

on the openness of the stream.

[Function]input-stream-p stream

This predicate is true if its argument (which must be a stream) can handle
input operations, and otherwise is false.

[Function]output-stream-p stream

This predicate is true if its argument (which must be a stream) can handle

output operations, and otherwise is false.

[Function]stream-element-type stream

A type specifier is returned to indicate what objects may be read from or

written to the argument stream, which must be a stream. Streams created

by open will have an element type restricted to a subset of character or

integer, but in principle a stream may conduct transactions using any Lisp
objects.

[Function]close stream &key :abort

The argument must be a stream. The stream is closed. No further in-

put/output operations may be performed on it. However, certain inquiry
operations may still be performed, and it is permissible to close an already

closed stream.

X3J13 voted in January 1989 〈15〉 and revised the vote in March 1989 to

specify that if close is called on an open stream, the stream is closed and

t is returned; but if close is called on a closed stream, it succeeds without
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error and returns an unspecified value. (The rationale for not specifying the

value returned for a closed stream is that in some implementations closing

certain streams does not really have an effect on them—for example, closing

the *terminal-io* stream might not “really” close it—and it is not desirable

to force such implementations to keep otherwise unnecessary state. Portable
programs will of course not rely on such behavior.)

X3J13 also voted in January 1989 to specify exactly which inquiry functions
may be applied to closed streams:

streamp pathname-host namestring

pathname pathname-device file-namestring

truename pathname-directory directory-namestring

merge-pathnames pathname-name host-namestring

open pathname-type enough-namestring

probe-file pathname-version directory

See the individual descriptions of these functions for more information on how

they operate on closed streams.

X3J13 voted in January 1989 〈14〉 to clarify the effect of closing various

kinds of streams. First some terminology:

. A composite stream is one that was returned by a call to make-synonym-

stream, make-broadcast-stream, make-concatenated-stream, make-

two-way-stream, or make-echo-stream.

. The constituents of a composite stream are the streams that were given

as arguments to the function that constructed it or, in the case of make-

synonym-stream, the stream that is the symbol-value of the symbol that

was given as an argument. (The constituent of a synonym stream may
therefore vary over time.)

. A constructed stream is either a composite stream or one returned by a
call to make-string-input-stream, make-string-output-stream, with-

input-from-string, or with-output-to-string.

The effect of applying close to a constructed stream is to close that stream

only. No input/output operations are permitted on the constructed stream

once it has been closed (though certain inquiry functions are still permitted,
as described above).

Closing a composite stream has no effect on its constituents; any con-
stituents that are open remain open.

If a stream created by make-string-output-stream is closed, the result of

then applying get-output-stream-string to the stream is unspecified.
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If the :abort parameter is not nil (it defaults to nil), it indicates an

abnormal termination of the use of the stream. An attempt is made to clean

up any side effects of having created the stream in the first place. For example,

if the stream performs output to a file that was newly created when the stream

was created, then if possible the file is deleted and any previously existing file
is not superseded.

X3J13 voted in January 1989 〈167〉 to add the following accessor functions

for obtaining information about streams.

[Function]broadcast-stream-streams broadcast-stream

The argument must be of type broadcast-stream. A list of the constituent

output streams (whether open or not) is returned.

[Function]concatenated-stream-streams concatenated-stream

The argument must be of type concatenated-stream. A list of constituent

streams (whether open or not) is returned. This list represents the ordered
set of input streams from which the concatenated stream may yet read; the

stream from which it is currently reading is first in the list. The list may be

empty if no more streams remain to be read.

[Function]echo-stream-input-stream echo-stream

[Function]echo-stream-output-stream echo-stream

The argument must be of type echo-stream. The function echo-stream-

input-stream returns the constituent input stream; echo-stream-output-
stream returns the constituent output stream.

[Function]synonym-stream-symbol synonym-stream

The argument must be of type synonym-stream. This function returns the

symbol for whose value the synonym-stream is a synonym.

[Function]two-way-stream-input-stream two-way-stream
[Function]two-way-stream-output-stream two-way-stream

The argument must be of type two-way-stream. The function two-

way-stream-input-stream returns the constituent input stream; two-way-

stream-output-stream returns the constituent output stream.
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[Function]interactive-stream-p stream

X3J13 voted in June 1989 〈168〉 to add the predicate interactive-stream-

p, which returns t if the stream is interactive and otherwise returns nil. A

type-error error is signalled if the argument is not of type stream.
The precise meaning of interactive-stream-p is implementation-

dependent and may depend on the underlying operating system. The intent

is to distinguish between interactive and batch (background, command-file)

operations. Some characteristics that might distinguish a stream as interac-
tive:

. The stream is connected to a person (or the equivalent) in such a way that

the program can prompt for information and expect to receive input that

might depend on the prompt.

. The program is expected to prompt for input and to support “normal input

editing protocol” for that operating environment.

. A call to read-char might hang waiting for the user to type something
rather than quickly returning a character or an end-of-file indication.

The value of *terminal-io* might or might not be interactive.

[Function]stream-external-format stream

X3J13 voted in June 1989 〈122〉 to add the function stream-external-

format, which returns a specifier for the implementation-recognized scheme

used for representing characters in the argument stream. See the :external-

format argument to open.
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Input/Output

Common Lisp provides a rich set of facilities for performing input/output.

All input/output operations are performed on streams of various kinds. This

chapter is devoted to stream data transfer operations. Streams are discussed

in chapter 21, and ways of manipulating files through streams are discussed

in chapter 23.

While there is provision for reading and writing binary data, most of the

I/O operations in Common Lisp read or write characters. There are simple
primitives for reading and writing single characters or lines of data. The

format function can perform complex formatting of output data, directed by

a control string in manner similar to a Fortran FORMAT statement or a PL/I

PUT EDIT statement. The most useful I/O operations, however, read and
write printed representations of arbitrary Lisp objects.

22.1. Printed Representation of Lisp Objects

Lisp objects in general are not text strings but complex data structures. They

have very different properties from text strings as a consequence of their inter-
nal representation. However, to make it possible to get at and talk about Lisp

objects, Lisp provides a representation of most objects in the form of printed

text; this is called the printed representation, which is used for input/output

purposes and in the examples throughout this book. Functions such as print

take a Lisp object and send the characters of its printed representation to
a stream. The collection of routines that does this is known as the (Lisp)

printer. The read function takes characters from a stream, interprets them

as a printed representation of a Lisp object, builds that object, and returns

it; the collection of routines that does this is called the (Lisp) reader.

Ideally, one could print a Lisp object and then read the printed represen-

tation back in, and so obtain the same identical object. In practice this is

547
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difficult and for some purposes not even desirable. Instead, reading a printed

representation produces an object that is (with obscure technical exceptions)

equal to the originally printed object.

Most Lisp objects have more than one possible printed representation. For

example, the integer twenty-seven can be written in any of these ways:

27 27. #--o33 #--x1B #--b11011 #--.(* 3 3 3) 81/3

A list of two symbols A and B can be printed in many ways:

(A B) (a b) ( a b ) (\A |B|)

(|\A|

B

)

The last example, which is spread over three lines, may be ugly, but it is

legitimate. In general, wherever whitespace is permissible in a printed repre-
sentation, any number of spaces and newlines may appear.

When print produces a printed representation, it must choose arbitrarily

from among many possible printed representations. It attempts to choose one

that is readable. There are a number of global variables that can be used to

control the actions of print, and a number of different printing functions.
This section describes in detail what is the standard printed representation

for any Lisp object and also describes how read operates.

22.1.1. What the Read Function Accepts

The purpose of the Lisp reader is to accept characters, interpret them as

the printed representation of a Lisp object, and construct and return such

an object. The reader cannot accept everything that the printer produces;

for example, the printed representations of compiled code objects cannot be
read in. However, the reader has many features that are not used by the

output of the printer at all, such as comments, alternative representations,

and convenient abbreviations for frequently used but unwieldy constructs.

The reader is also parameterized in such a way that it can be used as a lexical

analyzer for a more general user-written parser.
The reader is organized as a recursive-descent parser. Broadly speaking, the

reader operates by reading a character from the input stream and treating it in

one of three ways. Whitespace characters serve as separators but are otherwise

ignored. Constituent and escape characters are accumulated to make a token,

which is then interpreted as a number or symbol. Macro characters trigger
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the invocation of functions (possibly user-supplied) that can perform arbitrary

parsing actions, including recursive invocation of the reader.

More precisely, when the reader is invoked, it reads a single character from

the input stream and dispatches according to the syntactic type of that char-

acter. Every character that can appear in the input stream must be of exactly

one of the following kinds: illegal, whitespace, constituent, single escape, mul-

tiple escape, or macro. Macro characters are further divided into the types
terminating and non-terminating (of tokens). (Note that macro characters

have nothing whatever to do with macros in their operation. There is a

superficial similarity in that macros allow the user to extend the syntax of

Common Lisp at the level of forms, while macro characters allow the user
to extend the syntax at the level of characters.) Constituents additionally

have one or more attributes, the most important of which is alphabetic; these

attributes are discussed further in section 22.1.2.

The parsing of Common Lisp expressions is discussed in terms of these

syntactic character types because the types of individual characters are not

fixed but may be altered by the user (see set-syntax-from-char and set-

macro-character). The characters of the standard character set initially

have the syntactic types shown in table 22-1. Note that the brackets, braces,

question mark, and exclamation point (that is, [, ], {, }, ?, and !) are

normally defined to be constituents, but they are not used for any purpose

in standard Common Lisp syntax and do not occur in the names of built-in
Common Lisp functions or variables. These characters are explicitly reserved

to the user. The primary intent is that they be used as macro characters; but

a user might choose, for example, to make ! be a single escape character (as

it is in Portable Standard Lisp).

The algorithm performed by the Common Lisp reader is roughly as follows:

1. If at end of file, perform end-of-file processing (as specified by the caller of

the read function). Otherwise, read one character from the input stream,

call it x, and dispatch according to the syntactic type of x to one of steps 2
to 7.

2. If x is an illegal character, signal an error.

3. If x is a whitespace character, then discard it and go back to step 1.

4. If x is a macro character (at this point the distinction between terminating

and non-terminating macro characters does not matter), then execute the

function associated with that character. The function may return zero

values or one value (see values).
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Table 22-1: Standard Character Syntax Types

〈tab〉 whitespace 〈page〉 whitespace 〈newline〉 whitespace
〈space〉 whitespace @ constituent ‘ terminating macro
! constituent * A constituent a constituent
" terminating macro B constituent b constituent
#-- non-terminating macro C constituent c constituent
$ constituent D constituent d constituent
% constituent E constituent e constituent
& constituent F constituent f constituent

’ terminating macro G constituent g constituent
( terminating macro H constituent h constituent
) terminating macro I constituent i constituent
* constituent J constituent j constituent
+ constituent K constituent k constituent
, terminating macro L constituent l constituent
- constituent M constituent m constituent
. constituent N constituent n constituent
/ constituent O constituent o constituent
0 constituent P constituent p constituent
1 constituent Q constituent q constituent
2 constituent R constituent r constituent
3 constituent S constituent s constituent
4 constituent T constituent t constituent
5 constituent U constituent u constituent
6 constituent V constituent v constituent
7 constituent W constituent w constituent
8 constituent X constituent x constituent
9 constituent Y constituent y constituent
: constituent Z constituent z constituent
; terminating macro [ constituent * { constituent *
< constituent \ single escape | multiple escape
UU constituent ] constituent * } constituent *
> constituent ^ constituent ~ constituent
? constituent * _ constituent 〈rubout〉 constituent
〈backspace〉 constituent 〈return〉 whitespace 〈linefeed〉 whitespace

The characters marked with an asterisk are initially constituents but are reserved
to the user for use as macro characters or for any other desired purpose.
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The macro-character function may of course read characters from the input

stream; if it does, it will see those characters following the macro character.

The function may even invoke the reader recursively. This is how the macro

character ( constructs a list: by invoking the reader recursively to read

the elements of the list.

If one value is returned, then return that value as the result of the read

operation; the algorithm is done. If zero values are returned, then go back

to step 1.

5. If x is a single escape character (normally \), then read the next character

and call it y (but if at end of file, signal an error instead). Ignore the

usual syntax of y and pretend it is a constituent whose only attribute is

alphabetic.

(If y is a lowercase character, leave it alone; do not replace it with the
........................................................................................................................................................................................................

corresponding uppercase character.)

For the purposes of readtable-case, y is not replaceable.

Use y to begin a token, and go to step 8.

6. If x is a multiple escape character (normally |), then begin a token (initially

containing no characters) and go to step 9.

7. If x is a constituent character, then it begins an extended token. After the
entire token is read in, it will be interpreted either as representing a Lisp

object such as a symbol or number (in which case that object is returned

as the result of the read operation), or as being of illegal syntax (in which

case an error is signaled).

If x is a lowercase character, replace it with the corresponding uppercase
........................................................................................................................................................................................................

character.

X3J13 voted in June 1989 〈150〉 to introduce readtable-case. Conse-

quently, the preceding sentence should be ignored. The case of x should
not be altered; instead, x should be regarded as replaceable.

Use x to begin a token, and go on to step 8.

8. (At this point a token is being accumulated, and an even number of mul-
tiple escape characters have been encountered.) If at end of file, go to

step 10. Otherwise, read a character (call it y), and perform one of the

following actions according to its syntactic type:

. If y is a constituent or non-terminating macro, then do the following.
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If y is a lowercase character, replace it with the corresponding uppercase
........................................................................................................................................................................................................

character.

X3J13 voted in June 1989 〈150〉 to introduce readtable-case. Conse-

quently, the preceding sentence should be ignored. The case of y should
not be altered; instead, y should be regarded as replaceable.

Append y to the token being built, and repeat step 8.

. If y is a single escape character, then read the next character and call it

z (but if at end of file, signal an error instead). Ignore the usual syntax

of z and pretend it is a constituent whose only attribute is alphabetic.

(If z is a lowercase character, leave it alone; do not replace it with the
........................................................................................................................................................................................................

corresponding uppercase character.)

For the purposes of readtable-case, z is not replaceable.

Append z to the token being built, and repeat step 8.

. If y is a multiple escape character, then go to step 9.

. If y is an illegal character, signal an error.

. If y is a terminating macro character, it terminates the token. First
“unread” the character y (see unread-char), then go to step 10.

. If y is a whitespace character, it terminates the token. First “unread” y
if appropriate (see read-preserving-whitespace), then go to step 10.

9. (At this point a token is being accumulated, and an odd number of multiple
escape characters have been encountered.) If at end of file, signal an error.

Otherwise, read a character (call it y), and perform one of the following

actions according to its syntactic type:

. If y is a constituent, macro, or whitespace character, then ignore the

usual syntax of that character and pretend it is a constituent whose

only attribute is alphabetic.

(If y is a lowercase character, leave it alone; do not replace it with the
........................................................................................................................................................................................................

corresponding uppercase character.)

For the purposes of readtable-case, y is not replaceable.

Append y to the token being built, and repeat step 9.

. If y is a single escape character, then read the next character and call it

z (but if at end of file, signal an error instead). Ignore the usual syntax

of z and pretend it is a constituent whose only attribute is alphabetic.
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(If z is a lowercase character, leave it alone; do not replace it with the
........................................................................................................................................................................................................

corresponding uppercase character.)

For the purposes of readtable-case, z is not replaceable.

Append z to the token being built, and repeat step 9.

. If y is a multiple escape character, then go to step 8.

. If y is an illegal character, signal an error.

10. An entire token has been accumulated.

X3J13 voted in June 1989 〈150〉 to introduce readtable-case. If the

accumulated token is to be interpreted as a symbol, any case conversion

of replaceable characters should be performed at this point according to

the value of the readtable-case slot of the current readtable (the value

of *readtable*).

Interpret the token as representing a Lisp object and return that object

as the result of the read operation, or signal an error if the token is not of

legal syntax.

X3J13 voted in March 1989 〈11〉 to specify that implementation-defined

attributes may be removed from the characters of a symbol token when

constructing the print name. It is implementation-dependent which at-

tributes are removed.

As a rule, a single escape character never stands for itself but always serves

to cause the following character to be treated as a simple alphabetic character.
A single escape character can be included in a token only if preceded by

another single escape character.

A multiple escape character also never stands for itself. The characters

between a pair of multiple escape characters are all treated as simple alpha-

betic characters, except that single escape and multiple escape characters must

nevertheless be preceded by a single escape character to be included.

Compatibility note: In MacLisp, the | character is implemented as a macro
character that reads characters up to the next unescaped | and then makes a token;
no characters are ever read beyond the second | of a matching pair. In Common
Lisp, the second | does not terminate the token being read but merely reverts to the
ordinary (rather than multiple-escape) mode of token accumulation. This results in
some differences in the way certain character sequences are interpreted. For example,
the sequence |foo||bar| would be read in MacLisp as two distinct tokens, |foo| and
|bar|, whereas in Common Lisp it would be treated as a single token equivalent to
|foobar|. The sequence |foo|bar|baz| would be read in MacLisp as three distinct
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tokens, |foo|, bar, and |baz|, whereas in Common Lisp it would be treated as a
single token equivalent to |fooBARbaz|; note that the middle three lowercase letters
are converted to uppercase letters as they do not fall within a matching pair of
vertical bars.

One reason for the different treatment of | in Common Lisp lies in the syntax
for package-qualified symbol names. A sequence such as |foo:bar| ought to be
interpreted as a symbol whose name is foo:bar; the colon should be treated as
a simple alphabetic character because it lies within a pair of vertical bars. The
symbol |bar| within the package |foo| can be notated not as |foo:bar| but as
|foo|:|bar|; the colon can serve as a package marker because it falls outside the
vertical bars, and yet the notation is treated as a single token thanks to the new
rules adopted in Common Lisp.

In MacLisp, the parentheses are treated as additional character types. In Common
Lisp they are simply macro characters, as described in section 22.1.3.

What MacLisp calls “single character objects” (tokens of type single) are not
provided for explicitly in Common Lisp. They can be viewed as simply a kind of
macro character. That is, the effect of

(setsyntax ’$ ’single nil)

(setsyntax ’% ’single nil)

in MacLisp can be achieved in Common Lisp by

(defun single-macro-character (stream char)

(declare (ignore stream))

(intern (string char)))

(set-macro-character ’$ #--’single-macro-character)
(set-macro-character ’% #--’single-macro-character)

22.1.2. Parsing of Numbers and Symbols

When an extended token is read, it is interpreted as a number or symbol.

In general, the token is interpreted as a number if it satisfies the syntax for

numbers specified in table 22-2; this is discussed in more detail below.
The characters of the extended token may serve various syntactic functions

as shown in table 22-3, but it must be remembered that any character included

in a token under the control of an escape character is treated as alphabetic

rather than according to the attributes shown in the table. One consequence of
this rule is that a whitespace, macro, or escape character will always be treated

as alphabetic within an extended token because such a character cannot be

included in an extended token except under the control of an escape character.

To allow for extensions to the syntax of numbers, a syntax for potential

numbers is defined in Common Lisp that is more general than the actual
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Table 22-2: Actual Syntax of Numbers

number ::= integer | ratio | floating-point-number

integer ::= [sign] {digit}+ [decimal-point ]

ratio ::= [sign] {digit}+ / {digit}+

floating-point-number ::= [sign] {digit}∗ decimal-point {digit}+ [exponent ]

| [sign] {digit}+ [decimal-point {digit}∗ ] exponent

sign ::= + | -
decimal-point ::= .

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
exponent ::= exponent-marker [sign] {digit}+

exponent-marker ::= e | s | f | d | l | E | S | F | D | L

syntax for numbers. Any token that is not a potential number and does not

consist entirely of dots will always be taken to be a symbol, now and in the

future; programs may rely on this fact. Any token that is a potential number

but does not fit the actual number syntax defined below is a reserved token
and has an implementation-dependent interpretation; an implementation may

signal an error, quietly treat the token as a symbol, or take some other action.

Programmers should avoid the use of such reserved tokens. (A symbol whose

name looks like a reserved token can always be written using one or more

escape characters.)

Just as bignum is the standard term used by Lisp implementors for very

large integers, and flonum (rhymes with “low hum”) refers to a floating-point

number, the term potnum has been used widely as an abbreviation for “po-

tential number.” “Potnum” rhymes with “hot rum.”

A token is a potential number if it satisfies the following requirements:

. It consists entirely of digits, signs (+ or -), ratio markers (/), decimal points

(.), extension characters (^ or _), and number markers. (A number marker

is a letter. Whether a letter may be treated as a number marker depends on

context, but no letter that is adjacent to another letter may ever be treated
as a number marker. Floating-point exponent markers are instances of

number markers.)

. It contains at least one digit. (Letters may be considered to be digits,

depending on the value of *read-base*, but only in tokens containing no

decimal points.)
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. It begins with a digit, sign, decimal point, or extension character.

. It does not end with a sign.

As examples, the following tokens are potential numbers, but they are not
actually numbers as defined below, and so are reserved tokens. (They do

indicate some interesting possibilities for future extensions.)

1b5000 777777q 1.7J -3/4+6.7J 12/25/83

27^19 3^4/5 6//7 3.1.2.6 ^-43^

3.141_592_653_589_793_238_4 -3.7+2.6i-6.17j+19.6k

The following tokens are not potential numbers but are always treated as

symbols:

/ /5 + 1+ 1-

foo+ ab.cd _ ^ ^/-

The following tokens are potential numbers if the value of *read-base* is 16

(an abnormal situation), but they are always treated as symbols if the value

of *read-base* is 10 (the usual value):

bad-face 25-dec-83 a/b fad_cafe f^

It is possible for there to be an ambiguity as to whether a letter should be

treated as a digit or as a number marker. In such a case, the letter is always
treated as a digit rather than as a number marker.

Note that the printed representation for a potential number may not contain

any escape characters. An escape character robs the following character of all

syntactic qualities, forcing it to be strictly alphabetic and therefore unsuitable

for use in a potential number. For example, all of the following representations

are interpreted as symbols, not numbers:

\256 25\64 1.0\E6 |100| 3\.14159 |3/4| 3\/4 5||

In each case, removing the escape character(s) would allow the token to be

treated as a number.

If a potential number can in fact be interpreted as a number according to
the BNF syntax in table 22-2, then a number object of the appropriate type is

constructed and returned. It should be noted that in a given implementation

it may be that not all tokens conforming to the actual syntax for numbers can

actually be converted into number objects. For example, specifying too large

or too small an exponent for a floating-point number may make the number
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Table 22-3: Standard Constituent Character Attributes

! alphabetic 〈page〉 illegal 〈backspace〉 illegal
" alphabetic * 〈return〉 illegal * 〈tab〉 illegal *
#-- alphabetic * 〈space〉 illegal * 〈newline〉 illegal *
$ alphabetic 〈rubout〉 illegal 〈linefeed〉 illegal *
% alphabetic . alphabetic, dot, decimal point
& alphabetic + alphabetic, plus sign

’ alphabetic * - alphabetic, minus sign
( alphabetic * * alphabetic
) alphabetic * / alphabetic, ratio marker
, alphabetic * @ alphabetic
0 alphadigit A, a alphadigit
1 alphadigit B, b alphadigit
2 alphadigit C, c alphadigit
3 alphadigit D, d alphadigit, double-float exponent marker
4 alphadigit E, e alphadigit, float exponent marker
5 alphadigit F, f alphadigit, single-float exponent marker
6 alphadigit G, g alphadigit
7 alphadigit H, h alphadigit
8 alphadigit I, i alphadigit
9 alphadigit J, j alphadigit
: package marker K, k alphadigit
; alphabetic * L, l alphadigit, long-float exponent marker
< alphabetic M, m alphadigit
UU alphabetic N, n alphadigit
> alphabetic O, o alphadigit
? alphabetic P, p alphadigit
[ alphabetic Q, q alphadigit
\ alphabetic * R, r alphadigit
] alphabetic S, s alphadigit, short-float exponent marker

^ alphabetic T, t alphadigit
_ alphabetic U, u alphadigit

‘ alphabetic * V, v alphadigit
{ alphabetic W, w alphadigit
| alphabetic * X, x alphadigit
} alphabetic Y, y alphadigit

~ alphabetic Z, z alphadigit
These interpretations apply only to characters whose syntactic type is constituent. Entries

marked with an asterisk are normally shadowed because the characters are of syntactic type

whitespace, macro, single escape, or multiple escape. An alphadigit character is interpreted

as a digit if it is a valid digit in the radix specified by *read-base*; otherwise it is

alphabetic. Characters with an illegal attribute can never appear in a token except under

the control of an escape character.
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impossible to represent in the implementation. Similarly, a ratio with denom-

inator zero (such as -35/000) cannot be represented in any implementation.

In any such circumstance where a token with the syntax of a number cannot

be converted to an internal number object, an error is signaled. (On the other

hand, an error must not be signaled for specifying too many significant dig-
its for a floating-point number; an appropriately truncated or rounded value

should be produced.)

There is an omission in the syntax of numbers as described in table 22-2, in
that the syntax does not account for the possible use of letters as digits. The

radix used for reading integers and ratios is normally decimal. However, this

radix is actually determined by the value of the variable *read-base*, whose

initial value is 10. *read-base* may take on any integral value between 2

and 36; let this value be n. Then a token x is interpreted as an integer or

ratio in base n if it could be properly so interpreted in the syntax #--nRx (see

section 22.1.4). So, for example, if the value of *read-base* is 16, then the

printed representation

(a small face in a bad place)

would be interpreted as if the following representation had been read with

*read-base* set to 10:

(10 small 64206 in 10 2989 place)

because four of the seven tokens in the list can be interpreted as hexadecimal

numbers. This facility is intended to be used in reading files of data that for
some reason contain numbers not in decimal radix; it may also be used for

reading programs written in Lisp dialects (such as MacLisp) whose default

number radix is not decimal. Non-decimal constants in Common Lisp pro-

grams or portable Common Lisp data files should be written using #--O, #--X, #--B,

or #--nR syntax.

When *read-base* has a value greater than 10, an ambiguity is introduced

into the actual syntax for numbers because a letter can serve as either a digit or
an exponent marker; a simple example is 1E0 when the value of *read-base*

is 16. The ambiguity is resolved in accordance with the general principle that

interpretation as a digit is preferred to interpretation as a number marker.

The consequence in this case is that if a token can be interpreted as either an

integer or a floating-point number, then it is taken to be an integer.

If a token consists solely of dots (with no escape characters), then an error is

signaled, except in one circumstance: if the token is a single dot and occurs in

a situation appropriate to “dotted list” syntax, then it is accepted as a part of
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such syntax. Signaling an error catches not only misplaced dots in dotted list

syntax but also lists that were truncated by *print-length* cutoff, because

such lists end with a three-dot sequence (...). Examples:

(a . b) ;A dotted pair of a and b

(a.b) ;A list of one element, the symbol named a.b

(a. b) ;A list of two elements a. and b

(a .b) ;A list of two elements a and .b

(a \. b) ;A list of three elements a, ., and b

(a |.| b) ;A list of three elements a, ., and b

(a \... b) ;A list of three elements a, ..., and b

(a |...| b) ;A list of three elements a, ..., and b

(a b . c) ;A dotted list of a and b with c at the end

.iot ;The symbol whose name is .iot

(. b) ;Illegal; an error is signaled

(a .) ;Illegal; an error is signaled
(a .. b) ;Illegal; an error is signaled

(a . . b) ;Illegal; an error is signaled

(a b c ...) ;Illegal; an error is signaled

In all other cases, the token is construed to be the name of a symbol. If

there are any package markers (colons) in the token, they divide the token

into pieces used to control the lookup and creation of the symbol.
If there is a single package marker, and it occurs at the beginning of the

........................................................................................................................................................................................................

token, then the token is interpreted as a keyword, that is, a symbol in the

keyword package. The part of the token after the package marker must not

have the syntax of a number.
If there is a single package marker not at the beginning or end of the token,

then it divides the token into two parts. The first part specifies a package;

the second part is the name of an external symbol available in that package.

Neither of the two parts may have the syntax of a number.

If there are two adjacent package markers not at the beginning or end of
the token, then they divide the token into two parts. The first part specifies

a package; the second part is the name of a symbol within that package

(possibly an internal symbol). Neither of the two parts may have the syntax

of a number.
X3J13 voted in March 1988 〈16〉 to clarify that, in the situations described

in the preceding three paragraphs, the restriction on the syntax of the parts

should be strengthened: none of the parts may have the syntax of even a

potential number. Tokens such as :3600, :1/2, and editor:3.14159 were

already ruled out; this clarification further declares that such tokens as :2^3,
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compiler:1.7J, and Christmas:12/25/83 are also in error and therefore

should not be used in portable programs. Implementations may differ in their

treatment of such package-marked potential numbers.

If a symbol token contains no package markers, then the entire token is the

name of the symbol. The symbol is looked up in the default package, which
is the value of the variable *package*.

All other patterns of package markers, including the cases where there are

more than two package markers or where a package marker appears at the

end of the token, at present do not mean anything in Common Lisp (see chap-
ter 11). It is therefore currently an error to use such patterns in a Common

Lisp program. The valid patterns for tokens may be summarized as follows:

nnnnn a number

xxxxx a symbol in the current package

:xxxxx a symbol in the keyword package

ppppp:xxxxx an external symbol in the ppppp package

ppppp::xxxxx a (possibly internal) symbol in the ppppp package

where nnnnn has the syntax of a number, and xxxxx and ppppp do not have

the syntax of a number.
In accordance with the X3J13 decision noted above 〈16〉, xxxxx and ppppp

may not have the syntax of even a potential number.

[Variable]*read-base*

The value of *read-base* controls the interpretation of tokens by read as

being integers or ratios. Its value is the radix in which integers and ratios
are to be read; the value may be any integer from 2 to 36 (inclusive) and

is normally 10 (decimal radix). Its value affects only the reading of integers

and ratios. In particular, floating-point numbers are always read in decimal

radix. The value of *read-base* does not affect the radix for rational numbers

whose radix is explicitly indicated by #--O, #--X, #--B, or #--nR syntax or by a trailing
decimal point.

Care should be taken when setting *read-base* to a value larger than

10, because tokens that would normally be interpreted as symbols may be

interpreted as numbers instead. For example, with *read-base* set to 16

(hexadecimal radix), variables with names such as a, b, f, bad, and face will

be treated by the reader as numbers (with decimal values 10, 11, 15, 2989,

and 64206, respectively). The ability to alter the input radix is provided

in Common Lisp primarily for the purpose of reading data files in special

formats, rather than for the purpose of altering the default radix in which
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to read programs. The user is strongly encouraged to use #--O, #--X, #--B, or #--nR

syntax when notating non-decimal constants in programs.

Compatibility note: This variable corresponds to the variable called ibase in
MacLisp and to the function called radix in Interlisp.

[Variable]*read-suppress*

When the value of *read-suppress* is nil, the Lisp reader operates normally.

When it is not nil, then most of the interesting operations of the reader are
suppressed; input characters are parsed, but much of what is read is not

interpreted.

The primary purpose of *read-suppress* is to support the operation of the
read-time conditional constructs #--+ and #--- (see section 22.1.4). It is important

for these constructs to be able to skip over the printed representation of a Lisp

expression despite the possibility that the syntax of the skipped expression

may not be entirely legal for the current implementation; this is because a
primary application of #--+ and #--- is to allow the same program to be shared

among several Lisp implementations despite small incompatibilities of syntax.

A non-nil value of *read-suppress* has the following specific effects on
the Common Lisp reader:

. All extended tokens are completely uninterpreted. It matters not whether

the token looks like a number, much less like a valid number; the pattern

of package markers also does not matter. An extended token is simply
discarded and treated as if it were nil; that is, reading an extended token

when *read-suppress* is non-nil simply returns nil. (One consequence

of this is that the error concerning improper dotted-list syntax will not be

signaled.)

. Any standard #-- macro-character construction that requires, permits, or

disallows an infix numerical argument, such as #--nR, will not enforce any
constraint on the presence, absence, or value of such an argument.

. The #--\ construction always produces the value nil. It will not signal an

error even if an unknown character name is seen.

. Each of the #--B, #--O, #--X, and #--R constructions always scans over a following

token and produces the value nil. It will not signal an error even if the

token does not have the syntax of a rational number.
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. The #--* construction always scans over a following token and produces the

value nil. It will not signal an error even if the token does not consist

solely of the characters 0 and 1.

. Each of the #--. and #--, constructions reads the following form (in suppressed
........................................................................................................................................................................................................

mode, of course) but does not evaluate it. The form is discarded and nil

is produced.

X3J13 voted in January 1989 〈162〉 to remove #--, from the language.

. Each of the #--A, #--S, and #--: constructions reads the following form (in sup-

pressed mode, of course) but does not interpret it in any way; it need not

even be a list in the case of #--S, or a symbol in the case of #--:. The form is

discarded and nil is produced.

. The #--UU construction is totally ignored. It does not read a following form.

It produces no object, but is treated as whitespace.

. The #--#-- construction always produces nil.

Note that, no matter what the value of *read-suppress*, parentheses still

continue to delimit (and construct) lists; the #--( construction continues to
delimit vectors; and comments, strings, and the quote and backquote con-

structions continue to be interpreted properly. Furthermore, such situations

as ’), #--<, #--), and #--〈space〉 continue to signal errors.

In some cases, it may be appropriate for a user-written macro-character

definition to check the value of *read-suppress* and to avoid certain com-

putations or side effects if its value is not nil.

[Variable]*read-eval*

X3J13 voted in June 1989 〈40〉 to add a new reader control variable, *read-
eval*, whose default value is t. If *read-eval* is false, the #--. reader macro

signals an error.

Printing is also affected. If *read-eval* is false and *print-readably*

is true, any print-object method that would otherwise output a #--. reader

macro must either output something different or signal an error of type print-

not-readable.

Binding *read-eval* to nil is useful when reading data that came from an

untrusted source, such as a network or a user-supplied data file; it prevents the

#--. reader macro from being exploited as a “Trojan horse” to cause arbitrary

forms to be evaluated.
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22.1.3. Macro Characters

If the reader encounters a macro character, then the function associated with
that macro character is invoked and may produce an object to be returned.

This function may read following characters in the stream in whatever syntax

it likes (it may even call read recursively) and return the object represented

by that syntax. Macro characters may or may not be recognized, of course,

when read as part of other special syntaxes (such as for strings).
The reader is therefore organized into two parts: the basic dispatch loop,

which also distinguishes symbols and numbers, and the collection of macro

characters. Any character can be reprogrammed as a macro character; this is

a means by which the reader can be extended. The macro characters normally
defined are as follows:

(

The left-parenthesis character initiates reading of a pair or list. The func-

tion read is called recursively to read successive objects until a right paren-
thesis is found to be next in the input stream. A list of the objects read is

returned. Thus the input sequence

(a b c)

is read as a list of three objects (the symbols a, b, and c). The right parenthesis

need not immediately follow the printed representation of the last object;
whitespace characters and comments may precede it. This can be useful for

putting one object on each line and making it easy to add new objects:

(defun traffic-light (color)

(case color

(green)

(red (stop))

(amber (accelerate)) ;Insert more colors after this line

))

It may be that no objects precede the right parenthesis, as in () or ( );

this reads as a list of zero objects (the empty list).

If a token that is just a dot, not preceded by an escape character, is read
after some object, then exactly one more object must follow the dot, possibly

followed by whitespace, followed by the right parenthesis:

(a b c . d)
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This means that the cdr of the last pair in the list is not nil, but rather the

object whose representation followed the dot. The above example might have

been the result of evaluating

(cons ’a (cons ’b (cons ’c ’d))) ⇒ (a b c . d)

Similarly, we have

(cons ’znets ’wolq-zorbitan) ⇒ (znets . wolq-zorbitan)

It is permissible for the object following the dot to be a list:

(a b c d . (e f . (g)))

is the same as

(a b c d e f g)

but a list following a dot is a non-standard form that printwill never produce.

)

The right-parenthesis character is part of various constructs (such as the syn-

tax for lists) using the left-parenthesis character and is invalid except when

used in such a construct.
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’

The single-quote (accent acute) character provides an abbreviation to make it

easier to put constants in programs. The form ’foo reads the same as (quote

foo): a list of the symbol quote and foo.

;

Semicolon is used to write comments. The semicolon and all characters up

to and including the next newline are ignored. Thus a comment can be put at

the end of any line without affecting the reader. (A comment will terminate

a token, but a newline would terminate the token anyway.)

There is no functional difference between using one semicolon and using

more than one, but the conventions shown here are in common use.

;;;; COMMENT-EXAMPLE function.

;;; This function is useless except to demonstrate comments.

;;; (Actually, this example is much too cluttered with them.)

(defun comment-example (x y) ;X is anything; Y is an a-list.

(cond ((listp x) x) ;If X is a list, use that.

;; X is now not a list. There are two other cases.

((symbolp x)

;; Look up a symbol in the a-list.

(cdr (assoc x y))) ;Remember, (cdr nil) is nil.

;; Do this when all else fails:

(t (cons x ;Add x to a default list.

’((lisp t) ;LISP is okay.

(fortran nil) ;FORTRAN is not.

(pl/i -500) ;Note that you can put comments in

(ada .001) ; "data" as well as in "programs".

;; COBOL??

(teco -1.0e9))))))

In this example, comments may begin with one to four semicolons.

. Single-semicolon comments are all aligned to the same column at the right;

usually each comment concerns only the code it is next to. Occasionally

a comment is long enough to occupy two or three lines; in this case, it is

conventional to indent the continued lines of the comment one space (after

the semicolon).
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. Double-semicolon comments are aligned to the level of indentation of the

code. A space conventionally follows the two semicolons. Such comments

usually describe the state of the program at that point or the code section

that follows the comment.

. Triple-semicolon comments are aligned to the left margin. They usually
document whole programs or large code blocks.

. Quadruple-semicolon comments usually indicate titles of whole programs

or large code blocks.

Compatibility note: These conventions arose among users of MacLisp and have
been found to be very useful. The conventions are conveniently exploited by cer-
tain software tools, such as the EMACS editor and the ATSIGN listing program
developed at MIT.

The ATSIGN listing program, alas, is no longer in use, but EMACS is widely
available, especially the GNU EMACS implementation, which is available from the
Free Software Foundation, 675 Massachusetts Avenue, Cambridge, Massachusetts
02139. Remember, GNU’s Not UNIX.

"

The double quote character begins the printed representation of a string.

Successive characters are read from the input stream and accumulated until
another double quote is encountered. An exception to this occurs if a single

escape character is seen; the escape character is discarded, the next character

is accumulated, and accumulation continues. When a matching double quote

is seen, all the accumulated characters up to but not including the matching

double quote are made into a simple string and returned.

‘

The backquote (accent grave) character makes it easier to write programs to

construct complex data structures by using a template.

Notice of correction. In the first edition, the backquote character 〈‘〉 ap-

pearing at the left margin above was inadvertently omitted.
As an example, writing

‘(cond ((numberp ,x) ,@y) (t (print ,x) ,@y))

is roughly equivalent to writing

(list ’cond
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(cons (list ’numberp x) y)

(list* ’t (list ’print x) y))

The general idea is that the backquote is followed by a template, a picture of

a data structure to be built. This template is copied, except that within the

template commas can appear. Where a comma occurs, the form following the

comma is to be evaluated to produce an object to be inserted at that point.
Assume b has the value 3; then evaluating the form denoted by ‘(a b ,b ,(+

b 1) b) produces the result (a b 3 4 b).

If a comma is immediately followed by an at-sign (@), then the form fol-

lowing the at-sign is evaluated to produce a list of objects. These objects are

then “spliced” into place in the template. For example, if x has the value (a

b c), then

‘(x ,x ,@x foo ,(cadr x) bar ,(cdr x) baz ,@(cdr x))

⇒ (x (a b c) a b c foo b bar (b c) baz b c)

The backquote syntax can be summarized formally as follows. For each of

several situations in which backquote can be used, a possible interpretation

of that situation as an equivalent form is given. Note that the form is equiv-
alent only in the sense that when it is evaluated it will calculate the correct

result. An implementation is quite free to interpret backquote in any way

such that a backquoted form, when evaluated, will produce a result equal to

that produced by the interpretation shown here.

. ‘basic is the same as ’basic, that is, (quote basic), for any form basic that
is not a list or a general vector.

. ‘,form is the same as form, for any form, provided that the representation

of form does not begin with “@” or “.”. (A similar caveat holds for all

occurrences of a form after a comma.)

. ‘,@form is an error.

. ‘(x1 x2 x3 ... xn . atom) may be interpreted to mean

(append [x1] [x2] [x3] ... [xn] (quote atom))

where the brackets are used to indicate a transformation of an xj as follows:

– [form] is interpreted as (list ‘form), which contains a backquoted form

that must then be further interpreted.

– [,form] is interpreted as (list form).
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– [,@form] is interpreted simply as form.

. ‘(x1 x2 x3 ... xn) may be interpreted to mean the same as the back-

quoted form ‘(x1 x2 x3 ... xn . nil), thereby reducing it to the previ-

ous case.

. ‘(x1 x2 x3 ... xn . ,form) may be interpreted to mean

(append [x1] [x2] [x3] ... [xn] form)

where the brackets indicate a transformation of an xj as described above.

. ‘(x1 x2 x3 ... xn . ,@form) is an error.

. ‘#--(x1 x2 x3 ... xn) may be interpreted to mean

(apply #--’vector ‘(x1 x2 x3 ... xn))

No other uses of comma are permitted; in particular, it may not appear

within the #--A or #--S syntax.

Anywhere “,@” may be used, the syntax “,.” may be used instead to
indicate that it is permissible to destroy the list produced by the form following

the “,.”; this may permit more efficient code, using nconc instead of append,

for example.

If the backquote syntax is nested, the innermost backquoted form should

be expanded first. This means that if several commas occur in a row, the
leftmost one belongs to the innermost backquote.

Once again, it is emphasized that an implementation is free to interpret

a backquoted form as any form that, when evaluated, will produce a result

that is equal to the result implied by the above definition. In particular, no
guarantees are made as to whether the constructed copy of the template will

or will not share list structure with the template itself. As an example, the

above definition implies that

‘((,a b) ,c ,@d)

will be interpreted as if it were

(append (list (append (list a) (list ’b) ’nil)) (list c) d ’nil)

but it could also be legitimately interpreted to mean any of the following.

(append (list (append (list a) (list ’b))) (list c) d)

(append (list (append (list a) ’(b))) (list c) d)
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(append (list (cons a ’(b))) (list c) d)

(list* (cons a ’(b)) c d)

(list* (cons a (list ’b)) c d)

(list* (cons a ’(b)) c (copy-list d))

(There is no good reason why copy-list should be performed, but it is not

prohibited.)
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Some users complain that backquote syntax is difficult to read, especially

when it is nested. I agree that it can get complicated, but in some situations

(such as writing macros that expand into definitions for other macros) such

complexity is to be expected, and the alternative is much worse.

After I gained some experience in writing nested backquote forms, I found

that I was not stopping to analyze the various patterns of nested backquotes

and interleaved commas and quotes; instead, I was recognizing standard id-
ioms wholesale, in the same manner that I recognize cadar as the primitive

for “extract the lambda-list from the form ((lambda ...) ...))” without

stopping to analyze it into “car of cdr of car.” For example, ,x within

a doubly-nested backquote form means “the value of x available during the
second evaluation will appear here once the form has been twice evaluated,”

whereas ,’,x means “the value of x available during the first evaluation will

appear here once the form has been twice evaluated” and ,,x means “the

value of the value of x will appear here.”

See appendix C for a systematic set of examples of the use of nested back-

quotes.

,

The comma character is part of the backquote syntax and is invalid if used

other than inside the body of a backquote construction as described above.

#--

This is a dispatching macro character. It reads an optional digit string and

then one more character, and uses that character to select a function to run
as a macro-character function.

The #-- character also happens to be a non-terminating macro character. This
is completely independent of the fact that it is a dispatching macro character;

it is a coincidence that the only standard dispatching macro character in

Common Lisp is also the only standard non-terminating macro character.

See the next section for predefined #-- macro-character constructions.

22.1.4. Standard Dispatching Macro Character Syntax

The standard syntax includes forms introduced by the #-- character. These

take the general form of a #--, a second character that identifies the syntax,

and following arguments in some form. If the second character is a letter,

then case is not important; #--O and #--o are considered to be equivalent, for

example.
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Certain #-- forms allow an unsigned decimal number to appear between the

#-- and the second character; some other forms even require it. Those forms

that do not explicitly permit such a number to appear forbid it.

The currently defined #-- constructs are described below and summarized in

table 22-4; more are likely to be added in the future. However, the constructs

#--!, #--?, #--[, #--], #--{, and #--} are explicitly reserved for the user and will never
be defined by the Common Lisp standard.

#--\

#--\x reads in as a character object that represents the character x. Also,
#--\name reads in as the character object whose name is name. Note that the

backslash \ allows this construct to be parsed easily by EMACS-like editors.

In the single-character case, the character x must be followed by a non-

constituent character, lest a name appear to follow the #--\. A good model

of what happens is that after #--\ is read, the reader backs up over the \ and

then reads an extended token, treating the initial \ as an escape character

(whether it really is or not in the current readtable).

Uppercase and lowercase letters are distinguished after #--\; #--\A and #--\a de-
note different character objects. Any character works after #--\, even those that

are normally special to read, such as parentheses. Non-printing characters

may be used after #--\, although for them names are generally preferred.

#--\name reads in as a character object whose name is name (actually, whose

name is (string-upcase name); therefore the syntax is case-insensitive).

The name should have the syntax of a symbol. The following names are
standard across all implementations:

newline The character that represents the division between lines
space The space or blank character

The following names are semi-standard; if an implementation supports them,

they should be used for the described characters and no others.

rubout The rubout or delete character.

page The form-feed or page-separator character
tab The tabulate character

backspace The backspace character

return The carriage return character

linefeed The line-feed character

In some implementations, one or more of these characters might be a synonym
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Table 22-4: Standard # Macro Character Syntax

#--! undefined * #--〈backspace〉 signals error
#--" undefined #--〈tab〉 signals error
#--#-- reference to #--UU label #--〈newline〉 signals error
#--$ undefined #--〈linefeed〉 signals error
#--% undefined #--〈page〉 signals error
#--& undefined #--〈return〉 signals error
#--’ function abbreviation #--〈space〉 signals error
#--( simple vector #--+ read-time conditional
#--) signals error #--- read-time conditional
#--* bit-vector #--. read-time evaluation
#--, load-time evaluation #--/ undefined
#--0 used for infix arguments #--A, #--a array
#--1 used for infix arguments #--B, #--b binary rational
#--2 used for infix arguments #--C, #--c complex number
#--3 used for infix arguments #--D, #--d undefined
#--4 used for infix arguments #--E, #--e undefined
#--5 used for infix arguments #--F, #--f undefined
#--6 used for infix arguments #--G, #--g undefined
#--7 used for infix arguments #--H, #--h undefined
#--8 used for infix arguments #--I, #--i undefined
#--9 used for infix arguments #--J, #--j undefined
#--: uninterned symbol #--K, #--k undefined
#--; undefined #--L, #--l undefined
#--< signals error #--M, #--m undefined
#--UU label following object #--N, #--n undefined
#--> undefined #--O, #--o octal rational
#--? undefined * #--P, #--p pathname
#--@ undefined #--Q, #--q undefined
#--[ undefined * #--R, #--r radix-n rational
#--\ character object #--S, #--s structure
#--] undefined * #--T, #--t undefined
#--^ undefined #--U, #--u undefined
#--_ undefined #--V, #--v undefined
#--‘ undefined #--W, #--w undefined
#--{ undefined * #--X, #--x hexadecimal rational
#--| balanced comment #--Y, #--y undefined
#--} undefined * #--Z, #--z undefined
#--~ undefined #--〈rubout〉 undefined

The combinations marked by an asterisk are explicitly reserved to the user and will
never be defined by Common Lisp.
X3J13 voted in June 1989 〈131〉 to specify #--P and #--p (undefined in the first edition).
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for a standard character; the #--\Linefeed character might be the same as

#--\Newline, for example.

When the Lisp printer types out the name of a special character, it uses the

same table as the #--\ reader; therefore any character name you see typed out

is acceptable as input (in that implementation). Standard names are always
preferred over non-standard names for printing.

The following convention is used in implementations that support non-zero

bits attributes for character objects. If a name after #--\ is longer than one

character and has a hyphen in it, then it may be split into the two parts
preceding and following the first hyphen; the first part (actually, string-

upcase of the first part) may then be interpreted as the name or initial of

a bit, and the second part as the name of the character (which may in turn

contain a hyphen and be subject to further splitting). For example:

#--\Control-Space #--\Control-Meta-Tab

#--\C-M-Return #--\H-S-M-C-Rubout

If the character name consists of a single character, then that character is
used. Another \ may be necessary to quote the character.

#--\Control-% #--\Control-Meta-\"

#--\Control-\a #--\Meta->

If an unsigned decimal integer appears between the #-- and \, it is interpreted
........................................................................................................................................................................................................

as a font number, to become the font attribute of the character object (see

char-font).

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font
attributes with that of implementation-defined attributes. Presumably this

eliminates the portable use of this syntax for font information, although the

vote did not address this question directly.

#--’

#--’foo is an abbreviation for (function foo). foo may be the printed represen-

tation of any Lisp object. This abbreviation may be remembered by analogy
with the ’ macro character, since the function and quote special forms are

similar in form.

#--(

A series of representations of objects enclosed by #--( and ) is read as a simple

vector of those objects. This is analogous to the notation for lists.
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If an unsigned decimal integer appears between the #-- and (, it specifies

explicitly the length of the vector. In that case, it is an error if too many

objects are specified before the closing ), and if too few are specified, the last

object (it is an error if there are none in this case) is used to fill all remaining

elements of the vector. For example,

#--(a b c c c c) #--6(a b c c c c) #--6(a b c) #--6(a b c c)

all mean the same thing: a vector of length 6 with elements a, b, and four

instances of c. The notation #--() denotes an empty vector, as does #--0() (which

is legitimate because it is not the case that too few elements are specified).

#--*

A series of binary digits (0 and 1) preceded by #--* is read as a simple bit-

vector containing those bits, the leftmost bit in the series being bit 0 of the

bit-vector.

If an unsigned decimal integer appears between the #-- and *, it specifies

explicitly the length of the vector. In that case, it is an error if too many bits
are specified, and if too few are specified the last one (it is an error if there

are none in this case) is used to fill all remaining elements of the bit-vector.

For example,

#--*101111 #--6*101111 #--6*101 #--6*1011

all mean the same thing: a vector of length 6 with elements 1, 0, 1, 1, 1,
and 1. The notation #--* denotes an empty bit-vector, as does #--0* (which is

legitimate because it is not the case that too few elements are specified).

Compare this to #--B, used for expressing integers in binary notation.

#--:

#--:foo requires foo to have the syntax of an unqualified symbol name (no
embedded colons). It denotes an uninterned symbol whose name is foo. Every

time this syntax is encountered, a different uninterned symbol is created. If

it is necessary to refer to the same uninterned symbol more than once in the

same expression, the #--UU syntax may be useful.

#--.

#--.foo is read as the object resulting from the evaluation of the Lisp object

represented by foo, which may be the printed representation of any Lisp object.
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The evaluation is done during the read process, when the #--. construct is

encountered.

X3J13 voted in June 1989 〈40〉 to add a new reader control variable, *read-

eval*. If it is true, the #--. reader macro behaves as described above; if it is

false, the #--. reader macro signals an error.

The #--. syntax therefore performs a read-time evaluation of foo. By contrast,
#--, (see below) performs a load-time evaluation.

Both #--. and #--, allow you to include, in an expression being read, an object

that does not have a convenient printed representation; instead of writing a

representation for the object, you write an expression that will compute the

object.

#--,........................................................................................................................................................................................................

#--,foo is read as the object resulting from the evaluation of the Lisp object

represented by foo, which may be the printed representation of any Lisp object.

The evaluation is done during the read process, unless the compiler is doing
the reading, in which case it is arranged that foo will be evaluated when the

file of compiled code is loaded. The #--, syntax therefore performs a load-time

evaluation of foo. By contrast, #--. (see above) performs a read-time evaluation.

In a sense, #--, is like specifying (eval load) to eval-when, whereas #--. is

more like specifying (eval compile). It makes no difference when loading
interpreted code; when code is to be compiled, however, #--. specifies compile-

time evaluation and #--, specifies load-time evaluation.

X3J13 voted in January 1989 〈162〉 to remove #--, from the language. X3J13
noted that the first edition failed to make it clear that #--, can be meaningful

only within quoted forms. All sorts of anomalies can arise, including inconsis-

tencies between the interpreter and compiler, if #--, is not properly restricted.

See load-time-eval.

#--B

#--brational reads rational in binary (radix 2). For example, #--B1101 ≡ 13, and

#--b101/11 ≡ 5/3.

Compare this to #--*, used for expressing bit-vectors in binary notation.

#--O

#--orational reads rational in octal (radix 8). For example, #--o37/15 ≡ 31/13,

and #--o777 ≡ 511.
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#--X

#--xrational reads rational in hexadecimal (radix 16). The digits above 9 are

the letters A through F (the lowercase letters a through f are also acceptable).

For example, #--xF00 ≡ 3840.

#--nR

#--radixrrational reads rational in radix radix. radix must consist of only digits,

and it is read in decimal; its value must be between 2 and 36 (inclusive).
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For example, #--3r102 is another way of writing 11, and #--11R32 is another

way of writing 35. For radices larger than 10, letters of the alphabet are used

in order for the digits after 9.

#--nA

The syntax #--nAobject constructs an n-dimensional array, using object as the

value of the :initial-contents argument to make-array.

The value of n makes a difference: #--2A((0 1 5) (foo 2 (hot dog))), for

example, represents a 2-by-3 matrix:

0 1 5

foo 2 (hot dog)

In contrast, #--1A((0 1 5) (foo 2 (hot dog))) represents a length-2 array

whose elements are lists:

(0 1 5) (foo 2 (hot dog))

Furthermore, #--0A((0

1 5) (foo 2 (hot dog))) represents a zero-dimensional array whose sole
element is a list:

((0 1 5) (foo 2 (hot dog)))

Similarly, #--0Afoo (or, more readably, #--0A foo) represents a zero-dimensional
array whose sole element is the symbol foo. The expression #--1Afoo would

not be legal because foo is not a sequence.

#--S

The syntax #--s(name slot1 value1 slot2 value2 ...) denotes a structure.

This is legal only if name is the name of a structure already defined by
defstruct and if the structure has a standard constructor macro, which it

normally will. Let cm stand for the name of this constructor macro; then this

syntax is equivalent to

#--.(cm keyword1 ’value1 keyword2 ’value2 ...)

where each keywordj is the result of computing

(intern (string slotj) ’keyword)
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(This computation is made so that one need not write a colon in front of every

slot name.) The net effect is that the constructor macro is called with the

specified slots having the specified values (note that one does not write quote

marks in the #--S syntax). Whatever object the constructor macro returns is

returned by the #--S syntax.

#--P

X3J13 voted in June 1989 〈131〉 to define the reader syntax #--p"..." to be

equivalent to #--.(parse-namestring "..."). Presumably this was meant to

be taken descriptively and not literally. I would think, for example, that the

committee did not wish to quibble over the package in which the name parse-
namestring was to be read. Similarly, I would presume that the #--p syntax

operates normally rather than signaling an error when *read-eval* is false.

I interpret the intent of the vote to be that #--p reads a following form, which

should be a string, that is then converted to a pathname as if by application
of the standard function parse-namestring.

#--nUU

The syntax #--nUUobject reads as whatever Lisp object has object as its printed
representation. However, that object is labelled by n, a required unsigned

decimal integer, for possible reference by the syntax #--n#-- (below). The scope

of the label is the expression being read by the outermost call to read. Within

this expression the same label may not appear twice.

#--n#--

The syntax #--n#--, where n is a required unsigned decimal integer, serves as a

reference to some object labelled by #--nUU; that is, #--n#-- represents a pointer

to the same identical (eq) object labelled by #--nUU. This permits notation

of structures with shared or circular substructure. For example, a structure

created in the variable y by this code:

(setq x (list ’p ’q))

(setq y (list (list ’a ’b) x ’foo x))

(rplacd (last y) (cdr y))

could be represented in this way:

((a b) . #--1UU(#--2UU(p q) foo #--2#-- . #--1#--))
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Without this notation, but with *print-length* set to 10, the structure

would print in this way:

((a b) (p q) foo (p q) (p q) foo (p q) (p q) foo (p q) ...)

A reference #--n#-- may occur only after a label #--nUU; forward references are not

permitted. In addition, the reference may not appear as the labelled object

itself (that is, one may not write #--nUU #--n#--), because the object labelled by
#--nUU is not well defined in this case.

#--+

The #--+ syntax provides a read-time conditionalization facility; the syntax is

#--+feature form

If feature is “true,” then this syntax represents a Lisp object whose printed

representation is form. If feature is “false,” then this syntax is effectively
whitespace; it is as if it did not appear.

The feature should be the printed representation of a symbol or list. If

feature is a symbol, then it is true if and only if it is a member of the list that

is the value of the global variable *features*.

Compatibility note: MacLisp uses the status special form for this purpose, and
Lisp Machine Lisp duplicates status essentially only for the sake of (status fea-

tures). The use of a variable allows one to bind the features list, when compiling,
for example.

Otherwise, feature should be a Boolean expression composed of and, or,

and not operators on (recursive) feature expressions.
For example, suppose that in implementation A the features spice and

perq are true, and in implementation B the feature lispm is true. Then

the expressions on the left below are read the same as those on the right in

implementation A:

(cons #--+spice "Spice" #--+lispm "Lispm" x) (cons "Spice" x)

(setq a ’(1 2 #--+perq 43 #--+(not perq) 27)) (setq a ’(1 2 43))

(let ((a 3) #--+(or spice lispm) (b 3)) (let ((a 3) (b 3))

(foo a)) (foo a))

(cons a #--+perq #---perq b c) (cons a c)

In implementation B, however, they are read in this way:
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(cons #--+spice "Spice" #--+lispm "Lispm" x) (cons "Lispm" x)

(setq a ’(1 2 #--+perq 43 #--+(not perq) 27)) (setq a ’(1 2 27))

(let ((a 3) #--+(or spice lispm) (b 3)) (let ((a 3) (b 3))

(foo a)) (foo a))

(cons a #--+perq #---perq b c) (cons a c)
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The #--+ construction must be used judiciously if unreadable code is not to

result. The user should make a careful choice between read-time conditional-

ization and run-time conditionalization.

The #--+ syntax operates by first reading the feature specification and then
........................................................................................................................................................................................................

skipping over the form if the feature is “false.” This skipping of a form is
a bit tricky because of the possibility of user-defined macro characters and

side effects caused by the #--. and #--, constructions. It is accomplished by

binding the variable *read-suppress* to a non-nil value and then calling

the read function. See the description of *read-suppress* for the details of
this operation.

X3J13 voted in January 1989 〈162〉 to remove #--, from the language.

X3J13 voted in March 1988 〈163〉 to specify that the keyword package is the

default package during the reading of a feature specification. Thus #--+spice

means the same thing as #--+:spice, and #--+(or spice lispm)means the same
thing as #--+(or :spice :lispm). Symbols in other packages may be used as

feature names, but one must use an explicit package prefix to cite one after

#--+.

#---

#---feature form is equivalent to #--+(not feature) form.

#--|

#--|...|#-- is treated as a comment by the reader, just as everything from a

semicolon to the next newline is treated as a comment. Anything may appear

in the comment, except that it must be balanced with respect to other occur-

rences of #--| and |#--. Except for this nesting rule, the comment may contain

any characters whatsoever.
The main purpose of this construct is to allow “commenting out” of blocks

of code or data. The balancing rule allows such blocks to contain pieces

already so commented out. In this respect the #--|...|#-- syntax of Common

Lisp differs from the /*...*/ comment syntax used by PL/I and C.

#--<

This is not legal reader syntax. It is conventionally used in the printed repre-

sentation of objects that cannot be read back in. Attempting to read a #--< will
cause an error. (More precisely, it is legal syntax, but the macro-character

function for #--< signals an error.)

The usual convention for printing unreadable data objects is to print some

identifying information (the internal machine address of the object, if nothing

else) preceded by #--< and followed by >.
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X3J13 voted in June 1989 〈40〉 to add print-unreadable-object, a macro

that prints an object using #--<...> syntax and also takes care of checking the

variable *print-readably*.

#--〈space〉, #--〈tab〉, #--〈newline〉, #--〈page〉, #--〈return〉
A #-- followed by a whitespace character is not legal reader syntax. This pre-

vents abbreviated forms produced via *print-level* cutoff from reading in
again, as a safeguard against losing information. (More precisely, this is legal

syntax, but the macro-character function for it signals an error.)

#--)

This is not legal reader syntax. This prevents abbreviated forms produced

via *print-level* cutoff from reading in again, as a safeguard against losing

information. (More precisely, this is legal syntax, but the macro-character
function for it signals an error.)

22.1.5. The Readtable

Previous sections describe the standard syntax accepted by the read function.

This section discusses the advanced topic of altering the standard syntax

either to provide extended syntax for Lisp objects or to aid the writing of

other parsers.
There is a data structure called the readtable that is used to control the

reader. It contains information about the syntax of each character equivalent

to that in table 22-1. It is set up exactly as in table 22-1 to give the standard

Common Lisp meanings to all the characters, but the user can change the
meanings of characters to alter and customize the syntax of characters. It is

also possible to have several readtables describing different syntaxes and to

switch from one to another by binding the variable *readtable*.

Even if an implementation supports characters with non-zero bits and font
........................................................................................................................................................................................................

attributes, it need not (but may) allow for such characters to have syntax
descriptions in the readtable. However, every character of type string-char

must be represented in the readtable.

X3J13 voted in March 1989 〈11〉 to remove the type string-char and

to replace the bits and font attributes with the notion of implementation-
defined attributes. If any implementation-defined attributes are supported,

an implementation may (but need not) allow for such characters to have syn-

tax descriptions in the readtable. Characters that do not have non-standard

values for any implementation-defined attribute must be represented in the

readtable.
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[Variable]*readtable*

The value of *readtable* is the current readtable. The initial value of this
is a readtable set up for standard Common Lisp syntax. You can bind this

variable to temporarily change the readtable being used.

To program the reader for a different syntax, a set of functions are pro-
vided for manipulating readtables. Normally, you should begin with a copy

of the standard Common Lisp readtable and then customize the individual

characters within that copy.

[Function]copy-readtable &optional from-readtable to-readtable

A copy is made of from-readtable, which defaults to the current readtable (the

value of the global variable *readtable*). If from-readtable is nil, then a

copy of a standard Common Lisp readtable is made. For example,

(setq *readtable* (copy-readtable nil))

will restore the input syntax to standard Common Lisp syntax, even if the

original readtable has been clobbered (assuming it is not so badly clobbered

that you cannot type in the above expression!). On the other hand,

(setq *readtable* (copy-readtable))

will merely replace the current readtable with a copy of itself.

If to-readtable is unsupplied or nil, a fresh copy is made. Otherwise, to-

readtable must be a readtable, which is destructively copied into.

[Function]readtablep object

readtablep is true if its argument is a readtable, and otherwise is false.

(readtablep x) ≡ (typep x ’readtable)

[Function]set-syntax-from-char to-char from-char &optional

to-readtable from-readtable

This makes the syntax of to-char in to-readtable be the same as the syntax of

from-char in from-readtable. The to-readtable defaults to the current readtable

(the value of the global variable *readtable*), and from-readtable defaults

to nil, meaning to use the syntaxes from the standard Lisp readtable.
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X3J13 voted in January 1989 〈7〉 to clarify that the to-char and from-char

must each be a character.

Only attributes as shown in table 22-1 are copied; moreover, if a macro

character is copied, the macro definition function is copied also. However,

attributes as shown in table 22-3 are not copied; they are “hard-wired” into
the extended-token parser. For example, if the definition of S is copied to *,

then * will become a constituent that is alphabetic but cannot be used as an

exponent indicator for short-format floating-point number syntax.

It works to copy a macro definition from a character such as " to another
character; the standard definition for " looks for another character that is the

same as the character that invoked it. It doesn’t work to copy the definition of

( to {, for example; it can be done, but it lets one write lists in the form {a b

c), not {a b c}, because the definition always looks for a closing parenthesis,

not a closing brace. See the function read-delimited-list, which is useful
in this connection.

X3J13 voted in January 1989 〈156〉 to specify that the set-syntax-from-

char function returns t.

[Function]set-macro-character char function &optional

non-terminating-p readtable

[Function]get-macro-character char &optional readtable

set-macro-character causes char to be a macro character that when seen

by read causes function to be called. If non-terminating-p is not nil (it

defaults to nil), then it will be a non-terminating macro character: it may

be embedded within extended tokens. set-macro-character returns t.
get-macro-character returns the function associated with char and, as

a second value, returns the non-terminating-p flag; it returns nil if char

does not have macro-character syntax. In each case, readtable defaults to the

current readtable.
X3J13 voted in January 1989 〈95〉 to specify that if nil is explicitly

passed as the second argument to get-macro-character, then the standard

readtable is used. This is consistent with the behavior of copy-readtable.

The function is called with two arguments, stream and char. The stream

is the input stream, and char is the macro character itself. In the simplest
case, function may return a Lisp object. This object is taken to be that whose

printed representation was the macro character and any following characters

read by the function. As an example, a plausible definition of the standard

single quote character is:

(defun single-quote-reader (stream char)
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(declare (ignore char))

(list ’quote (read stream t nil t)))

(set-macro-character #--\’ #--’single-quote-reader)

(Note that t is specified for the recursive-p argument to read; see sec-

tion 22.2.1.) The function reads an object following the single-quote and

returns a list of the symbol quote and that object. The char argument is

ignored.
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The function may choose instead to return zero values (for example, by using

(values) as the return expression). In this case, the macro character and

whatever it may have read contribute nothing to the object being read. As an

example, here is a plausible definition for the standard semicolon (comment)

character:

(defun semicolon-reader (stream char)

(declare (ignore char))

;; First swallow the rest of the current input line.

;; End-of-file is acceptable for terminating the comment.

(do () ((charUU (read-char stream nil #--\Newline t) #--\Newline)))

;; Return zero values.

(values))

(set-macro-character #--\; #--’semicolon-reader)

(Note that t is specified for the recursive-p argument to read-char; see sec-

tion 22.2.1.)

The function should not have any side effects other than on the stream. Be-

cause of backtracking and restarting of the read operation, front ends (such

as editors and rubout handlers) to the reader may cause function to be called
repeatedly during the reading of a single expression in which the macro char-

acter only appears once.

Compatibility note: The ability to return either zero or one value is the closest
Common Lisp macro characters come to the splicing macro characters of MacLisp
or the splice macro characters of Interlisp. The Common Lisp definition does not
allow the splicing of arbitrarily many values, but it does allow a macro-character
function to decide after it is invoked whether or not to yield a value, an option not
possible in MacLisp or Interlisp.

MacLisp has nothing equivalent to non-terminating macro characters. The In-
terlisp equivalents of terminating and non-terminating macro characters are macro
characters with the ALWAYS or FIRST option, respectively. Common Lisp has nothing
equivalent to the Interlisp ALONE macro-character option.

Here is an example of a more elaborate set of read-macro characters that I
used in the implementation of the original simulator for Connection Machine

Lisp [44, 57], a parallel dialect of Common Lisp. This simulator was used

to gain experience with the language before freezing its design for full-scale

implementation on a Connection Machine computer system. This example

illustrates the typical manner in which a language designer can embed a new
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language within the syntactic and semantic framework of Lisp, saving the

effort of designing an implementation from scratch.

Connection Machine Lisp introduces a new data type called a xapping,

which is simply an unordered set of ordered pairs of Lisp objects. The first
element of each pair is called the index and the second element the value. We

say that the xapping maps each index to its corresponding value. No two

pairs of the same xapping may have the same (that is, eql) index. Xappings

may be finite or infinite sets of pairs; only certain kinds of infinite xappings
are required, and special representations are used for them.

A finite xapping is notated by writing the pairs between braces, separated

by whitespace. A pair is notated by writing the index and the value, separated

by a right arrow (or an exclamation point if the host Common Lisp has no
right-arrow character).

Remark: The original language design used the right arrow; the exclamation point
was chosen to replace it on ASCII-only terminals because it is one of the six char-
acters [ ] { } ! ? reserved by Common Lisp to the user.

While preparing the TEX manuscript for this book I made a mistake in font se-
lection and discovered that by an absolutely incredible coincidence the right arrow
has the same numerical code (octal 41) within TEX fonts as the ASCII exclama-
tion point. The result was that although the manuscript called for right arrows,
exclamation points came out in the printed copy. Imagine my astonishment!

Here is an example of a xapping that maps three symbols to strings:

{moe⇒"Oh, a wise guy, eh?" larry⇒"Hey, what’s the idea?"

curly⇒"Nyuk, nyuk, nyuk!"}

For convenience there are certain abbreviated notations. If the index and

value for a pair are the same object x, then instead of having to write “x⇒ x”

(or, worse yet, “#--43UUx⇒#--43#--”) we may write simply x for the pair. If all pairs

of a xapping are of this form, we call the xapping a xet. For example, the

notation

{baseball chess cricket curling bocce 43-man-squamish}

is entirely equivalent in meaning to

{baseball⇒baseball curling⇒curling cricket⇒cricket

chess⇒chess bocce⇒bocce 43-man-squamish⇒43-man-squamish}

namely a xet of symbols naming six sports.
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Another useful abbreviation covers the situation where the n pairs of a finite

xapping are integers, collectively covering a range from zero to n − 1. This

kind of xapping is called a xector and may be notated by writing the values

between brackets in ascending order of their indices. Thus

[tinker evers chance]

is merely an abbreviation for

{tinker⇒0 evers⇒1 chance⇒2}

There are two kinds of infinite xapping: constant and universal. A constant
xapping {⇒z} maps every object to the same value z. The universal xapping

{⇒} maps every object to itself and is therefore the xet of all Lisp objects,

sometimes called simply the universe. Both kinds of infinite xet may be

modified by explicitly writing exceptions. One kind of exception is simply

a pair, which specifies the value for a particular index; the other kind of
exception is simply k⇒ indicating that the xapping does not have a pair with

index k after all. Thus the notation

{sky⇒blue grass⇒green idea⇒ glass⇒ ⇒red}

indicates a xapping that maps sky to blue, grass to green, and every other
object except idea and glass to red. Note well that the presence or absence

of whitespace on either side of an arrow is crucial to the correct interpretation

of the notation.

Here is the representation of a xapping as a structure:

(defstruct

(xapping (:print-function print-xapping)

(:constructor xap

(domain range &optional

(default ’:unknown defaultp)

(infinite (and defaultp :constant))

(exceptions ’()))))

domain

range

default

(infinite nil :type (member nil :constant :universal)

exceptions)

The explicit pairs are represented as two parallel lists, one of indexes (domain)

and one of values (range). The default slot is the default value, relevant only
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if the infinite slot is :constant. The exceptions slot is a list of indices

for which there are no values. (See the end of section 22.3.3 for the definition

of print-xapping.)

Here, then, is the code for reading xectors in bracket notation:

(defun open-bracket-macro-char (stream macro-char)

(declare (ignore macro-char))

(let ((range (read-delimited-list #--\] stream t)))

(xap (iota-list (length range)) range)))

(set-macro-character #--\[ #--’open-bracket-macro-char)

(set-macro-character #--\] (get-macro-character #--\) ))

(defun iota-list (n) ;Return list of integers from 0 to n − 1
(do ((j (- n 1) (- j 1))

(z ’() (cons j z)))

((< j 0) z)))

The code for reading xappings in the more general brace notation, with all

the possibilities for xets (or individual xet pairs), infinite xappings, and ex-

ceptions, is a bit more complicated; it is shown in table 22-5. That code is

used in conjunction with the initializations

(set-macro-character #--\{ #--’open-brace-macro-char)

(set-macro-character #--\} (get-macro-character #--\) ))

[Function]make-dispatch-macro-character char
&optional non-terminating-p readtable

This causes the character char to be a dispatching macro character in readtable

(which defaults to the current readtable). If non-terminating-p is not nil (it

defaults to nil), then it will be a non-terminating macro character: it may
be embedded within extended tokens. make-dispatch-macro-character re-

turns t.

Initially every character in the dispatch table has a character-macro func-

tion that signals an error. Use set-dispatch-macro-character to define

entries in the dispatch table.

X3J13 voted in January 1989 〈7〉 to clarify that char must be a character.
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Table 22-5: Macro Character Definition for Xapping Syntax

(defun open-brace-macro-char (s macro-char)

(declare (ignore macro-char))

(do ((ch (peek-char t s t nil t) (peek-char t s t nil t))

(domain ’()) (range ’()) (exceptions ’()))
((charUU ch #--\})

(read-char s t nil t)

(construct-xapping (reverse domain) (reverse range)))

(cond ((charUU ch #--\⇒)

(read-char s t nil t)

(let ((nextch (peek-char nil s t nil t)))

(cond ((charUU nextch #--\})

(read-char s t nil t)

(return (xap (reverse domain)

(reverse range)

nil :universal exceptions)))

(t (let ((item (read s t nil t)))

(cond ((charUU (peek-char t s t nil t) #--\})

(read-char s t nil t)

(return (xap (reverse domain)

(reverse range)

item :constant

exceptions)))

(t (reader-error s

"Default ⇒ item must be last"))))))))

(t (let ((item (read-preserving-whitespace s t nil t))

(nextch (peek-char nil s t nil t)))

(cond ((charUU nextch #--\⇒)

(read-char s t nil t)

(cond ((member (peek-char nil s t nil t)

’(#--\Space #--\Tab #--\Newline))

(push item exceptions))

(t (push item domain)

(push (read s t nil t) range))))

((charUU nch #--\})

(read-char s t nil t)

(push item domain)

(push item range)

(return (xap (reverse domain) (reverse range))))

(t (push item domain)

(push item range))))))))
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[Function]set-dispatch-macro-character disp-char sub-char function

&optional readtable

[Function]get-dispatch-macro-character disp-char sub-char

&optional readtable

set-dispatch-macro-character causes function to be called when the disp-
char followed by sub-char is read. The readtable defaults to the current

readtable. The arguments and return values for function are the same as for

normal macro characters except that function gets sub-char, not disp-char,

as its second argument and also receives a third argument that is the non-
negative integer whose decimal representation appeared between disp-char

and sub-char, or nil if no decimal integer appeared there.

The sub-char may not be one of the ten decimal digits; they are always

reserved for specifying an infix integer argument. Moreover, if sub-char is

a lowercase character (see lower-case-p), its uppercase equivalent is used

instead. (This is how the rule is enforced that the case of a dispatch sub-
character doesn’t matter.)

set-dispatch-macro-character returns t.

get-dispatch-macro-character returns the macro-character function for

sub-char under disp-char, or nil if there is no function associated with sub-

char.

If the sub-char is one of the ten decimal digits 0 1 2 3 4 5 6 7 8 9, get-

dispatch-macro-character always returns nil. If sub-char is a lowercase

character, its uppercase equivalent is used instead.

X3J13 voted in January 1989 〈95〉 to specify that if nil is explicitly
passed as the second argument to get-dispatch-macro-character, then the

standard readtable is used. This is consistent with the behavior of copy-

readtable.

For either function, an error is signaled if the specified disp-char is not in

fact a dispatch character in the specified readtable. It is necessary to use
make-dispatch-macro-character to set up the dispatch character before

specifying its sub-characters.

As an example, suppose one would like #--$foo to be read as if it were

(dollars foo). One might say:

(defun |#--$-reader| (stream subchar arg)

(declare (ignore subchar arg))

(list ’dollars (read stream t nil t)))

(set-dispatch-macro-character #--\#-- #--\$ #--’|#--$-reader|)
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Compatibility note: This macro-character mechanism is different from those in
MacLisp, Interlisp, and Lisp Machine Lisp. Recently Lisp systems have implemented
very general readers, even readers so programmable that they can parse arbitrary
compiled BNF grammars. Unfortunately, these readers can be complicated to use.
This design is an attempt to make the reader as simple as possible to understand,
use, and implement. Splicing macros have been eliminated; a recent informal poll
indicates that no one uses them to produce other than zero or one value. The ability
to access parts of the object preceding the macro character has been eliminated. The
MacLisp single-character-object feature has been eliminated because it is seldom
used and trivially obtainable by defining a macro.

The user is encouraged to turn off most macro characters, turn others into single-
character-object macros, and then use read purely as a lexical analyzer on top of
which to build a parser. It is unnecessary, however, to cater to more complex lexical
analysis or parsing than that needed for Common Lisp.

[Function]readtable-case readtable

X3J13 voted in June 1989 〈150〉 to introduce the function readtable-case

to control the reader’s interpretation of case. It provides access to a slot in

a readtable, and may be used with setf to alter the state of that slot. The

possible values for the slot are :upcase, :downcase, :preserve, and :invert;

the readtable-case for the standard readtable is :upcase. Note that copy-
readtable is required to copy the readtable-case slot along with all other

readtable information.

Once the reader has accumulated a token as described in section 22.1.1,

if the token is a symbol, “replaceable” characters (unescaped uppercase or

lowercase constituent characters) may be modified under the control of the

readtable-case of the current readtable:

. For :upcase, replaceable characters are converted to uppercase. (This was

the behavior specified by the first edition.)

. For :downcase, replaceable characters are converted to lowercase.

. For :preserve, the cases of all characters remain unchanged.

. For :invert, if all of the replaceable letters in the extended token are of
the same case, they are all converted to the opposite case; otherwise the

cases of all characters in that token remain unchanged.

As an illustration, consider the following code.



INPUT/OUTPUT 593

(let ((*readtable* (copy-readtable nil)))

(format t "READTABLE-CASE Input Symbol-name~

~%-----------------------------------~

~%")

(dolist (readtable-case ’(:upcase :downcase :preserve :invert))

(setf (readtable-case *readtable*) readtable-case)

(dolist (input ’("ZEBRA" "Zebra" "zebra"))

(format t ":~A~16T~A~24T~A~%"

(string-upcase readtable-case)

input

(symbol-name (read-from-string input)))))))

The output from this test code should be

READTABLE-CASE Input Symbol-name

-----------------------------------

:UPCASE ZEBRA ZEBRA

:UPCASE Zebra ZEBRA

:UPCASE zebra ZEBRA

:DOWNCASE ZEBRA zebra

:DOWNCASE Zebra zebra

:DOWNCASE zebra zebra

:PRESERVE ZEBRA ZEBRA

:PRESERVE Zebra Zebra

:PRESERVE zebra zebra

:INVERT ZEBRA zebra

:INVERT Zebra Zebra

:INVERT zebra ZEBRA

The readtable-case of the current readtable also affects the printing of
symbols (see *print-case* and *print-escape*).

22.1.6. What the Print Function Produces

The Common Lisp printer is controlled by a number of special variables.

These are referred to in the following discussion and are fully documented at

the end of this section.

How an expression is printed depends on its data type, as described in the

following paragraphs.
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Integers

If appropriate, a radix specifier may be printed; see the variable *print-

radix*. If an integer is negative, a minus sign is printed and then the absolute

value of the integer is printed. Integers are printed in the radix specified by

the variable *print-base* in the usual positional notation, most significant

digit first. The number zero is represented by the single digit 0 and never
has a sign. A decimal point may then be printed, depending on the value of

*print-radix*.

Ratios

If appropriate, a radix specifier may be printed; see the variable *print-

radix*. If the ratio is negative, a minus sign is printed. Then the absolute
value of the numerator is printed, as for an integer; then a /; then the denomi-

nator. The numerator and denominator are both printed in the radix specified

by the variable *print-base*; they are obtained as if by the numerator and

denominator functions, and so ratios are always printed in reduced form (low-
est terms).

Floating-point numbers

If the sign of the number (as determined by the function float-sign) is
negative, then a minus sign is printed. Then the magnitude is printed in one

of two ways. If the magnitude of the floating-point number is either zero or

between 10−3 (inclusive) and 107 (exclusive), it may be printed as the integer

part of the number, then a decimal point, followed by the fractional part of the
number; there is always at least one digit on each side of the decimal point. If

the format of the number does not match that specified by the variable *read-

default-float-format*, then the exponent marker for that format and the

digit 0 are also printed. For example, the base of the natural logarithms as a

short-format floating-point number might be printed as 2.71828S0.

For non-zero magnitudes outside of the range 10−3 to 107, a floating-point
number will be printed in “computerized scientific notation.” The represen-

tation of the number is scaled to be between 1 (inclusive) and 10 (exclusive)

and then printed, with one digit before the decimal point and at least one

digit after the decimal point. Next the exponent marker for the format is
printed, except that if the format of the number matches that specified by

the variable *read-default-float-format*, then the exponent marker E is

used. Finally, the power of 10 by which the fraction must be multiplied to

equal the original number is printed as a decimal integer. For example, Avo-

gadro’s number as a short-format floating-point number might be printed as
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6.02S23.

Complex numbers

A complex number is printed as #--C, an open parenthesis, the printed repre-

sentation of its real part, a space, the printed representation of its imaginary
part, and finally a close parenthesis.

Characters........................................................................................................................................................................................................

When *print-escape* is nil, a character prints as itself; it is sent directly to

the output stream. When *print-escape* is not nil, then #--\ syntax is used.
For example, the printed representation of the character #--\A with control and

meta bits on would be #--\CONTROL-META-A, and that of #--\a with control and

meta bits on would be #--\CONTROL-META-\a.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not
nil then every object must be printed in a readable form, regardless of other

printer control variables. For characters, the simplest approach is always to

use #--\ syntax when *print-readably* is not nil, regardless of the value of

*print-escape*.

Symbols........................................................................................................................................................................................................

When *print-escape* is nil, only the characters of the print name of the

symbol are output (but the case in which to print any uppercase characters
in the print name is controlled by the variable *print-case*).

X3J13 voted in June 1989 〈150〉 to specify that the new readtable-case

slot of the current readtable also controls the case in which letters (whether

uppercase or lowercase) in the print name of a symbol are output, no matter
what the value of *print-escape*.

The remaining paragraphs describing the printing of symbols cover the sit-
........................................................................................................................................................................................................

uation when *print-escape* is not nil.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is

not nil then every object must be printed in a readable form, regardless of
other printer control variables. For symbols, the simplest approach is to print

them, when *print-readably* is not nil, as if *print-escape* were not

nil, regardless of the actual value of *print-escape*.

Backslashes \ and vertical bars | are included as required. In particular,
backslash or vertical-bar syntax is used when the name of the symbol would

be otherwise treated by the reader as a potential number (see section 22.1.2).

In making this decision, it is assumed that the value of *print-base* being

used for printing would be used as the value of *read-base* used for reading;

the value of *read-base* at the time of printing is irrelevant. For example, if
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the value of *print-base* were 16 when printing the symbol face, it would

have to be printed as \FACE or \Face or |FACE|, because the token face would

be read as a hexadecimal number (decimal value 64206) if *read-base* were

16.

The case in which to print any uppercase characters in the print name is
........................................................................................................................................................................................................

controlled by the variable *print-case*.

X3J13 voted in June 1989 〈141〉 to clarify the interaction of *print-case*

with *print-escape*; see *print-case*.

As a special case [no pun intended], nil may sometimes be printed as ()

instead, when *print-escape* and *print-pretty* are both not nil.

Package prefixes may be printed (using colon syntax) if necessary. The rules

for package qualifiers are as follows. When the symbol is printed, if it is in

the keyword package, then it is printed with a preceding colon; otherwise, if

it is accessible in the current package, it is printed without any qualification;
otherwise, it is printed with qualification. See chapter 11.

A symbol that is uninterned (has no home package) is printed preceded by
........................................................................................................................................................................................................

#--: if the variables *print-gensym* and *print-escape* are both non-nil;

if either is nil, then the symbol is printed without a prefix, as if it were in
the current package.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not

nil then every object must be printed in a readable form, regardless of other

printer control variables. For uninterned symbols, the simplest approach is to

print them, when *print-readably* is not nil, as if *print-escape* and
*print-gensym* were not nil, regardless of their actual values.

Implementation note: Because the #--: syntax does not intern the following sym-
bol, it is necessary to use circular-list syntax if *print-circle* is not nil and the
same uninterned symbol appears several times in an expression to be printed. For
example, the result of

(let ((x (make-symbol "FOO"))) (list x x))

would be printed as

(#--:foo #--:foo)

if *print-circle* were nil, but as

(#--1UU#--:foo #--1#--)

if *print-circle* were not nil.
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The case in which symbols are to be printed is controlled by the variable
........................................................................................................................................................................................................

*print-case*.

It is also controlled by *print-escape* and the readtable-case slot of

the current readtable (the value of *readtable*).

Strings........................................................................................................................................................................................................

The characters of the string are output in order. If *print-escape* is not

nil, a double quote is output before and after, and all double quotes and
single escape characters are preceded by backslash. The printing of strings

is not affected by *print-array*. If the string has a fill pointer, then only

those characters below the fill pointer are printed.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not
nil then every object must be printed in a readable form, regardless of other

printer control variables. For strings, the simplest approach is to print them,

when *print-readably* is not nil, as if *print-escape* were not nil,

regardless of the actual value of *print-escape*.

Conses

Wherever possible, list notation is preferred over dot notation. Therefore the

following algorithm is used:

1. Print an open parenthesis, (.

2. Print the car of the cons.

3. If the cdr is a cons, make it the current cons, print a space, and go to step

2.

4. If the cdr is not null, print a space, a dot, a space, and the cdr.

5. Print a close parenthesis, ).

This form of printing is clearer than showing each individual cons cell.

Although the two expressions below are equivalent, and the reader will accept

either one and produce the same data structure, the printer will always print

such a data structure in the second form.

(a . (b . ((c . (d . nil)) . (e . nil))))

(a b (c d) e)

The printing of conses is affected by the variables *print-level* and
........................................................................................................................................................................................................

*print-length*.
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X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is

not nil then every object must be printed in a readable form, regardless of

other printer control variables. For conses, the simplest approach is to print

them, when *print-readably* is not nil, as if *print-level* and *print-

length* were nil, regardless of their actual values.

Bit-vectors........................................................................................................................................................................................................

A bit-vector is printed as #--* followed by the bits of the bit-vector in order.

If *print-array* is nil, however, then the bit-vector is printed in a format
(using #--<) that is concise but not readable. If the bit-vector has a fill pointer,

then only those bits below the fill pointer are printed.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not

nil then every object must be printed in a readable form, regardless of other
printer control variables. For bit-vectors, the simplest approach is to print

them, when *print-readably* is not nil, as if *print-array* were not

nil, regardless of the actual value of *print-array*.

Vectors

Any vector other than a string or bit-vector is printed using general-vector

syntax; this means that information about specialized vector representations

will be lost. The printed representation of a zero-length vector is #--(). The

printed representation of a non-zero-length vector begins with #--(. Following
that, the first element of the vector is printed. If there are any other ele-

ments, they are printed in turn, with a space printed before each additional

element. A close parenthesis after the last element terminates the printed

representation of the vector.

The printing of vectors is affected by the variables *print-level* and
........................................................................................................................................................................................................

*print-length*. If the vector has a fill pointer, then only those elements

below the fill pointer are printed.

If *print-array* is nil, however, then the vector is not printed as de-

scribed above, but in a format (using #--<) that is concise but not readable.
X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is

not nil then every object must be printed in a readable form, regardless of

other printer control variables. For vectors, the simplest approach is to print

them, when *print-readably* is not nil, as if *print-level* and *print-

length* were nil and *print-array*were not nil, regardless of their actual
values.

Arrays

Normally any array other than a vector is printed using #--nA format. Let n be
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the rank of the array. Then #-- is printed, then n as a decimal integer, then A,

then n open parentheses. Next the elements are scanned in row-major order.

Imagine the array indices being enumerated in odometer fashion, recalling

that the dimensions are numbered from 0 to n − 1. Every time the index for

dimension j is incremented, the following actions are taken:

1. If j < n − 1, then print a close parenthesis.

2. If incrementing the index for dimension j caused it to equal dimension j,
reset that index to zero and increment dimension j −1 (thereby performing

these three steps recursively), unless j = 0, in which case simply terminate

the entire algorithm. If incrementing the index for dimension j did not

cause it to equal dimension j, then print a space.

3. If j < n − 1, then print an open parenthesis.

This causes the contents to be printed in a format suitable for use as the
:initial-contents argument to make-array.

The lists effectively printed by this procedure are subject to truncation by
........................................................................................................................................................................................................

*print-level* and *print-length*.

If the array is of a specialized type, containing bits or string-characters,

then the innermost lists generated by the algorithm given above may instead

be printed using bit-vector or string syntax, provided that these innermost
lists would not be subject to truncation by *print-length*. For example, a

3-by-2-by-4 array of string-characters that would ordinarily be printed as

#--3A(((#--\s #--\t #--\o #--\p) (#--\s #--\p #--\o #--\t))

((#--\p #--\o #--\s #--\t) (#--\p #--\o #--\t #--\s))

((#--\t #--\o #--\p #--\s) (#--\o #--\p #--\t #--\s)))

may instead be printed more concisely as

#--3A(("stop" "spot") ("post" "pots") ("tops" "opts"))

If *print-array* is nil, then the array is printed in a format (using #--<)
........................................................................................................................................................................................................

that is concise but not readable.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is
not nil then every object must be printed in a readable form, regardless of

other printer control variables. For arrays, the simplest approach is to print

them, when *print-readably* is not nil, as if *print-level* and *print-

length* were nil and *print-array*were not nil, regardless of their actual

values.
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Random-states

Common Lisp does not specify a specific syntax for printing objects of type
random-state. However, every implementation must arrange to print a

random-state object in such a way that, within the same implementation

of Common Lisp, the function read can construct from the printed represen-

tation a copy of the random-state object as if the copy had been made by
make-random-state.

Pathnames........................................................................................................................................................................................................

Common Lisp does not specify a specific syntax for printing objects of type

pathname. However, every implementation must arrange to print a pathname

in such a way that, within the same implementation of Common Lisp, the

function read can construct from the printed representation an equivalent
instance of the pathname object.

X3J13 voted in June 1989 〈131〉 to specify that if *print-escape* is

true, a pathname should be printed by write as #--P"..." where "..." is

the namestring representation of the pathname. If *print-escape* is false,
write prints a pathname by printing its namestring (presumably without

escape characters or surrounding double quotes).

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not

nil then every object must be printed in a readable form, regardless of other

printer control variables. For pathnames, the simplest approach is to print
them, when *print-readably* is not nil, as if *print-escape* were nil,

regardless of its actual value.

Structures defined by defstruct are printed under the control of the user-
specified :print-function option to defstruct. If the user does not provide

a printing function explicitly, then a default printing function is supplied that

prints the structure using #--S syntax (see section 22.1.4).

Any other types are printed in an implementation-dependent manner. It is
........................................................................................................................................................................................................

recommended that printed representations of all such objects begin with the
characters #--< and end with > so that the reader will catch such objects and

not permit them to be read under normal circumstances. It is specifically and

purposely not required that a Common Lisp implementation be able to print

an object of type hash-table, readtable, package, stream, or function in
a way that can be read back in successfully by read; the use of #--< syntax is

especially recommended for the printing of such objects.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not

nil then every object must be printed in a readable form, regardless of the

values of other printer control variables; if this is not possible, then an error of
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type print-not-readable must be signaled to avoid printing an unreadable

syntax such as #--<...>.

X3J13 voted in June 1989 〈40〉 to add print-unreadable-object, a macro

that prints an object using #--<...> syntax and also takes care of checking the

variable *print-readably*.

When debugging or when frequently dealing with large or deep objects at

top level, the user may wish to restrict the printer from printing large amounts
of information. The variables *print-level* and *print-length* allow the

user to control how deep the printer will print and how many elements at a

given level the printer will print. Thus the user can see enough of the object

to identify it without having to wade through the entire expression.

[Variable]*print-readably*

The default value of *print-readably* is nil. If *print-readably* is true,

then printing any object must either produce a printed representation that

the reader will accept or signal an error. If printing is successful, the reader
will, on reading the printed representation, produce an object that is “similar

as a constant” (see section 25.1.4) to the object that was printed.

If *print-readably* is true and printing a readable printed representation

is not possible, the printer signals an error of type print-not-readable rather

than using an unreadable syntax such as #--<. The printed representation

produced when *print-readably* is true might or might not be the same as
the printed representation produced when *print-readably* is false.

If *print-readably* is true and another printer control variable (such

as *print-length*, *print-level*, *print-escape*, *print-gensym*,

*print-array*, or an implementation-defined printer control variable) would

cause the preceding requirements to be violated, that other printer control

variable is ignored.

The printing of interned symbols is not affected by *print-readably*.

Note that the “similar as a constant” rule for readable printing implies

that #--A or #--( syntax cannot be used for arrays of element-type other than t.
An implementation will have to use another syntax or signal a print-not-

readable error. A print-not-readable error will not be signaled for strings

or bit-vectors.

All methods for print-object must obey *print-readably*. This rule

applies to both user-defined methods and implementation-defined methods.

The reader control variable *read-eval* also affects printing. If *read-

eval* is false and *print-readably* is true, any print-object method
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that would otherwise output a #--. reader macro must either output something

different or signal an error of type print-not-readable.

Readable printing of structures and objects of type standard-object is

controlled by their print-object methods, not by their make-load-form

methods. “Similarity as a constant” for these objects is application-dependent

and hence is defined to be whatever these methods do.

*print-readably* allows errors involving data with no readable printed
representation to be detected when writing the file rather than later on when

the file is read.

*print-readably* is more rigorous than *print-escape*; output printed

with escapes must be merely generally recognizable by humans, with a good
chance of being recognizable by computers, whereas output printed readably

must be reliably recognizable by computers.

[Variable]*print-escape*

When this flag is nil, then escape characters are not output when an ex-
pression is printed. In particular, a symbol is printed by simply printing the

characters of its print name. The function princ effectively binds *print-

escape* to nil.

When this flag is not nil, then an attempt is made to print an expression

in such a way that it can be read again to produce an equal structure. The

function prin1 effectively binds *print-escape* to t. The initial value of

this variable is t.

Compatibility note: *print-escape* controls what was called slashification in
MacLisp.

[Variable]*print-pretty*

When this flag is nil, then only a small amount of whitespace is output when

printing an expression.

When this flag is not nil, then the printer will endeavor to insert extra

whitespace where appropriate to make the expression more readable. A few

other simple changes may be made, such as printing ’foo instead of (quote

foo).

The initial value of *print-pretty* is implementation-dependent.

X3J13 voted in January 1989 〈139〉 to adopt a facility for user-controlled

pretty printing in Common Lisp (see chapter 27).
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[Variable]*print-circle*

When this flag is nil (the default), then the printing process proceeds by

recursive descent; an attempt to print a circular structure may lead to looping

behavior and failure to terminate.

When this flag is not nil, then the printer will endeavor to detect cycles
........................................................................................................................................................................................................

in the structure to be printed, and to use #--nUU and #--n#-- syntax to indicate the

circularities.

X3J13 voted in June 1989 〈142〉 to specify that if *print-circle* is true,

the printer is required to detect not only cycles but shared substructure,

indicating both through the use of #--nUU and #--n#-- syntax. As an example,
under the specification of the first edition

(print ’(#--1UU(a #--1#--) #--1#--))

might legitimately print (#--1UU(A #--1#--) #--1#--) or (#--1UU(A #--1#--) #--2UU(A #--2#--));
the vote specifies that the first form is required.

X3J13 voted in January 1989 〈143〉 to specify that user-defined printing
functions for the defstruct :print-function option, as well as user-defined

methods for the CLOS generic function print-object, may print objects to

the supplied stream using write, print1, princ, format, or print-object

and expect circularities to be detected and printed using #--n#-- syntax (when
*print-circle* is non-nil, of course).

It seems to me that the same ought to apply to abbreviation as controlled
by *print-level* and *print-length*, but that was not addressed by this

vote.

[Variable]*print-base*

The value of *print-base* determines in what radix the printer will print

rationals. This may be any integer from 2 to 36, inclusive; the default value
is 10 (decimal radix). For radices above 10, letters of the alphabet are used

to represent digits above 9.

Compatibility note: MacLisp calls this variable base, and its default value is 8,
not 10.

In both MacLisp and Common Lisp, floating-point numbers are always printed
in decimal, no matter what the value of *print-base*.
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[Variable]*print-radix*

If the variable *print-radix* is non-nil, the printer will print a radix speci-

fier to indicate the radix in which it is printing a rational number. To prevent

confusion of the letter O with the digit 0, and of the letter B with the digit
8, the radix specifier is always printed using lowercase letters. For example,

if the current base is twenty-four (decimal), the decimal integer twenty-three

would print as #--24rN. If *print-base* is 2, 8, or 16, then the radix specifier

used is #--b, #--o, or #--x. For integers, base ten is indicated by a trailing decimal
point instead of a leading radix specifier; for ratios, however, #--10r is used.

The default value of *print-radix* is nil.

[Variable]*print-case*

The read function normally converts lowercase characters appearing in sym-

bols to corresponding uppercase characters, so that internally print names

normally contain only uppercase characters. However, users may prefer to

see output using lowercase letters or letters of mixed case. This variable
controls the case (upper, lower, or mixed) in which to print any uppercase

characters in the names of symbols when vertical-bar syntax is not used. The

value of *print-case* should be one of the keywords :upcase, :downcase,

or :capitalize; the initial value is :upcase.

Lowercase characters in the internal print name are always printed in low-
ercase, and are preceded by a single escape character or enclosed by multiple

escape characters. Uppercase characters in the internal print name are printed

in uppercase, in lowercase, or in mixed case so as to capitalize words, accord-

ing to the value of *print-case*. The convention for what constitutes a
“word” is the same as for the function string-capitalize.

X3J13 voted in June 1989 〈141〉 to clarify the interaction of *print-case*

with *print-escape*. When *print-escape* is nil, *print-case* deter-

mines the case in which to print all uppercase characters in the print name

of the symbol. When *print-escape* is not nil, the implementation has
some freedom as to which characters will be printed so as to appear in an

“escape context” (after an escape character, typically \, or between multiple

escape characters, typically |); *print-case* determines the case in which

to print all uppercase characters that will not appear in an escape context.
For example, when the value of *print-case* is :upcase, an implementation

might choose to print the symbol whose print name is "(S)HE" as \(S\)HE

or as |(S)HE|, among other possibilities. When the value of *print-case*

is :downcase, the corresponding output should be \(s\)he or |(S)HE|, re-

spectively.
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Consider the following test code. (For the sake of this example assume that

readtable-case is :upcase in the current readtable; this is discussed further

below.)

(let ((tabwidth 11))

(dolist (sym ’(|x| |FoObAr| |fOo|))

(let ((tabstop -1))

(format t "~&")

(dolist (escape ’(t nil))

(dolist (case ’(:upcase :downcase :capitalize))

(format t "~VT" (* (incf tabstop) tabwidth))

(write sym :escape escape :case case)))))

(format t " %"))

An implementation that leans heavily on multiple-escape characters (vertical

bars) might produce the following output:

|x| |x| |x| x x x

|FoObAr| |FoObAr| |FoObAr| FoObAr foobar Foobar

|fOo| |fOo| |fOo| fOo foo foo

An implementation that leans heavily on single-escape characters (back-

slashes) might produce the following output:

\x \x \x x x x

F\oO\bA\r f\oo\ba\r F\oo\ba\r FoObAr foobar Foobar

\fO\o \fo\o \fo\o fOo foo foo

These examples are not exhaustive; output using both kinds of escape char-

acters (for example, |FoO|\bA\r) is permissible (though ugly).

X3J13 voted in June 1989 〈150〉 to add a new readtable-case slot to

readtables to control automatic case conversion during the reading of symbols.

The value of readtable-case in the current readtable also affects the printing

of unescaped letters (letters appearing in an escape context are always printed

in their own case).

. If readtable-case is :upcase, unescaped uppercase letters are printed in

the case specified by *print-case* and unescaped lowercase letters are

printed in their own case. (If *print-escape* is non-nil, all lowercase

letters will necessarily be escaped.)

. If readtable-case is :downcase, unescaped lowercase letters are printed

in the case specified by *print-case* and unescaped uppercase letters are
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printed in their own case. (If *print-escape* is non-nil, all uppercase

letters will necessarily be escaped.)

. If readtable-case is :preserve, all unescaped letters are printed in their

own case, regardless of the value of *print-case*. There is no need to
escape any letters, even if *print-escape* is non-nil, though the X3J13

vote did not prohibit escaping letters in this situation.

. If readtable-case is :invert, and if all unescaped letters are of the same

case, then the case of all the unescaped letters is inverted; but if the un-
escaped letters are not all of the same case then each is printed in its own

case. (Thus :invert does not always invert the case; the inversion is con-

ditional.) There is no need to escape any letters, even if *print-escape*

is non-nil, though the X3J13 vote did not prohibit escaping letters in this
situation.

Consider the following code.

;;; Generate a table illustrating READTABLE-CASE and *PRINT-CASE*.

(let ((*readtable* (copy-readtable nil))

(*print-case* *print-case*))

(format t "READTABLE-CASE *PRINT-CASE* Symbol-name Output~

~%--------------------------------------------------~

~%")

(dolist (readtable-case ’(:upcase :downcase :preserve :invert))

(setf (readtable-case *readtable*) readtable-case)

(dolist (print-case ’(:upcase :downcase :capitalize))

(dolist (sym ’(|ZEBRA| |Zebra| |zebra|))

(setq *print-case* print-case)

(format t ":~A~15T:~A~29T~A~42T~A~%"

(string-upcase readtable-case)

(string-upcase print-case)

(symbol-name sym)

(prin1-to-string sym)))))))

Note that the call to prin1-to-string (the last argument in the call to

format that is within the nested loops) effectively uses a non-nil value for

*print-escape*.

Assuming an implementation that uses vertical bars around a symbol name

if any characters need escaping, the output from this test code should be
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READTABLE-CASE *PRINT-CASE* Symbol-name Output

--------------------------------------------------

:UPCASE :UPCASE ZEBRA ZEBRA

:UPCASE :UPCASE Zebra |Zebra|

:UPCASE :UPCASE zebra |zebra|

:UPCASE :DOWNCASE ZEBRA zebra

:UPCASE :DOWNCASE Zebra |Zebra|

:UPCASE :DOWNCASE zebra |zebra|

:UPCASE :CAPITALIZE ZEBRA Zebra

:UPCASE :CAPITALIZE Zebra |Zebra|

:UPCASE :CAPITALIZE zebra |zebra|

:DOWNCASE :UPCASE ZEBRA |ZEBRA|

:DOWNCASE :UPCASE Zebra |Zebra|

:DOWNCASE :UPCASE zebra ZEBRA

:DOWNCASE :DOWNCASE ZEBRA |ZEBRA|

:DOWNCASE :DOWNCASE Zebra |Zebra|

:DOWNCASE :DOWNCASE zebra zebra

:DOWNCASE :CAPITALIZE ZEBRA |ZEBRA|

:DOWNCASE :CAPITALIZE Zebra |Zebra|

:DOWNCASE :CAPITALIZE zebra Zebra

:PRESERVE :UPCASE ZEBRA ZEBRA

:PRESERVE :UPCASE Zebra Zebra

:PRESERVE :UPCASE zebra zebra

:PRESERVE :DOWNCASE ZEBRA ZEBRA

:PRESERVE :DOWNCASE Zebra Zebra

:PRESERVE :DOWNCASE zebra zebra

:PRESERVE :CAPITALIZE ZEBRA ZEBRA

:PRESERVE :CAPITALIZE Zebra Zebra

:PRESERVE :CAPITALIZE zebra zebra

:INVERT :UPCASE ZEBRA zebra

:INVERT :UPCASE Zebra Zebra

:INVERT :UPCASE zebra ZEBRA

:INVERT :DOWNCASE ZEBRA zebra

:INVERT :DOWNCASE Zebra Zebra

:INVERT :DOWNCASE zebra ZEBRA

:INVERT :CAPITALIZE ZEBRA zebra

:INVERT :CAPITALIZE Zebra Zebra

:INVERT :CAPITALIZE zebra ZEBRA

This illustrates all combinations for readtable-case and *print-case*.
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Table 22-6: Examples of Print Level and Print Length Abbreviation

v n Output

0 1 #--
1 1 (if ...)

1 2 (if #-- ...)

1 3 (if #-- #-- ...)

1 4 (if #-- #-- #--)

2 1 (if ...)

2 2 (if (member x ...) ...)

2 3 (if (member x y) (+ #-- 3) ...)

3 2 (if (member x ...) ...)

3 3 (if (member x y) (+ (car x) 3) ...)

3 4 (if (member x y) (+ (car x) 3) ’(foo . #--(a b c d ...)))

3 5 (if (member x y) (+ (car x) 3) ’(foo . #--(a b c d "Baz")))

[Variable]*print-gensym*

The *print-gensym* variable controls whether the prefix #--: is printed before
symbols that have no home package. The prefix is printed if the variable is

not nil. The initial value of *print-gensym* is t.

[Variable]*print-level*

[Variable]*print-length*

The *print-level* variable controls how many levels deep a nested data

object will print. If *print-level* is nil (the initial value), then no control is

exercised. Otherwise, the value should be an integer, indicating the maximum

level to be printed. An object to be printed is at level 0; its components (as
of a list or vector) are at level 1; and so on. If an object to be recursively

printed has components and is at a level equal to or greater than the value of

*print-level*, then the object is printed as simply #--.

The *print-length* variable controls how many elements at a given level

are printed. A value of nil (the initial value) indicates that there be no
limit to the number of components printed. Otherwise, the value of *print-

length* should be an integer. Should the number of elements of a data object

exceed the value *print-length*, the printer will print three dots, ..., in

place of those elements beyond the number specified by *print-length*. (In

the case of a dotted list, if the list contains exactly as many elements as the
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value of *print-length*, and in addition has the non-null atom terminating

it, that terminating atom is printed rather than the three dots.)

*print-level* and *print-length* affect the printing not only of lists

but also of vectors, arrays, and any other object printed with a list-like syntax.

They do not affect the printing of symbols, strings, and bit-vectors.
The Lisp reader will normally signal an error when reading an expression

that has been abbreviated because of level or length limits. This signal is given

because the #-- dispatch character normally signals an error when followed by

whitespace or ), and because ... is defined to be an illegal token, as are all

tokens consisting entirely of periods (other than the single dot used in dot
notation).

As an example, table 22-6 shows the ways the object

(if (member x y) (+ (car x) 3) ’(foo . #--(a b c d "Baz")))

would be printed for various values of *print-level* (in the column labeled

v) and *print-length* (in the column labeled n).

[Variable]*print-array*

If *print-array* is nil, then the contents of arrays other than strings are

never printed. Instead, arrays are printed in a concise form (using #--<) that
gives enough information for the user to be able to identify the array but does

not include the entire array contents. If *print-array* is not nil, non-string

arrays are printed using #--(, #--*, or #--nA syntax.

Notice of correction. In the first edition, the preceding paragraph mentioned
the nonexistent variable print-array instead of *print-array*.

The initial value of *print-array* is implementation-dependent.

[Macro]with-standard-io-syntax {declaration}∗ { form}∗

X3J13 voted in June 1989 〈40〉 to add the macro with-standard-io-syntax.

Within the dynamic extent of the body, all reader/printer control variables,

including any implementation-defined ones not specified by Common Lisp,

are bound to values that produce standard read/print behavior. Table 22-7

shows the values to which standard Common Lisp variables are bound.
The values returned by with-standard-io-syntax are the values of the

last body form, or nil if there are no body forms.

The intent is that a pair of executions, as shown in the following exam-

ple, should provide reasonable reliable communication of data from one Lisp

process to another:
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Table 22-7: Standard Bindings for I/O Control Variables

Variable Value

*package* the common-lisp-user package
*print-array* t

*print-base* 10

*print-case* :upcase

*print-circle* nil

*print-escape* t

*print-gensym* t

*print-length* nil

*print-level* nil

*print-lines* nil *
*print-miser-width* nil *
*print-pprint-dispatch* nil *
*print-pretty* nil

*print-radix* nil

*print-readably* t

*print-right-margin* nil *
*read-base* 10

*read-default-float-format* single-float

*read-eval* t

*read-suppress* nil

*readtable* the standard readtable

* X3J13 voted in June 1989 〈139〉 to introduce the printer control vari-
ables *print-right-margin*, *print-miser-width*, *print-lines*, and *print-

pprint-dispatch* (see section 27.2) but did not specify the values to which with-

standard-io-syntax should bind them. I recommend that all four should be bound
to nil.

;;; Write DATA to a file.

(with-open-file (file pathname :direction :output)

(with-standard-io-syntax

(print data file)))

;;; ... Later, in another Lisp:

(with-open-file (file pathname :direction :input)

(with-standard-io-syntax

(setq data (read file))))

Using with-standard-io-syntax to bind all the variables, instead of us-
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ing let and explicit bindings, ensures that nothing is overlooked and avoids

problems with implementation-defined reader/printer control variables. If the

user wishes to use a non-standard value for some variable, such as *package*

or *read-eval*, it can be bound by let inside the body of with-standard-

io-syntax. For example:

;;; Write DATA to a file. Forbid use of #--. syntax.

(with-open-file (file pathname :direction :output)

(let ((*read-eval* nil))

(with-standard-io-syntax

(print data file))))

;;; Read DATA from a file. Forbid use of #--. syntax.

(with-open-file (file pathname :direction :input)

(let ((*read-eval* nil))

(with-standard-io-syntax

(setq data (read file)))))

Similarly, a user who dislikes the arbitrary choice of values for *print-

circle* and *print-pretty* can bind these variables to other values inside

the body.

The X3J13 vote left it unclear whether with-standard-io-syntax permits

declarations to appear before the body of the macro call. I believe that was
the intent, and this is reflected in the syntax shown above; but this is only

my interpretation.

22.2. Input Functions

The input functions are divided into two groups: those that operate on streams
of characters and those that operate on streams of binary data.

22.2.1. Input from Character Streams

Many character input functions take optional arguments called input-stream,

eof-error-p, and eof-value. The input-stream argument is the stream from
which to obtain input; if unsupplied or nil it defaults to the value of the

special variable *standard-input*. One may also specify t as a stream,

meaning the value of the special variable *terminal-io*.

The eof-error-p argument controls what happens if input is from a file (or

any other input source that has a definite end) and the end of the file is



612 COMMON LISP

reached. If eof-error-p is true (the default), an error will be signaled at end

of file. If it is false, then no error is signaled, and instead the function returns

eof-value.

X3J13 voted in January 1989 〈7〉 to clarify that an eof-value argument may

be any Lisp datum whatsoever.
Functions such as read that read the representation of an object rather

than a single character will always signal an error, regardless of eof-error-p,

if the file ends in the middle of an object representation. For example, if a

file does not contain enough right parentheses to balance the left parentheses
in it, read will complain. If a file ends in a symbol or a number immediately

followed by end-of-file, read will read the symbol or number successfully and

when called again will see the end-of-file and only then act according to eof-

error-p. Similarly, the function read-line will successfully read the last line

of a file even if that line is terminated by end-of-file rather than the newline
character. If a file contains ignorable text at the end, such as blank lines and

comments, read will not consider it to end in the middle of an object. Thus

an eof-error-p argument controls what happens when the file ends between

objects.
Many input functions also take an argument called recursive-p. If specified

and not nil, this argument specifies that this call is not a “top-level” call to

read but an imbedded call, typically from the function for a macro character.

It is important to distinguish such recursive calls for three reasons.

First, a top-level call establishes the context within which the #--nUU and #--n#--
syntax is scoped. Consider, for example, the expression

(cons ’#--3UU(p q r) ’(x y . #--3#--))

If the single-quote macro character were defined in this way:

(set-macro-character #--\’

#--’(lambda (stream char)

(declare (ignore char))

(list ’quote (read stream))))

then the expression could not be read properly, because there would be no

way to know when read is called recursively by the first occurrence of ’ that

the label #--3UU would be referred to later in the containing expression. There

would be no way to know because read could not determine that it was called

by a macro-character function rather than from “top level.” The correct way
to define the single quote macro character uses the recursive-p argument:

(set-macro-character #--\’
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#--’(lambda (stream char)

(declare (ignore char))

(list ’quote (read stream t nil t))))

Second, a recursive call does not alter whether the reading process is to

preserve whitespace or not (as determined by whether the top-level call was to

read or read-preserving-whitespace). Suppose again that the single quote
had the first, incorrect, macro-character definition shown above. Then a call

to read-preserving-whitespace that read the expression ’foo would fail to

preserve the space character following the symbol foo because the single-quote

macro-character function calls read, not read-preserving-whitespace, to
read the following expression (in this case foo). The correct definition, which

passes the value t for the recursive-p argument to read, allows the top-level

call to determine whether whitespace is preserved.

Third, when end-of-file is encountered and the eof-error-p argument is not

nil, the kind of error that is signaled may depend on the value of recursive-p.
If recursive-p is not nil, then the end-of-file is deemed to have occurred within

the middle of a printed representation; if recursive-p is nil, then the end-of-

file may be deemed to have occurred between objects rather than within the

middle of one.

[Function]read &optional input-stream eof-error-p eof-value

recursive-p

read reads in the printed representation of a Lisp object from input-stream,

builds a corresponding Lisp object, and returns the object.
Note that when the variable *read-suppress* is not nil, then read reads

in a printed representation as best it can, but most of the work of interpreting

the representation is avoided (the intent being that the result is to be discarded

anyway). For example, all extended tokens produce the result nil regardless
of their syntax.

[Variable]*read-default-float-format*

The value of this variable must be a type specifier symbol for a specific floating-

point format; these include short-float, single-float, double-float, and
long-float and may include implementation-specific types as well. The de-

fault value is single-float.

*read-default-float-format* indicates the floating-point format to be

used for reading floating-point numbers that have no exponent marker or have

e or E for an exponent marker. (Other exponent markers explicitly prescribe
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the floating-point format to be used.) The printer also uses this variable to

guide the choice of exponent markers when printing floating-point numbers.

[Function]read-preserving-whitespace &optional in-stream

eof-error-p eof-value recursive-p

Certain printed representations given to read, notably those of symbols and

numbers, require a delimiting character after them. (Lists do not, because the

close parenthesis marks the end of the list.) Normally read will throw away

the delimiting character if it is a whitespace character; but read will preserve
the character (using unread-char) if it is syntactically meaningful, because

it may be the start of the next expression.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of unread-

char with echo streams. These changes indirectly affect the echoing behavior

of read-preserving-whitespace.
The function read-preserving-whitespace is provided for some special-

ized situations where it is desirable to determine precisely what character

terminated the extended token.

As an example, consider this macro-character definition:

(defun slash-reader (stream char)

(declare (ignore char))

(do ((path (list (read-preserving-whitespace stream))

(cons (progn (read-char stream nil nil t)

(read-preserving-whitespace

stream))

path)))

((not (charUU (peek-char nil stream nil nil t) #--\/))

(cons ’path (nreverse path)))))

(set-macro-character #--\/ #--’slash-reader)

(This is actually a rather dangerous definition to make because expressions

such as (/ x 3) will no longer be read properly. The ability to reprogram

the reader syntax is very powerful and must be used with caution. This

redefinition of / is shown here purely for the sake of example.)
Consider now calling read on this expression:

(zyedh /usr/games/zork /usr/games/boggle)

The / macro reads objects separated by more / characters; thus

/usr/games/zork is intended to be read as (path usr games zork). The

entire example expression should therefore be read as
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(zyedh (path usr games zork) (path usr games boggle))

However, if read had been used instead of read-preserving-whitespace,

then after the reading of the symbol zork, the following space would be dis-

carded; the next call to peek-char would see the following /, and the loop

would continue, producing this interpretation:

(zyedh (path usr games zork usr games boggle))

On the other hand, there are times when whitespace should be discarded. If a

command interpreter takes single-character commands, but occasionally reads

a Lisp object, then if the whitespace after a symbol is not discarded it might

be interpreted as a command some time later after the symbol had been read.
Note that read-preserving-whitespace behaves exactly like read when

the recursive-p argument is not nil. The distinction is established only by

calls with recursive-p equal to nil or omitted.

[Function]read-delimited-list char &optional input-stream

recursive-p

This reads objects from stream until the next character after an object’s repre-

sentation (ignoring whitespace characters and comments) is char. (The char

should not have whitespace syntax in the current readtable.) A list of the

objects read is returned.
To be more precise, read-delimited-list looks ahead at each step for the

next non-whitespace character and peeks at it as if with peek-char. If it is

char, then the character is consumed and the list of objects is returned. If

it is a constituent or escape character, then read is used to read an object,
which is added to the end of the list. If it is a macro character, the associated

macro function is called; if the function returns a value, that value is added

to the list. The peek-ahead process is then repeated.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of peek-char

with echo streams. These changes indirectly affect the echoing behavior of
the function read-delimited-list.

This function is particularly useful for defining new macro characters. Usu-

ally it is desirable for the terminating character char to be a terminating

macro character so that it may be used to delimit tokens; however, read-
delimited-list makes no attempt to alter the syntax specified for char by

the current readtable. The user must make any necessary changes to the

readtable syntax explicitly. The following example illustrates this.

Suppose you wanted #--{a b c ... z} to be read as a list of all pairs of the

elements a, b, c, ..., z; for example:
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#--{p q z a} reads as ((p q) (p z) (p a) (q z) (q a) (z a))

This can be done by specifying a macro-character definition for #--{ that does

two things: read in all the items up to the }, and construct the pairs. read-

delimited-list performs the first task.

Note that mapcon allows the mapped function to examine the items of the
list after the current one, and that mapcon uses nconc, which is all right

because mapcar will produce fresh lists.



INPUT/OUTPUT 617

(defun |#--{-reader| (stream char arg)

(declare (ignore char arg))

(mapcon #--’(lambda (x)

(mapcar #--’(lambda (y) (list (car x) y)) (cdr x)))

(read-delimited-list #--\} stream t)))

(set-dispatch-macro-character #--\#-- #--\{ #--’|#--{-reader|)

(set-macro-character #--\} (get-macro-character #--\) nil))

(Note that t is specified for the recursive-p argument.)
It is necessary here to give a definition to the character } as well to prevent

it from being a constituent. If the line

(set-macro-character #--\} (get-macro-character #--\) nil))

shown above were not included, then the } in

#--{p q z a}

would be considered a constituent character, part of the symbol named a}.

One could correct for this by putting a space before the }, but it is better

simply to use the call to set-macro-character.

Giving } the same definition as the standard definition of the character ) has
the twin benefit of making it terminate tokens for use with read-delimited-

list and also making it illegal for use in any other context (that is, attempting

to read a stray } will signal an error).

Note that read-delimited-list does not take an eof-error-p (or eof-value)

argument. The reason is that it is always an error to hit end-of-file during the
operation of read-delimited-list.

[Function]read-line &optional input-stream eof-error-p eof-value
recursive-p

read-line reads in a line of text terminated by a newline. It returns the line

as a character string (without the newline character). This function is usually

used to get a line of input from the user. A second returned value is a flag that
is false if the line was terminated normally, or true if end-of-file terminated the

(non-empty) line. If end-of-file is encountered immediately (that is, appears

to terminate an empty line), then end-of-file processing is controlled in the

usual way by the eof-error-p, eof-value, and recursive-p arguments.

The corresponding output function is write-line.
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[Function]read-char &optional input-stream eof-error-p eof-value

recursive-p

read-char inputs one character from input-stream and returns it as a char-

acter object.
The corresponding output function is write-char.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of read-char

with echo streams (as created by make-echo-stream). A character is echoed

from the input stream to the associated output stream the first time it is

seen. If a character is read again because of an intervening unread-char

operation, the character is not echoed again when read for the second time or

any subsequent time.

[Function]unread-char character &optional input-stream

unread-char puts the character onto the front of input-stream. The character

must be the same character that was most recently read from the input-stream.

The input-stream “backs up” over this character; when a character is next read

from input-stream, it will be the specified character followed by the previous

contents of input-stream. unread-char returns nil.
One may apply unread-char only to the character most recently read from

input-stream. Moreover, one may not invoke unread-char twice consecutively

without an intervening read-char operation. The result is that one may back

up only by one character, and one may not insert any characters into the input

stream that were not already there.
X3J13 voted in January 1989 〈181〉 to clarify that one also may not invoke

unread-char after invoking peek-char without an intervening read-char

operation. This is consistent with the notion that peek-char behaves much

like read-char followed by unread-char.

Rationale: This is not intended to be a general mechanism, but rather an efficient
mechanism for allowing the Lisp reader and other parsers to perform one-character
lookahead in the input stream. This protocol admits a wide variety of efficient
implementations, such as simply decrementing a buffer pointer. To have to specify
the character in the call to unread-char is admittedly redundant, since at any given
time there is only one character that may be legally specified. The redundancy is
intentional, again to give the implementation latitude.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of unread-char

with echo streams (as created by make-echo-stream). When a character is

“unread” from an echo stream, no attempt is made to “unecho” the character.



INPUT/OUTPUT 619

However, a character placed back into an echo stream by unread-char will

not be re-echoed when it is subsequently re-read by read-char.
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[Function]peek-char &optional peek-type input-stream eof-error-p

eof-value recursive-p

What peek-char does depends on the peek-type, which defaults to nil. With
a peek-type of nil, peek-char returns the next character to be read from

input-stream, without actually removing it from the input stream. The next

time input is done from input-stream, the character will still be there. It is as

if one had called read-char and then unread-char in succession.

If peek-type is t, then peek-char skips over whitespace characters (but not

comments) and then performs the peeking operation on the next character.

This is useful for finding the (possible) beginning of the next printed repre-

sentation of a Lisp object. The last character examined (the one that starts

an object) is not removed from the input stream.

If peek-type is a character object, then peek-char skips over input characters

until a character that is charUU to that object is found; that character is left

in the input stream.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of peek-char

with echo streams (as created by make-echo-stream). When a character from

an echo stream is only peeked at, it is not echoed at that time. The character

remains in the input stream and may be echoed when read by read-char at

a later time. Note, however, that if the peek-type is not nil, then characters
skipped over (and therefore consumed) by peek-char are treated as if they

had been read by read-char, and will be echoed if read-char would have

echoed them.

[Function]listen &optional input-stream

The predicate listen is true if there is a character immediately available from
input-stream, and is false if not. This is particularly useful when the stream

obtains characters from an interactive device such as a keyboard. A call to

read-char would simply wait until a character was available, but listen

can sense whether or not input is available and allow the program to decide
whether or not to attempt input. On a non-interactive stream, the general

rule is that listen is true except when at end-of-file.

[Function]read-char-no-hang &optional input-stream eof-error-p
eof-value recursive-p

This function is exactly like read-char, except that if it would be necessary

to wait in order to get a character (as from a keyboard), nil is immediately
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returned without waiting. This allows one to efficiently check for input avail-

ability and get the input if it is available. This is different from the listen

operation in two ways. First, read-char-no-hang potentially reads a char-

acter, whereas listen never inputs a character. Second, listen does not

distinguish between end-of-file and no input being available, whereas read-

char-no-hang does make that distinction, returning eof-value at end-of-file

(or signaling an error if no eof-error-p is true) but always returning nil if no

input is available.

[Function]clear-input &optional input-stream

This clears any buffered input associated with input-stream. It is primarily

useful for clearing type-ahead from keyboards when some kind of asynchronous

error has occurred. If this operation doesn’t make sense for the stream in-

volved, then clear-input does nothing. clear-input returns nil.

[Function]read-from-string string &optional eof-error-p eof-value

&key :start :end :preserve-whitespace

The characters of string are given successively to the Lisp reader, and the

Lisp object built by the reader is returned. Macro characters and so on will

all take effect.

The arguments :start and :end delimit a substring of string beginning at

the character indexed by :start and up to but not including the character

indexed by :end. By default :start is 0 (the beginning of the string) and
:end is (length string). This is the same as for other string functions.

The flag :preserve-whitespace, if provided and not nil, indicates

that the operation should preserve whitespace as for read-preserving-

whitespace. It defaults to nil.

As with other reading functions, the arguments eof-error-p and eof-value

control the action if the end of the (sub)string is reached before the operation
is completed; reaching the end of the string is treated as any other end-of-file

event.

read-from-string returns two values: the first is the object read, and the
second is the index of the first character in the string not read. If the entire

string was read, the second result will be either the length of the string or one

greater than the length of the string. The parameter :preserve-whitespace

may affect this second value.

(read-from-string "(a b c)") ⇒ (a b c) and 7
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[Function]parse-integer string &key :start :end :radix

:junk-allowed

This function examines the substring of string delimited by :start and :end

(which default to the beginning and end of the string). It skips over whitespace
characters and then attempts to parse an integer. The :radix parameter

defaults to 10 and must be an integer between 2 and 36.

If :junk-allowed is not nil, then the first value returned is the value of

the number parsed as an integer or nil if no syntactically correct integer was
seen.

If :junk-allowed is nil (the default), then the entire substring is scanned.

The returned value is the value of the number parsed as an integer. An error

is signaled if the substring does not consist entirely of the representation of

an integer, possibly surrounded on either side by whitespace characters.
In either case, the second value is the index into the string of the delimiter

that terminated the parse, or it is the index beyond the substring if the parse

terminated at the end of the substring (as will always be the case if :junk-

allowed is false).
Note that parse-integer does not recognize the syntactic radix-specifier

prefixes #--O, #--B, #--X, and #--nR, nor does it recognize a trailing decimal point. It

permits only an optional sign (+ or -) followed by a non-empty sequence of

digits in the specified radix.

22.2.2. Input from Binary Streams

Common Lisp currently specifies only a very simple facility for binary input:
the reading of a single byte as an integer.

[Function]read-byte binary-input-stream &optional eof-error-p

eof-value

read-byte reads one byte from the binary-input-stream and returns it in the

form of an integer.

22.3. Output Functions

The output functions are divided into two groups: those that operate on

streams of characters and those that operate on streams of binary data. The

function format operates on streams of characters but is described in a sec-

tion separate from the other character-output functions because of its great

complexity.
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22.3.1. Output to Character Streams

These functions all take an optional argument called output-stream, which is

where to send the output. If unsupplied or nil, output-stream defaults to the
value of the variable *standard-output*. If it is t, the value of the variable

*terminal-io* is used.

[Function]write object &key :stream :escape :radix :base :circle
........................................................................................................................................................................................................

:pretty :level :length :case :gensym :array

The printed representation of object is written to the output stream specified

by :stream, which defaults to the value of *standard-output*.

The other keyword arguments specify values used to control the gen-
eration of the printed representation. Each defaults to the value of

the corresponding global variable: see *print-escape*, *print-radix*,

*print-base*, *print-circle*, *print-pretty*, *print-level*, *print-

length*, *print-case*, *print-array*, and *print-gensym*. (This is the

means by which these variables affect printing operations: supplying default
values for the write function.) Note that the printing of symbols is also

affected by the value of the variable *package*. write returns object.

X3J13 voted in June 1989 〈40〉 to add the keyword argument :readably

to the function write, and voted in June 1989 〈139〉 to add the keyword
arguments :right-margin, :miser-width, :lines, and :pprint-dispatch.

The revised description is as follows.

[Function]write object &key :stream :escape :radix :base :circle

:pretty :level :length :case :gensym :array :readably

:right-margin :miser-width :lines :pprint-dispatch

The printed representation of object is written to the output stream specified

by :stream, which defaults to the value of *standard-output*.

The other keyword arguments specify values used to control the gen-
eration of the printed representation. Each defaults to the value

of the corresponding global variable: see *print-escape*, *print-

radix*, *print-base*, *print-circle*, *print-pretty*, *print-level*,

*print-length*, and *print-case*, in addition to *print-array*,
*print-gensym*, *print-readably*, *print-right-margin*, *print-

miser-width*, *print-lines*, and *print-pprint-dispatch*. (This is

the means by which these variables affect printing operations: supplying de-

fault values for the write function.) Note that the printing of symbols is also

affected by the value of the variable *package*. write returns object.
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[Function]prin1 object &optional output-stream

[Function]print object &optional output-stream

[Function]pprint object &optional output-stream

[Function]princ object &optional output-stream

prin1 outputs the printed representation of object to output-stream. Escape
characters are used as appropriate. Roughly speaking, the output from prin1

is suitable for input to the function read. prin1 returns the object as its

value.

(prin1 object output-stream)

≡ (write object :stream output-stream :escape t)

print is just like prin1 except that the printed representation of object is

preceded by a newline (see terpri) and followed by a space. print returns

object.

pprint is just like print except that the trailing space is omitted and the

object is printed with the *print-pretty* flag non-nil to produce “pretty”

output. pprint returns no values (that is, what the expression (values)

returns: zero values).

X3J13 voted in January 1989 〈139〉 to adopt a facility for user-controlled

pretty printing (see chapter 27).

princ is just like prin1 except that the output has no escape characters.

A symbol is printed as simply the characters of its print name; a string is

printed without surrounding double quotes; and there may be differences for
other data types as well. The general rule is that output from princ is

intended to look good to people, while output from prin1 is intended to be

acceptable to the function read.

X3J13 voted in June 1987 〈140〉 to clarify that princ prints a character in

exactly the same manner as write-char: the character is simply sent to the

output stream. This was implied by the specification in section 22.1.6 in the
first edition, but is worth pointing out explicitly here.

princ returns the object as its value.

(princ object output-stream)

≡ (write object :stream output-stream :escape nil)

Compatibility note: In MacLisp, the functions prin1, print, and princ return
t, not the argument object.
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[Function]write-to-string object &key :escape :radix :base
........................................................................................................................................................................................................

:circle :pretty :level :length :case :gensym

:array

[Function]prin1-to-string object

[Function]princ-to-string object

The object is effectively printed as if by write, prin1, or princ, respectively,

and the characters that would be output are made into a string, which is

returned.

Compatibility note: The Interlisp function mkstring corresponds to the Common
Lisp function princ-to-string.

[Function]write-to-string object &key :escape :radix :base

:circle :pretty :level :length :case :gensym

:array :readably :right-margin :miser-width

:lines :pprint-dispatch

X3J13 voted in June 1989 (〈40〉 and 〈139〉) to add keyword arguments to

write; presumably they should also be added to write-to-string.

[Function]write-char character &optional output-stream

write-char outputs the character to output-stream, and returns character.

[Function]write-string string &optional output-stream &key :start

:end

[Function]write-line string &optional output-stream &key :start

:end

write-string writes the characters of the specified substring of string to the

output-stream. The :start and :end parameters delimit a substring of string
in the usual manner (see chapter 14). write-line does the same thing but

then outputs a newline afterwards. (See read-line.) In either case, the

string is returned (not the substring delimited by :start and :end). In some

implementations these may be much more efficient than an explicit loop using

write-char.



626 COMMON LISP

[Function]terpri &optional output-stream

[Function]fresh-line &optional output-stream

The function terpri outputs a newline to output-stream. It is identical in

effect to (write-char #--\Newline output-stream); however, terpri always
returns nil.

fresh-line is similar to terpri but outputs a newline only if the stream

is not already at the start of a line. (If for some reason this cannot be deter-

mined, then a newline is output anyway.) This guarantees that the stream
will be on a “fresh line” while consuming as little vertical distance as possible.

fresh-line is a predicate that is true if it output a newline, and otherwise

false.

[Function]finish-output &optional output-stream

[Function]force-output &optional output-stream

[Function]clear-output &optional output-stream

Some streams may be implemented in an asynchronous or buffered man-

ner. The function finish-output attempts to ensure that all output sent to

output-stream has reached its destination, and only then returns nil. force-

output initiates the emptying of any internal buffers but returns nil without
waiting for completion or acknowledgment.

The function clear-output, on the other hand, attempts to abort any

outstanding output operation in progress in order to allow as little output

as possible to continue to the destination. This is useful, for example, to
abort a lengthy output to the terminal when an asynchronous error occurs.

clear-output returns nil.

The precise actions of all three of these operations are implementation-

dependent.

[Macro]print-unreadable-object (object stream

[[ :type type | :identity id ]] )
{declaration}∗ { form}∗

X3J13 voted in June 1989 〈40〉 to add print-unreadable-object, which

will output a printed representation of object on stream, beginning with #--<

and ending with >. Everything output to the stream during execution of the

body forms is enclosed in the angle brackets. If type is true, the body output is

preceded by a brief description of the object’s type and a space character. If id

is true, the body output is followed by a space character and a representation

of the object’s identity, typically a storage address.



INPUT/OUTPUT 627

If *print-readably* is true, print-unreadable-object signals an error

of type print-not-readable without printing anything.

The object, stream, type, and id arguments are all evaluated normally. The

type and id default to false. It is valid to provide no body forms. If type and id

are both true and there are no body forms, only one space character separates
the printed type and the printed identity.

The value returned by print-unreadable-object is nil.

(defmethod print-object ((obj airplane) stream)

(print-unreadable-object (obj stream :type t :identity t)

(princ (tail-number obj) stream)))

(print my-airplane) prints

#--<Airplane NW0773 777500123135> ;In implementation A

or perhaps

#--<FAA:AIRPLANE NW0773 17> ;In implementation B

The big advantage of print-unreadable-object is that it allows a user to

write print-object methods that adhere to implementation-specific style
without requiring the user to write implementation-dependent code.

The X3J13 vote left it unclear whether print-unreadable-object permits

declarations to appear before the body of the macro call. I believe that was

the intent, and this is reflected in the syntax shown above; but this is only

my interpretation.

22.3.2. Output to Binary Streams

Common Lisp currently specifies only a very simple facility for binary output:

the writing of a single byte as an integer.

[Function]write-byte integer binary-output-stream

write-byte writes one byte, the value of integer. It is an error if integer is

not of the type specified as the :element-type argument to open when the
stream was created. The value integer is returned.

22.3.3. Formatted Output to Character Streams

The function format is very useful for producing nicely formatted text, pro-

ducing good-looking messages, and so on. format can generate a string or

output to a stream.
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Formatted output is performed not only by the format function itself but

by certain other functions that accept a control string “the way format does.”

For example, error-signaling functions such as cerror accept format control

strings.

[Function]format destination control-string &rest arguments

format is used to produce formatted output. format outputs the characters

of control-string, except that a tilde (~) introduces a directive. The character

after the tilde, possibly preceded by prefix parameters and modifiers, specifies
what kind of formatting is desired. Most directives use one or more elements

of arguments to create their output; the typical directive puts the next element

of arguments into the output, formatted in some special way. It is an error if

no argument remains for a directive requiring an argument, but it is not an
error if one or more arguments remain unprocessed by a directive.

The output is sent to destination. If destination is nil, a string is created

that contains the output; this string is returned as the value of the call to
format.

X3J13 voted in January 1989 〈167〉 to specify that when the first argument
to format is nil, format creates a stream of type string-stream in much the

same manner as with-output-to-string. (This stream may be visible to the

user if, for example, the ~S directive is used to print a defstruct structure

that has a user-supplied print function.)

In all other cases format returns nil, performing output to destination as a

side effect. If destination is a stream, the output is sent to it. If destination is

t, the output is sent to the stream that is the value of the variable *standard-
output*. If destination is a string with a fill pointer, then in effect the output

characters are added to the end of the string (as if by use of vector-push-

extend).

The format function includes some extremely complicated and specialized

features. It is not necessary to understand all or even most of its features to

use format effectively. The beginner should skip over anything in the following

documentation that is not immediately useful or clear. The more sophisticated
features (such as conditionals and iteration) are there for the convenience of

programs with especially complicated formatting requirements.

A format directive consists of a tilde (~), optional prefix parameters sep-

arated by commas, optional colon (:) and at-sign (@) modifiers, and a single

character indicating what kind of directive this is. The alphabetic case of the

directive character is ignored. The prefix parameters are generally integers,

notated as optionally signed decimal numbers.
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X3J13 voted in June 1987 〈80〉 to specify that if both colon and at-sign

modifiers are present, they may appear in either order; thus ~:@R and ~@:R

mean the same thing. However, it is traditional to put the colon first, and all

the examples in this book put colons before at-signs.

Examples of control strings:

"~S" ;An ~S directive with no parameters or modifiers
"~3,-4:@s" ;An ~S directive with two parameters, 3 and −4,

; and both the colon and at-sign flags

"~,+4S" ;First prefix parameter is omitted and takes

; on its default value; the second parameter is 4

Sometimes a prefix parameter is used to specify a character, for instance the

padding character in a right- or left-justifying operation. In this case a single

quote (’) followed by the desired character may be used as a prefix parameter,

to mean the character object that is the character following the single quote.
For example, you can use ~5,’0d to print an integer in decimal radix in five

columns with leading zeros, or ~5,’*d to get leading asterisks.

In place of a prefix parameter to a directive, you can put the letter V

(or v), which takes an argument from arguments for use as a parameter to
the directive. Normally this should be an integer or character object, as

appropriate. This feature allows variable-width fields and the like. If the

argument used by a V parameter is nil, the effect is as if the parameter had

been omitted. You may also use the character #-- in place of a parameter; it
represents the number of arguments remaining to be processed.

It is an error to give a format directive more parameters than it is described

here as accepting. It is also an error to give colon or at-sign modifiers to a
directive in a combination not specifically described here as being meaningful.
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X3J13 voted in January 1989 〈85〉 to clarify the interaction between format

and the various printer control variables (those named *print-xxx*). This is

important because many format operations are defined, directly or indirectly,

in terms of prin1 or princ, which are affected by the printer control variables.

The general rule is that format does not bind any of the standard printer
control variables except as specified in the individual descriptions of directives.

An implementation may not bind any standard printer control variable not

specified in the description of a format directive, nor may an implementation

fail to bind any standard printer control variables that is specified to be bound
by such a description. (See these descriptions for specific changes voted by

X3J13.)

One consequence of this change is that the user is guaranteed to be able

to use the format ~A and ~S directives to do pretty printing, under control

of the *print-pretty* variable. Implementations have differed on this point
in their interpretations of the first edition. The new ~W directive may be

more appropriate than either ~A and ~S for some purposes, whether for pretty

printing or ordinary printing. See section 27.4 for a discussion of ~W and other

new format directives related to pretty printing.
Here are some relatively simple examples to give you the general flavor of

how format is used.

(format nil "foo") ⇒ "foo"

(setq x 5)

(format nil "The answer is ~D." x) ⇒ "The answer is 5."

(format nil "The answer is ~3D." x) ⇒ "The answer is 5."

(format nil "The answer is ~3,’0D." x) ⇒ "The answer is 005."

(format nil "The answer is ~:D." (expt 47 x))

⇒ "The answer is 229,345,007."

(setq y "elephant")

(format nil "Look at the ~A!" y) ⇒ "Look at the elephant!"

(format nil "Type ~:C to ~A."

(set-char-bit #--\D :control t)

"delete all your files")
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⇒ "Type Control-D to delete all your files."
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(setq n 3)

(format nil "~D item~:P found." n) ⇒ "3 items found."

(format nil "~R dog~:[s are~; is~] here." n (UU n 1))

⇒ "three dogs are here."

(format nil "~R dog~:*~[s are~; is~:;s are~] here." n)

⇒ "three dogs are here."

(format nil "Here ~[are~;is~:;are~] ~:*~R pupp~:@P." n)

⇒ "Here are three puppies."

In the descriptions of the directives that follow, the term arg in general
refers to the next item of the set of arguments to be processed. The word or

phrase at the beginning of each description is a mnemonic (not necessarily an

accurate one) for the directive.

~A

Ascii. An arg, any Lisp object, is printed without escape characters (as by

princ). In particular, if arg is a string, its characters will be output verbatim.

If arg is nil, it will be printed as nil; the colon modifier (~:A) will cause an
arg of nil to be printed as (), but if arg is a composite structure, such as a

list or vector, any contained occurrences of nil will still be printed as nil.

~mincolA inserts spaces on the right, if necessary, to make the width at least

mincol columns. The @ modifier causes the spaces to be inserted on the left
rather than the right.

~mincol,colinc,minpad,padcharA is the full form of ~A, which allows elab-

orate control of the padding. The string is padded on the right (or on the

left if the @ modifier is used) with at least minpad copies of padchar; padding

characters are then inserted colinc characters at a time until the total width
is at least mincol. The defaults are 0 for mincol and minpad, 1 for colinc, and

the space character for padchar.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil during the processing of the ~A directive.

~S

S-expression. This is just like ~A, but arg is printed with escape characters

(as by prin1 rather than princ). The output is therefore suitable for input

to read. ~S accepts all the arguments and modifiers that ~A does.
X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to t during the processing of the ~S directive.
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~D

Decimal. An arg, which should be an integer, is printed in decimal radix. ~D
will never put a decimal point after the number.

~mincolD uses a column width of mincol; spaces are inserted on the left if

the number requires fewer than mincol columns for its digits and sign. If the

number doesn’t fit in mincol columns, additional columns are used as needed.

~mincol,padcharD uses padchar as the pad character instead of space.

If arg is not an integer, it is printed in ~A format and decimal base.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil, *print-radix* to nil, and *print-base* to 10 during

processing of ~D.
The @ modifier causes the number’s sign to be printed always; the default

is to print it only if the number is negative. The : modifier causes commas

to be printed between groups of three digits; the third prefix parameter may

be used to change the character used as the comma. Thus the most general
form of ~D is ~mincol,padchar,commacharD.

X3J13 voted in March 1988 〈82〉 to add a fourth parameter, the commain-

terval. This must be an integer; if it is not provided, it defaults to 3. This

parameter controls the number of digits in each group separated by the com-

machar.
By extension, each of the ~B, ~O, and ~X directives accepts a commainterval

as a fourth parameter, and the ~R directive accepts a commainterval as its

fifth parameter. Examples:

(format nil "~,,’ ,4B" #--xFACE) ⇒ "1111 1010 1100 1110"

(format nil "~,,’ ,4B" #--x1CE) ⇒ "1 1100 1110"

(format nil "~19,,’ ,4B" #--xFACE) ⇒ "1111 1010 1100 1110"

(format nil "~19,,’ ,4B" #--x1CE) ⇒ "0000 0001 1100 1110"

This is one of those little improvements that probably don’t matter much but
aren’t hard to implement either. It was pretty silly having the number 3 wired

into the definition of comma separation when it is just as easy to make it a

parameter.

~B

Binary. This is just like ~D but prints in binary radix (radix 2) instead of

decimal. The full form is therefore ~mincol,padchar,commacharB.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil, *print-radix* to nil, and *print-base* to 2 during pro-
cessing of ~B.
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~O

Octal. This is just like ~D but prints in octal radix (radix 8) instead of decimal.

The full form is therefore ~mincol,padchar,commacharO.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil, *print-radix* to nil, and *print-base* to 8 during pro-
cessing of ~O.

~X

Hexadecimal. This is just like ~D but prints in hexadecimal radix (radix 16)

instead of decimal. The full form is therefore ~mincol,padchar,commacharX.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil, *print-radix* to nil, and *print-base* to 16 during
processing of ~X.

Compatibility note: In MacLisp and Lisp Machine Lisp the ~X directive outputs
a space, and ~nX outputs n spaces, in a manner analogous to Fortran X format. In
Common Lisp the directive ~@T is used for that purpose.

~R

Radix. ~nR prints arg in radix n. The modifier flags and any remaining
parameters are used as for the ~D directive. Indeed, ~D is the same as ~10R.

The full form here is therefore ~radix,mincol,padchar,commacharR.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil, *print-radix* to nil, and *print-base* to the value of

the first parameter during the processing of the ~R directive with a parameter.

If no parameters are given to ~R, then an entirely different interpretation is

given.

Notice of correction. In the first edition, this sentence referred to “argu-

ments” given to ~R. The correct term is “parameters.”

The argument should be an integer; suppose it is 4. Then ~R prints arg as a

cardinal English number: four; ~:R prints arg as an ordinal English number:

fourth; ~@R prints arg as a Roman numeral: IV; and ~:@R prints arg as an

old Roman numeral: IIII.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

base* to 10 during the processing of the ~R directive with no parameter.

The first edition did not specify how ~R and its variants should handle

arguments that are very large or not positive. Actual practice varies, and

X3J13 has not yet addressed the topic. Here is a sampling of current practice.
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For ~@R and ~:@R, nearly all implementations produce Roman numerals

only for integers in the range 1 to 3999, inclusive. Some implementations

will produce old-style Roman numerals for integers in the range 1 to 4999,

inclusive. All other integers are printed in decimal notation, as if ~D had been

used.

For zero, most implementations print zero for ~R and zeroth for ~:R.

For ~R with a negative argument, most implementations simply print the

word minus followed by its absolute value as a cardinal in English.

For ~:R with a negative argument, some implementations also print the

word minus followed by its absolute value as an ordinal in English; other
implementations print the absolute value followed by the word previous.

Thus the argument -4 might produce minus fourth or fourth previous.

Each has its charm, but one is not always a suitable substitute for the other;

users should be careful.

There is standard English nomenclature for fairly large integers (up

to 1060, at least), based on appending the suffix -illion to Latin
names of integers. Thus we have the names trillion, quadrillion,

sextillion, septillion, and so on. For extremely large integers, one

may express powers of ten in English. One implementation gives

1606938044258990275541962092341162602522202993782792835301376

(which is 2200, the result of (ash 1 200)) in this manner:

one times ten to the sixtieth power six hundred six times ten to the

fifty-seventh power nine hundred thirty-eight septdecillion forty-four

sexdecillion two hundred fifty-eight quindecillion nine hundred ninety

quattuordecillion two hundred seventy-five tredecillion five hundred

forty-one duodecillion nine hundred sixty-two undecillion ninety-two

decillion three hundred forty-one nonillion one hundred sixty-two

octillion six hundred two septillion five hundred twenty-two sextillion

two hundred two quintillion nine hundred ninety-three quadrillion seven

hundred eighty-two trillion seven hundred ninety-two billion eight

hundred thirty-five million three hundred one thousand three hundred

seventy-six

Another implementation prints it this way (note the use of plus):

one times ten to the sixtieth power plus six hundred six times ten to

the fifty-seventh power plus ... plus two hundred seventy-five times

ten to the forty-second power plus five hundred forty-one duodecillion

nine hundred sixty-two undecillion ... three hundred seventy-six

(I have elided some of the text here to save space.)



636 COMMON LISP

Unfortunately, the meaning of this nomenclature differs between American

English (in which k-illion means 103(k+1), so one trillion is 1012) and British

English (in which k-illion means 106k, so one trillion is 1018). To avoid both

confusion and prolixity, I recommend using decimal notation for all numbers

above 999,999,999; this is similar to the escape hatch used for Roman numer-
als.

~P

Plural. If arg is not eql to the integer 1, a lowercase s is printed; if arg is
eql to 1, nothing is printed. (Notice that if arg is a floating-point 1.0, the

s is printed.) ~:P does the same thing, after doing a ~:* to back up one

argument; that is, it prints a lowercase s if the last argument was not 1. This

is useful after printing a number using ~D. ~@P prints y if the argument is 1,
or ies if it is not. ~:@P does the same thing, but backs up first.

(format nil "~D tr~:@P/~D win~:P" 7 1) ⇒ "7 tries/1 win"

(format nil "~D tr~:@P/~D win~:P" 1 0) ⇒ "1 try/0 wins"

(format nil "~D tr~:@P/~D win~:P" 1 3) ⇒ "1 try/3 wins"

~C

Character. The next arg should be a character; it is printed according to the

modifier flags.

~C prints the character in an implementation-dependent abbreviated for-
........................................................................................................................................................................................................

mat. This format should be culturally compatible with the host environment.

X3J13 voted in June 1987 〈84〉 to specify that ~C performs exactly the

same action as write-char if the character to be printed has zero for its
bits attributes. X3J13 voted in March 1989 〈11〉 to eliminate the bits and

font attributes, replacing them with the notion of implementation-defined

attributes. The net effect is that characters whose implementation-defined

attributes all have the “standard” values should be printed by ~C in the same

way that write-char would print them.

~:C spells out the names of the control bits and represents non-printing

characters by their names: Control-Meta-F, Control-Return, Space. This

is a “pretty” format for printing characters.

~:@C prints what ~:C would, and then if the character requires unusual shift
keys on the keyboard to type it, this fact is mentioned: Control-∂ (Top-F).

This is the format for telling the user about a key he or she is expected to

type, in prompts, for instance. The precise output may depend not only on

the implementation but on the particular I/O devices in use.

~@C prints the character so that the Lisp reader can read it, using #--\ syntax.
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X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to t during the processing of the ~@C directive. Other variants of the

~C directive do not bind any printer control variables.

Rationale: In some implementations the ~S directive would do what ~C does, but

~C is compatible with Lisp dialects such as MacLisp that do not have a character
data type.

~F

Fixed-format floating-point. The next arg is printed as a floating-point num-

ber.

The full form is ~w,d,k,overflowchar,padcharF. The parameter w is the

width of the field to be printed; d is the number of digits to print after the

decimal point; k is a scale factor that defaults to zero.

Exactly w characters will be output. First, leading copies of the character

padchar (which defaults to a space) are printed, if necessary, to pad the field

on the left. If the arg is negative, then a minus sign is printed; if the arg
is not negative, then a plus sign is printed if and only if the @ modifier was

specified. Then a sequence of digits, containing a single embedded decimal

point, is printed; this represents the magnitude of the value of arg times 10k,

rounded to d fractional digits. (When rounding up and rounding down would
produce printed values equidistant from the scaled value of arg, then the

implementation is free to use either one. For example, printing the argument

6.375 using the format ~4,2F may correctly produce either 6.37 or 6.38.)

Leading zeros are not permitted, except that a single zero digit is output

before the decimal point if the printed value is less than 1, and this single
zero digit is not output after all if w = d + 1.

If it is impossible to print the value in the required format in a field of

width w, then one of two actions is taken. If the parameter overflowchar is

specified, then w copies of that parameter are printed instead of the scaled

value of arg. If the overflowchar parameter is omitted, then the scaled value
is printed using more than w characters, as many more as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect, a
value is chosen for w in such a way that no leading pad characters need to be

printed and exactly d characters will follow the decimal point. For example,

the directive ~,2F will print exactly two digits after the decimal point and as

many as necessary before the decimal point.

If the parameter d is omitted, then there is no constraint on the number of

digits to appear after the decimal point. A value is chosen for d in such a way
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that as many digits as possible may be printed subject to the width constraint

imposed by the parameter w and the constraint that no trailing zero digits

may appear in the fraction, except that if the fraction to be printed is zero,

then a single zero digit should appear after the decimal point if permitted by

the width constraint.

If both w and d are omitted, then the effect is to print the value using
ordinary free-format output; prin1 uses this format for any number whose

magnitude is either zero or between 10−3 (inclusive) and 107 (exclusive).

If w is omitted, then if the magnitude of arg is so large (or, if d is also

omitted, so small) that more than 100 digits would have to be printed, then an

implementation is free, at its discretion, to print the number using exponential

notation instead, as if by the directive ~E (with all parameters to ~E defaulted,
not taking their values from the ~F directive).

If arg is a rational number, then it is coerced to be a single-float and

then printed. (Alternatively, an implementation is permitted to process a

rational number by any other method that has essentially the same behavior

but avoids such hazards as loss of precision or overflow because of the coercion.

However, note that if w and d are unspecified and the number has no exact
decimal representation, for example 1/3, some precision cutoff must be chosen

by the implementation: only a finite number of digits may be printed.)

If arg is a complex number or some non-numeric object, then it is printed

using the format directive ~wD, thereby printing it in decimal radix and a

minimum field width of w. (If it is desired to print each of the real part and

imaginary part of a complex number using a ~F directive, then this must be
done explicitly with two ~F directives and code to extract the two parts of the

complex number.)

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil during the processing of the ~F directive.

(defun foo (x)

(format nil "~6,2F|~6,2,1,’*F|~6,2,,’?F|~6F|~,2F|~F"

x x x x x x))

(foo 3.14159) ⇒ " 3.14| 31.42| 3.14|3.1416|3.14|3.14159"

(foo -3.14159) ⇒ " -3.14|-31.42| -3.14|-3.142|-3.14|-3.14159"

(foo 100.0) ⇒ "100.00|******|100.00| 100.0|100.00|100.0"

(foo 1234.0) ⇒ "1234.00|******|??????|1234.0|1234.00|1234.0"

(foo 0.006) ⇒ " 0.01| 0.06| 0.01| 0.006|0.01|0.006"

Compatibility note: The ~F directive is similar to the Fw.d edit descriptor in
Fortran.
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The presence or absence of the @ modifier corresponds to the effect of the Fortran
SS or SP edit descriptor; nothing in Common Lisp corresponds to the Fortran S edit
descriptor.

The scale factor specified by the parameter k corresponds to the scale factor k
specified by the Fortran kP edit descriptor.

In Fortran, the leading zero that precedes the decimal point when the printed
value is less than 1 is optional; in Common Lisp, the implementation is required to
print that zero digit.

In Common Lisp, the w and d parameters are optional; in Fortran, they are
required.

In Common Lisp, the pad character and overflow character are user-specifiable;
in Fortran, they are always space and asterisk, respectively.

A Fortran implementation is prohibited from printing a representation of negative
zero; Common Lisp permits the printing of such a representation when appropriate.

In MacLisp and Lisp Machine Lisp, the ~F format directive takes a single param-
eter: the number of digits to use in the printed representation. This incompatibility
between Common Lisp and MacLisp was introduced for the sake of cultural com-
patibility with Fortran.

~E

Exponential floating-point. The next arg is printed in exponential notation.

The full form is ~w,d,e,k,overflowchar,padchar,exponentcharE. The pa-

rameter w is the width of the field to be printed; d is the number of digits to

print after the decimal point; e is the number of digits to use when printing

the exponent; k is a scale factor that defaults to 1 (not zero).

Exactly w characters will be output. First, leading copies of the character

padchar (which defaults to a space) are printed, if necessary, to pad the field
on the left. If the arg is negative, then a minus sign is printed; if the arg is not

negative, then a plus sign is printed if and only if the @ modifier was specified.

Then a sequence of digits, containing a single embedded decimal point, is

printed. The form of this sequence of digits depends on the scale factor k. If k

is zero, then d digits are printed after the decimal point, and a single zero digit
appears before the decimal point if the total field width will permit it. If k is

positive, then it must be strictly less than d +2; k significant digits are printed

before the decimal point, and d − k + 1 digits are printed after the decimal

point. If k is negative, then it must be strictly greater than −d ; a single zero
digit appears before the decimal point if the total field width will permit it,

and after the decimal point are printed first −k zeros and then d+k significant

digits. The printed fraction must be properly rounded. (When rounding up

and rounding down would produce printed values equidistant from the scaled

value of arg, then the implementation is free to use either one. For example,
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printing 637.5 using the format ~8,2E may correctly produce either 6.37E+02

or 6.38E+02.)

Following the digit sequence, the exponent is printed. First the character
parameter exponentchar is printed; if this parameter is omitted, then the

exponent marker that prin1 would use is printed, as determined from the

type of the floating-point number and the current value of *read-default-

float-format*. Next, either a plus sign or a minus sign is printed, followed
by e digits representing the power of 10 by which the printed fraction must

be multiplied to properly represent the rounded value of arg.

If it is impossible to print the value in the required format in a field of
width w, possibly because k is too large or too small or because the exponent

cannot be printed in e character positions, then one of two actions is taken.

If the parameter overflowchar is specified, then w copies of that parameter

are printed instead of the scaled value of arg. If the overflowchar parameter

is omitted, then the scaled value is printed using more than w characters, as
many more as may be needed; if the problem is that d is too small for the

specified k or that e is too small, then a larger value is used for d or e as may

be needed.

If the w parameter is omitted, then the field is of variable width. In effect

a value is chosen for w in such a way that no leading pad characters need to

be printed.

If the parameter d is omitted, then there is no constraint on the number of

digits to appear. A value is chosen for d in such a way that as many digits

as possible may be printed subject to the width constraint imposed by the
parameter w, the constraint of the scale factor k, and the constraint that no

trailing zero digits may appear in the fraction, except that if the fraction to

be printed is zero, then a single zero digit should appear after the decimal

point if the width constraint allows it.

If the parameter e is omitted, then the exponent is printed using the smallest

number of digits necessary to represent its value.

If all of w, d, and e are omitted, then the effect is to print the value using

ordinary free-format exponential-notation output; prin1 uses this format for

any non-zero number whose magnitude is less than 10−3 or greater than or

equal to 107.

X3J13 voted in January 1989 〈83〉 to amend the previous paragraph as

follows:

If all of w, d, and e are omitted, then the effect is to print the value using

ordinary free-format exponential-notation output; prin1 uses a similar format

for any non-zero number whose magnitude is less than 10−3 or greater than

or equal to 107. The only difference is that the ~E directive always prints a



INPUT/OUTPUT 641

plus or minus sign before the exponent, while prin1 omits the plus sign if the

exponent is non-negative.

(The amendment reconciles this paragraph with the specification several

paragraphs above that ~E always prints a plus or minus sign before the expo-

nent.)

If arg is a rational number, then it is coerced to be a single-float and

then printed. (Alternatively, an implementation is permitted to process a

rational number by any other method that has essentially the same behavior

but avoids such hazards as loss of precision or overflow because of the coercion.
However, note that if w and d are unspecified and the number has no exact

decimal representation, for example 1/3, some precision cutoff must be chosen

by the implementation: only a finite number of digits may be printed.)

If arg is a complex number or some non-numeric object, then it is printed

using the format directive ~wD, thereby printing it in decimal radix and a
minimum field width of w. (If it is desired to print each of the real part and

imaginary part of a complex number using a ~E directive, then this must be

done explicitly with two ~E directives and code to extract the two parts of the

complex number.)

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil during the processing of the ~E directive.

(defun foo (x)

(format nil

"~9,2,1,,’*E|~10,3,2,2,’?,,’$E|~9,3,2,-2,’%@E|~9,2E"

x x x x))

(foo 3.14159) ⇒ " 3.14E+0| 31.42$-01|+.003E+03| 3.14E+0"

(foo -3.14159) ⇒ " -3.14E+0|-31.42$-01|-.003E+03| -3.14E+0"

(foo 1100.0) ⇒ " 1.10E+3| 11.00$+02|+.001E+06| 1.10E+3"

(foo 1100.0L0) ⇒ " 1.10L+3| 11.00$+02|+.001L+06| 1.10L+3"

(foo 1.1E13) ⇒ "*********| 11.00$+12|+.001E+16| 1.10E+13"

(foo 1.1L120) ⇒ "*********|??????????|%%%%%%%%%|1.10L+120"

(foo 1.1L1200) ⇒ "*********|??????????|%%%%%%%%%|1.10L+1200"

Here is an example of the effects of varying the scale factor:

(dotimes (k 13)

(format t " %Scale factor 2D: | 13,6,2,VE|"

(- k 5) 3.14159)) ;Prints 13 lines

Scale factor -5: | 0.000003E+06|

Scale factor -4: | 0.000031E+05|
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Scale factor -3: | 0.000314E+04|

Scale factor -2: | 0.003142E+03|

Scale factor -1: | 0.031416E+02|

Scale factor 0: | 0.314159E+01|

Scale factor 1: | 3.141590E+00|

Scale factor 2: | 31.41590E-01|

Scale factor 3: | 314.1590E-02|

Scale factor 4: | 3141.590E-03|

Scale factor 5: | 31415.90E-04|

Scale factor 6: | 314159.0E-05|

Scale factor 7: | 3141590.E-06|

Compatibility note: The ~E directive is similar to the Ew.d and Ew.dEe edit
descriptors in Fortran.

The presence or absence of the @ modifier corresponds to the effect of the Fortran
SS or SP edit descriptor; nothing in Common Lisp corresponds to the Fortran S edit
descriptor.

The scale factor specified by the parameter k corresponds to the scale factor k
specified by the Fortran kP edit descriptor; note, however, that the default value
for k is 1 in Common Lisp, as opposed to the default value of zero in Fortran. (On
the other hand, note that a scale factor of 1 is used for Fortran list-directed output,
which is roughly equivalent to using ~E with the w, d, e, and overflowchar parameters
omitted.)

In Common Lisp, the w and d parameters are optional; in Fortran, they are
required.

In Fortran, omitting e causes the exponent to be printed using either two or three
digits; if three digits are required, then the exponent marker is omitted. In Common
Lisp, omitting e causes the exponent to be printed using as few digits as possible;
the exponent marker is never omitted.

In Common Lisp, the pad character and overflow character are user-specifiable;
in Fortran they are always space and asterisk, respectively.

A Fortran implementation is prohibited from printing a representation of negative
zero; Common Lisp permits the printing of such a representation when appropriate.

In MacLisp and Lisp Machine Lisp, the ~E format directive takes a single param-
eter: the number of digits to use in the printed representation. This incompatibility
between Common Lisp and MacLisp was introduced for the sake of cultural com-
patibility with Fortran.
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~G

General floating-point. The next arg is printed as a floating-point number in
either fixed-format or exponential notation as appropriate.

The full form is ~w,d,e,k,overflowchar,padchar,exponentcharG. The for-

mat in which to print arg depends on the magnitude (absolute value) of the

arg. Let n be an integer such that 10n−1 ≤ arg < 10n. (If arg is zero, let n be
0.) Let ee equal e + 2, or 4 if e is omitted. Let ww equal w − ee, or nil if w

is omitted. If d is omitted, first let q be the number of digits needed to print

arg with no loss of information and without leading or trailing zeros; then let

d equal (max q (min n 7)). Let dd equal d − n.

If 0 ≤ dd ≤ d , then arg is printed as if by the format directives

~ww,dd,,overflowchar,padcharF~ee@T

Note that the scale factor k is not passed to the ~F directive. For all other

values of dd, arg is printed as if by the format directive

~w,d,e,k,overflowchar,padchar,exponentcharE

In either case, an @ modifier is specified to the ~F or ~E directive if and only

if one was specified to the ~G directive.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil during the processing of the ~G directive.

Examples:
........................................................................................................................................................................................................

(defun foo (x)

(format nil

"~9,2,1,,’*G|~9,3,2,3,’?,,’$G|~9,3,2,0,’%G|~9,2G"

x x x))

(foo 0.0314159) ⇒ " 3.14E-2|314.2$-04|0.314E-01| 3.14E-2"

(foo 0.314159) ⇒ " 0.31 |0.314 |0.314 | 0.31 "

(foo 3.14159) ⇒ " 3.1 | 3.14 | 3.14 | 3.1 "

(foo 31.4159) ⇒ " 31. | 31.4 | 31.4 | 31. "

(foo 314.159) ⇒ " 3.14E+2| 314. | 314. | 3.14E+2"

(foo 3141.59) ⇒ " 3.14E+3|314.2$+01|0.314E+04| 3.14E+3"

(foo 3141.59L0) ⇒ " 3.14L+3|314.2$+01|0.314L+04| 3.14L+3"

(foo 3.14E12) ⇒ "*********|314.0$+10|0.314E+13| 3.14E+12"

(foo 3.14L120) ⇒ "*********|?????????|%%%%%%%%%|3.14L+120"

(foo 3.14L1200) ⇒ "*********|?????????|%%%%%%%%%|3.14L+1200"
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Notice of correction. In the first edition, the example for the value 3.14E12

contained two typographical errors:

(foo 3.14E12) ⇒ "*********|314.2$+10|0.314E+13| 3.14L+12"

↑ ↑
should be 0 should be E

These have been corrected above.

Compatibility note: The ~G directive is similar to the Gw.d edit descriptor in
Fortran.

The Common Lisp rules for deciding between the use of ~F and ~E are compatible
with the rules used by Fortran but have been extended to cover the cases where w
or d is omitted or where e is specified.

In MacLisp and Lisp Machine Lisp, the ~G format directive is equivalent to
the Common Lisp ~@* directive. This incompatibility between Common Lisp and
MacLisp was introduced for the sake of cultural compatibility with Fortran.

~$

Dollars floating-point. The next arg is printed as a floating-point number in

fixed-format notation. This format is particularly convenient for printing a

value as dollars and cents.

The full form is ~d,n,w,padchar$. The parameter d is the number of digits

to print after the decimal point (default value 2); n is the minimum number

of digits to print before the decimal point (default value 1); w is the minimum

total width of the field to be printed (default value 0).

First padding and the sign are output. If the arg is negative, then a minus

sign is printed; if the arg is not negative, then a plus sign is printed if and

only if the @ modifier was specified. If the : modifier is used, the sign appears

before any padding, and otherwise after the padding. If w is specified and the
number of other characters to be output is less than w, then copies of padchar

(which defaults to a space) are output to make the total field width equal

w. Then n digits are printed for the integer part of arg, with leading zeros if

necessary; then a decimal point; then d digits of fraction, properly rounded.

If the magnitude of arg is so large that more than m digits would have to be

printed, where m is the larger of w and 100, then an implementation is free, at

its discretion, to print the number using exponential notation instead, as if by

the directive ~w,q,,,,padcharE, where w and padchar are present or omitted

according to whether they were present or omitted in the ~$ directive, and
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where q = d +n − 1, where d and n are the (possibly default) values given to

the ~$ directive.

If arg is a rational number, then it is coerced to be a single-float and then

printed. (Alternatively, an implementation is permitted to process a rational
number by any other method that has essentially the same behavior but avoids

such hazards as loss of precision or overflow because of the coercion.)

If arg is a complex number or some non-numeric object, then it is printed

using the format directive ~wD, thereby printing it in decimal radix and a
minimum field width of w. (If it is desired to print each of the real part and

imaginary part of a complex number using a ~$ directive, then this must be

done explicitly with two ~$ directives and code to extract the two parts of the

complex number.)

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-

escape* to nil during the processing of the ~$ directive.

~%

This outputs a #--\Newline character, thereby terminating the current output

line and beginning a new one (see terpri).

~n% outputs n newlines.

No arg is used. Simply putting a newline in the control string would work,

but ~% is often used because it makes the control string look nicer in the
middle of a Lisp program.

~&

Unless it can be determined that the output stream is already at the beginning

of a line, this outputs a newline (see fresh-line).

~n& calls fresh-line and then outputs n − 1 newlines. ~0& does nothing.

~|

This outputs a page separator character, if possible. ~n| does this n times. |
is vertical bar, not capital I.

~~

Tilde. This outputs a tilde. ~n~ outputs n tildes.

~〈newline〉
Tilde immediately followed by a newline ignores the newline and any following

non-newline whitespace characters. With a :, the newline is ignored, but any

following whitespace is left in place. With an @, the newline is left in place,
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but any following whitespace is ignored. This directive is typically used when

a format control string is too long to fit nicely into one line of the program:

(defun type-clash-error (fn nargs argnum right-type wrong-type)

(format *error-output*

"~&Function ~S requires its ~:[~:R~;~*~] ~

argument to be of type ~S,~%but it was called ~

with an argument of type ~S.~%"

fn (eql nargs 1) argnum right-type wrong-type))

(type-clash-error ’aref nil 2 ’integer ’vector) prints:

Function AREF requires its second argument to be of type INTEGER,

but it was called with an argument of type VECTOR.

(type-clash-error ’car 1 1 ’list ’short-float) prints:

Function CAR requires its argument to be of type LIST,

but it was called with an argument of type SHORT-FLOAT.

Note that in this example newlines appear in the output only as specified by

the ~& and ~% directives; the actual newline characters in the control string

are suppressed because each is preceded by a tilde.

~T

Tabulate. This spaces over to a given column. ~colnum,colincT will output
sufficient spaces to move the cursor to column colnum. If the cursor is already

at or beyond column colnum, it will output spaces to move it to column

colnum+k*colinc for the smallest positive integer k possible, unless colinc is

zero, in which case no spaces are output if the cursor is already at or beyond

column colnum. colnum and colinc default to 1.

Ideally, the current column position is determined by examination of the

destination, whether a stream or string. (Although no user-level operation for
determining the column position of a stream is defined by Common Lisp, such

a facility may exist at the implementation level.) If for some reason the current

absolute column position cannot be determined by direct inquiry, format

may be able to deduce the current column position by noting that certain
directives (such as ~%, or~&, or~A with the argument being a string containing

a newline) cause the column position to be reset to zero, and counting the

number of characters emitted since that point. If that fails, format may

attempt a similar deduction on the riskier assumption that the destination

was at column zero when format was invoked. If even this heuristic fails or is
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implementationally inconvenient, at worst the ~T operation will simply output

two spaces. (All this implies that code that uses format is more likely to be

portable if all format control strings that use the ~T directive either begin

with ~% or ~& to force a newline or are designed to be used only when the

destination is known from other considerations to be at column zero.)

~@T performs relative tabulation. ~colrel,colinc@T outputs colrel spaces and

then outputs the smallest non-negative number of additional spaces necessary

to move the cursor to a column that is a multiple of colinc. For example,

the directive ~3,8@T outputs three spaces and then moves the cursor to a
“standard multiple-of-eight tab stop” if not at one already. If the current

output column cannot be determined, however, then colinc is ignored, and

exactly colrel spaces are output.

X3J13 voted in June 1989 〈139〉 to define ~:T and ~:@T to perform tabula-

tion relative to a point defined by the pretty printing process (see section 27.4).

~*

The next arg is ignored. ~n* ignores the next n arguments.

~:* “ignores backwards”; that is, it backs up in the list of arguments so

that the argument last processed will be processed again. ~n:* backs up n

arguments.

When within a ~{ construct (see below), the ignoring (in either direction)
is relative to the list of arguments being processed by the iteration.

~n@* is an “absolute goto” rather than a “relative goto”: it goes to the nth

arg, where 0 means the first one; n defaults to 0, so ~@* goes back to the first

arg. Directives after a ~n@* will take arguments in sequence beginning with
the one gone to. When within a ~{ construct, the “goto” is relative to the list

of arguments being processed by the iteration.

~?

Indirection. The next arg must be a string, and the one after it a list; both
are consumed by the ~? directive. The string is processed as a format control

string, with the elements of the list as the arguments. Once the recursive pro-

cessing of the control string has been finished, then processing of the control

string containing the ~? directive is resumed. Example:

(format nil "~? ~D" "<~A ~D>" ’("Foo" 5) 7) ⇒ "<Foo 5> 7"

(format nil "~? ~D" "<~A ~D>" ’("Foo" 5 14) 7) ⇒ "<Foo 5> 7"

Note that in the second example three arguments are supplied to the con-

trol string "<~A ~D>", but only two are processed and the third is therefore
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ignored.

With the @ modifier, only one arg is directly consumed. The arg must be

a string; it is processed as part of the control string as if it had appeared

in place of the ~@? construct, and any directives in the recursively processed

control string may consume arguments of the control string containing the

~@? directive. Example:

(format nil "~@? ~D" "<~A ~D>" "Foo" 5 7) ⇒ "<Foo 5> 7"

(format nil "~@? ~D" "<~A ~D>" "Foo" 5 14 7) ⇒ "<Foo 5> 14"

Here is a rather sophisticated example. The format function itself, as
implemented at one time in Lisp Machine Lisp, used a routine internal to the

format package called format-error to signal error messages; format-error

in turn used error, which used format recursively. Now format-error took

a string and arguments, just like format, but also printed the control string

to format (which at this point was available in the global variable *ctl-

string*) and a little arrow showing where in the processing of the control

string the error occurred. The variable *ctl-index* pointed one character

after the place of the error.

(defun format-error (string &rest args) ;Example

(error nil "~?~%~V@T⇓~%~3@T\"~A\"~%"
string args (+ *ctl-index* 3) *ctl-string*))

(The character set used in the Lisp Machine Lisp implementation contains a

down-arrow character ⇓, which is not a standard Common Lisp character.)

This first processed the given string and arguments using ~?, then output a
newline, tabbed a variable amount for printing the down-arrow, and printed

the control string between double quotes (note the use of \" to include double

quotes within the control string). The effect was something like this:

(format t "The item is a ~[Foo~;Bar~;Loser~]." ’quux)

>>ERROR: The argument to the FORMAT "~[" command

must be a number.

⇓
"The item is a ~[Foo~;Bar~;Loser~]."

Implementation note: Implementors may wish to report errors occurring within
format control strings in the manner outlined here. It looks pretty flashy when done
properly.
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X3J13 voted in June 1989 〈139〉 to introduce certain format directives to

support the user interface to the pretty printer described in detail in chap-

ter 27.

~_

Conditional newline. Without any modifiers, the directive ~_ is equivalent to

(pprint-newline :linear). The directive ~@_ is equivalent to (pprint-

newline :miser). The directive ~:_ is equivalent to (pprint-newline

:fill). The directive ~:@_ is equivalent to (pprint-newline :mandatory).

~W

Write. An arg, any Lisp object, is printed obeying every printer control

variable (as by write). See section 27.4 for details.

~I

Indent. The directive ~nI is equivalent to (pprint-indent :block n). The

directive ~:nI is equivalent to (pprint-indent :current n). In both cases,

n defaults to zero, if it is omitted.

The format directives after this point are much more complicated than the

foregoing; they constitute control structures that can perform case conversion,

conditional selection, iteration, justification, and non-local exits. Used with

restraint, they can perform powerful tasks. Used with abandon, they can

produce completely unreadable and unmaintainable code.

The case-conversion, conditional, iteration, and justification constructs can

contain other formatting constructs by bracketing them. These constructs

must nest properly with respect to each other. For example, it is not legitimate
to put the start of a case-conversion construct in each arm of a conditional

and the end of the case-conversion construct outside the conditional:

(format nil "~:[abc~:@(def~;ghi~:@(jkl~]mno~)" x) ;Illegal!

One might expect this to produce either "abcDEFMNO" or "ghiJKLMNO", de-

pending on whether x is false or true; but in fact the construction is illegal

because the ~[...~;...~] and ~(...~) constructs are not properly nested.

The processing indirection caused by the ~? directive is also a kind of nesting

for the purposes of this rule of proper nesting. It is not permitted to start a

bracketing construct within a string processed under control of a ~? directive

and end the construct at some point after the ~? construct in the string

containing that construct, or vice versa. For example, this situation is illegal:
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(format nil "~?ghi~)" "abc~@(def") ;Illegal!

One might expect it to produce "abcDEFGHI", but in fact the construction is
illegal because the ~? and ~(...~) constructs are not properly nested.

~(str~)

Case conversion. The contained control string str is processed, and what it

produces is subject to case conversion: ~( converts every uppercase character
to the corresponding lowercase character; ~:( capitalizes all words, as if by

string-capitalize; ~@( capitalizes just the first word and forces the rest

to lowercase; ~:@( converts every lowercase character to the corresponding

uppercase character. In this example, ~@( is used to cause the first word
produced by ~@R to be capitalized:

(format nil "~@R ~(~@R~)" 14 14) ⇒ "XIV xiv"

(defun f (n) (format nil "~@(~R~) error~:P detected." n))

(f 0) ⇒ "Zero errors detected."

(f 1) ⇒ "One error detected."

(f 23) ⇒ "Twenty-three errors detected."

~[str0~;str1~;...~;strn~]

Conditional expression. This is a set of control strings, called clauses, one of

which is chosen and used. The clauses are separated by ~; and the construct

is terminated by ~]. For example,

"~[Siamese~;Manx~;Persian~] Cat"

The argth clause is selected, where the first clause is number 0. If a prefix
parameter is given (as ~n[), then the parameter is used instead of an argu-

ment. (This is useful only if the parameter is specified by #--, to dispatch on the

number of arguments remaining to be processed.) If arg is out of range, then

no clause is selected (and no error is signaled). After the selected alternative

has been processed, the control string continues after the ~].

~[str0~;str1~;...~;strn~:;default~] has a default case. If the last ~; used

to separate clauses is ~:; instead, then the last clause is an “else” clause that

is performed if no other clause is selected. For example:

"~[Siamese~;Manx~;Persian~:;Alley~] Cat"

~:[false~;true~] selects the false control string if arg is nil, and selects the

true control string otherwise.
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~@[true~] tests the argument. If it is not nil, then the argument is not

used up by the ~@[ command but remains as the next one to be processed,

and the one clause true is processed. If the arg is nil, then the argument is

used up, and the clause is not processed. The clause therefore should normally

use exactly one argument, and may expect it to be non-nil. For example:

(setq *print-level* nil *print-length* 5)

(format nil "~@[ print level UU ~D~]~@[ print length UU ~D~]"

*print-level* *print-length*)

⇒ " print length UU 5"

The combination of ~[ and #-- is useful, for example, for dealing with English
conventions for printing lists:

(setq foo "Items:~#--[ none~; ~S~; ~S and ~S~

~:;~@{~#--[~; and~] ~S~̂ ,~}~].")

(format nil foo)

⇒ "Items: none."

(format nil foo ’foo)

⇒ "Items: FOO."

(format nil foo ’foo ’bar)

⇒ "Items: FOO and BAR."

(format nil foo ’foo ’bar ’baz)

⇒ "Items: FOO, BAR, and BAZ."

(format nil foo ’foo ’bar ’baz ’quux)

⇒ "Items: FOO, BAR, BAZ, and QUUX."

~;

This separates clauses in ~[ and ~< constructions. It is an error elsewhere.

~]

This terminates a ~[. It is an error elsewhere.

~{str~}

Iteration. This is an iteration construct. The argument should be a list, which
is used as a set of arguments as if for a recursive call to format. The string str

is used repeatedly as the control string. Each iteration can absorb as many

elements of the list as it likes as arguments; if str uses up two arguments by

itself, then two elements of the list will get used up each time around the loop.

If before any iteration step the list is empty, then the iteration is terminated.
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Also, if a prefix parameter n is given, then there will be at most n repetitions

of processing of str. Finally, the ~̂ directive can be used to terminate the

iteration prematurely.

Here are some simple examples:

(format nil

"The winners are:~{ ~S~}."

’(fred harry jill))

⇒ "The winners are: FRED HARRY JILL."

(format nil "Pairs:~{ <~S,~S>~}." ’(a 1 b 2 c 3))

⇒ "Pairs: <A,1> <B,2> <C,3>."

~:{str~} is similar, but the argument should be a list of sublists. At each
repetition step, one sublist is used as the set of arguments for processing str;

on the next repetition, a new sublist is used, whether or not all of the last

sublist had been processed. Example:

(format nil "Pairs:~:{ <~S,~S>~}."

’((a 1) (b 2) (c 3)))

⇒ "Pairs: <A,1> <B,2> <C,3>."

~@{str~} is similar to ~{str~}, but instead of using one argument that is

a list, all the remaining arguments are used as the list of arguments for the

iteration. Example:

(format nil "Pairs:~@{ <~S,~S>~}."

’a 1 ’b 2 ’c 3)

⇒ "Pairs: <A,1> <B,2> <C,3>."

If the iteration is terminated before all the remaining arguments are consumed,

then any arguments not processed by the iteration remain to be processed by
any directives following the iteration construct.

~:@{str~} combines the features of ~:{str~} and ~@{str~}. All the remain-

ing arguments are used, and each one must be a list. On each iteration, the
next argument is used as a list of arguments to str. Example:

(format nil "Pairs:~:@{ <~S,~S>~}."

’(a 1) ’(b 2) ’(c 3))

⇒ "Pairs: <A,1> <B,2> <C,3>."
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Terminating the repetition construct with ~:} instead of ~} forces str to be

processed at least once, even if the initial list of arguments is null (however,

it will not override an explicit prefix parameter of zero).

If str is empty, then an argument is used as str. It must be a string and pre-

cede any arguments processed by the iteration. As an example, the following
are equivalent:

(apply #--’format stream string arguments)

(format stream "~1{~:}" string arguments)

This will use string as a formatting string. The ~1{ says it will be processed

at most once, and the ~:} says it will be processed at least once. Therefore it

is processed exactly once, using arguments as the arguments. This case may
be handled more clearly by the ~? directive, but this general feature of ~{ is

more powerful than ~?.

~}

This terminates a ~{. It is an error elsewhere.

~mincol,colinc,minpad,padchar<str~>

Justification. This justifies the text produced by processing str within a field

at least mincol columns wide. str may be divided up into segments with ~;,

in which case the spacing is evenly divided between the text segments.

With no modifiers, the leftmost text segment is left-justified in the field, and
the rightmost text segment right-justified; if there is only one text element,

as a special case, it is right-justified. The : modifier causes spacing to be

introduced before the first text segment; the @ modifier causes spacing to be

added after the last. The minpad parameter (default 0) is the minimum num-
ber of padding characters to be output between each segment. The padding

character is specified by padchar, which defaults to the space character. If the

total width needed to satisfy these constraints is greater than mincol, then the

width used is mincol+k*colinc for the smallest possible non-negative integer
value k; colinc defaults to 1, and mincol defaults to 0.

(format nil "~10<foo~;bar~>") ⇒ "foo bar"

(format nil "~10:<foo~;bar~>") ⇒ " foo bar"

(format nil "~10:@<foo~;bar~>") ⇒ " foo bar "

(format nil "~10<foobar~>") ⇒ " foobar"

(format nil "~10:<foobar~>") ⇒ " foobar"
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(format nil "~10@<foobar~>") ⇒ "foobar "

(format nil "~10:@<foobar~>") ⇒ " foobar "

Note that str may include format directives. All the clauses in str are

processed in order; it is the resulting pieces of text that are justified.

The ~̂ directive may be used to terminate processing of the clauses pre-

maturely, in which case only the completely processed clauses are justified.
If the first clause of a ~< is terminated with ~:; instead of ~;, then it is used

in a special way. All of the clauses are processed (subject to ~̂ , of course),

but the first one is not used in performing the spacing and padding. When

the padded result has been determined, then if it will fit on the current line of
output, it is output, and the text for the first clause is discarded. If, however,

the padded text will not fit on the current line, then the text segment for the

first clause is output before the padded text. The first clause ought to contain

a newline (such as a ~% directive). The first clause is always processed, and

so any arguments it refers to will be used; the decision is whether to use the
resulting segment of text, not whether to process the first clause. If the ~:;

has a prefix parameter n, then the padded text must fit on the current line

with n character positions to spare to avoid outputting the first clause’s text.

For example, the control string

"~%;; ~{~<~%;; ~1:; ~S~>~̂ ,~}.~%"

can be used to print a list of items separated by commas without breaking
items over line boundaries, beginning each line with ;; . The prefix parameter

1 in ~1:; accounts for the width of the comma that will follow the justified

item if it is not the last element in the list, or the period if it is. If ~:;

has a second prefix parameter, then it is used as the width of the line, thus

overriding the natural line width of the output stream. To make the preceding
example use a line width of 50, one would write

"~%;; ~{~<~%;; ~1,50:; ~S~>~̂ ,~}.~%"

If the second argument is not specified, then format uses the line width of

the output stream. If this cannot be determined (for example, when producing

a string result), then format uses 72 as the line length.

~>

Terminates a ~<. It is an error elsewhere.

X3J13 voted in June 1989 〈139〉 to introduce certain format directives to

support the user interface to the pretty printer. If ~:> is used to terminate
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a ~<... directive, the directive is equivalent to a call on pprint-logical-

block. See section 27.4 for details.

~̂

Up and out. This is an escape construct. If there are no more arguments

remaining to be processed, then the immediately enclosing ~{ or ~< construct

is terminated. If there is no such enclosing construct, then the entire format-
ting operation is terminated. In the ~< case, the formatting is performed, but

no more segments are processed before doing the justification. The ~̂ should

appear only at the beginning of a ~< clause, because it aborts the entire clause

it appears in (as well as all following clauses). ~̂ may appear anywhere in a

~{ construct.

(setq donestr "Done.~̂ ~D warning~:P.~̂ ~D error~:P.")

(format nil donestr) ⇒ "Done."

(format nil donestr 3) ⇒ "Done. 3 warnings."

(format nil donestr 1 5) ⇒ "Done. 1 warning. 5 errors."

If a prefix parameter is given, then termination occurs if the parameter is

zero. (Hence ~̂ is equivalent to ~#-- .̂) If two parameters are given, termination

occurs if they are equal. If three parameters are given, termination occurs if

the first is less than or equal to the second and the second is less than or
equal to the third. Of course, this is useless if all the prefix parameters are

constants; at least one of them should be a #-- or a V parameter.

If ~̂ is used within a ~:{ construct, then it merely terminates the current
iteration step (because in the standard case it tests for remaining arguments

of the current step only); the next iteration step commences immediately. To

terminate the entire iteration process, use ~: .̂

X3J13 voted in March 1988 〈81〉 to clarify the behavior of ~:^ as follows.

It may be used only if the command it would terminate is ~:{ or ~:@{. The

entire iteration process is terminated if and only if the sublist that is supplying

the arguments for the current iteration step is the last sublist (in the case of
terminating a ~:{ command) or the last argument to that call to format (in

the case of terminating a ~:@{ command). Note furthermore that while ~̂ is

equivalent to ~#--^ in all circumstances, ~:^ is not equivalent to ~:#--^ because

the latter terminates the entire iteration if and only if no arguments remain

for the current iteration step (as opposed to no arguments remaining for the
entire iteration process).

Here are some examples of the differences in the behaviors of ~̂ , ~: ,̂ and

~:#-- .̂
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(format nil

"~:{/~S~̂ ...~}"

’((hot dog) (hamburger) (ice cream) (french fries)))

⇒ "/HOT .../HAMBURGER/ICE .../FRENCH ..."

For each sublist, “ ...” appears after the first word unless there are no ad-

ditional words.

(format nil

"~:{/~S~:^ ...~}"

’((hot dog) (hamburger) (ice cream) (french fries)))

⇒ "/HOT .../HAMBURGER .../ICE .../FRENCH"

For each sublist, “ ...” always appears after the first word, unless it is the

last sublist, in which case the entire iteration is terminated.

(format nil

"~:{/~S~:#--^ ...~}"

’((hot dog) (hamburger) (ice cream) (french fries)))

⇒ "/HOT .../HAMBURGER"

For each sublist, “ ...” appears after the first word, but if the sublist has

only one word then the entire iteration is terminated.
If ~̂ appears within a control string being processed under the control of

a ~? directive, but not within any ~{ or ~< construct within that string, then

the string being processed will be terminated, thereby ending processing of

the ~? directive. Processing then continues within the string containing the

~? directive at the point following that directive.
If ~̂ appears within a ~[ or ~( construct, then all the commands up to

the ~̂ are properly selected or case-converted, the ~[ or ~( processing is

terminated, and the outward search continues for a ~{ or ~< construct to be

terminated. For example:

(setq tellstr "~@(~@[~R~]~̂ ~A.~)")

(format nil tellstr 23) ⇒ "Twenty-three."

(format nil tellstr nil "losers") ⇒ "Losers."

(format nil tellstr 23 "losers") ⇒ "Twenty-three losers."

Here are some examples of the use of ~̂ within a ~< construct.

(format nil "~15<~S~;~̂ ~S~;~̂ ~S~>" ’foo)
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⇒ " FOO"

(format nil "~15<~S~;~̂ ~S~;~̂ ~S~>" ’foo ’bar)

⇒ "FOO BAR"

(format nil "~15<~S~;~̂ ~S~;~̂ ~S~>" ’foo ’bar ’baz)

⇒ "FOO BAR BAZ"

Compatibility note: The ~Q directive and user-defined directives of Zetalisp have
........................................................................................................................................................................................................

been omitted here, as well as control lists (as opposed to strings), which are rumored
to be changing in meaning.

X3J13 voted in June 1989 〈139〉 to introduce user-defined directives in the

form of the ~/.../ directive. See section 27.4 for details.

The hairiest format control string I have ever seen in shown in table 22-8.

It started innocently enough as part of the simulator for Connection Machine

Lisp [44, 57]; the xapping data type, defined by defstruct, needed a :print-

function option so that xappings would print properly. As this data type

became more complicated, step by step, so did the format control string.

See the description of set-macro-character for a discussion of xappings

and the defstruct definition. Assume that the predicate xectorp is true of

a xapping if it is a xector, and that the predicate finite-part-is-xetp is

true if every value in the range is the same as its corresponding index.

Here is a blow-by-blow description of the parts of this format string:
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Table 22-8: Print Function for the Xapping Data Type

(defun print-xapping (xapping stream depth)

(declare (ignore depth))

(format stream

;; Are you ready for this one?

"~:[{~;[~]~:{~S~:[⇒~S~;~*~]~:^ ~}~:[~; ~]~
~{~S⇒~̂ ~}~:[~; ~]~[~*~;⇒~S~;⇒~*~]~:[}~;]~]"
;; Is that clear?

(xectorp xapping)

(do ((vp (xectorp xapping))

(sp (finite-part-is-xetp xapping))

(d (xapping-domain xapping) (cdr d))

(r (xapping-range xapping) (cdr r))

(z ’() (cons (list (if vp (car r) (car d))

(or vp sp)

(car r))

z)))

((null d) (reverse z)))

(and (xapping-domain xapping)

(or (xapping-exceptions xapping)

(xapping-infinite xapping)))

(xapping-exceptions xapping)

(and (xapping-exceptions xapping)

(xapping-infinite xapping))

(ecase (xapping-infinite xapping)

((nil) 0)

(:constant 1)

(:universal 2))

(xapping-default xapping)

(xectorp xapping)))

See section 22.1.5 for the defstruct definition of the xapping data type, whose
accessor functions are used in this code.

~:[{~;[~] Print “[” for a xector, and “{” otherwise.

~:{~S~:[⇒~S~;~*~]~:^ ~} Given a list of lists, print the pairs. Each sublist

has three elements: the index (or the value if
we’re printing a xector); a flag that is true for

either a xector or xet (in which case no arrow

is printed); and the value. Note the use of ~:{

to iterate, and the use of ~:^ to avoid printing
a separating space after the final pair (or at all,

if there are no pairs).

~:[~; ~] If there were pairs and there are exceptions or

an infinite part, print a separating space.

~〈newline〉 Do nothing. This merely allows the format con-
trol string to be broken across two lines.

~{~S⇒~̂ ~} Given a list of exception indices, print them.

Note the use of ~{ to iterate, and the use of

~̂ to avoid printing a separating space after
the final exception (or at all, if there are no

exceptions).

~:[~; ~] If there were exceptions and there is an infinite

part, print a separating space.

~[~*~;⇒~S~;⇒~*~] Use ~[ to choose one of three cases for printing
the infinite part.

~:[}~;]~] Print “]” for a xector, and “}” otherwise.
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22.4. Querying the User

The following functions provide a convenient and consistent interface for ask-

ing questions of the user. Questions are printed and the answers are read using

the stream *query-io*, which normally is synonymous with *terminal-io*

but can be rebound to another stream for special applications.

[Function]y-or-n-p &optional format-string &rest arguments

This predicate is for asking the user a question whose answer is either “yes”
or “no.” It types out a message (if supplied), reads an answer in some

implementation-dependent manner (intended to be short and simple, like

reading a single character such as Y or N), and is true if the answer was

“yes” or false if the answer was “no.”

If the format-string argument is supplied and not nil, then a fresh-line

operation is performed; then a message is printed as if the format-string and

arguments were given to format. Otherwise it is assumed that any message

has already been printed by other means. If you want a question mark at
the end of the message, you must put it there yourself; y-or-n-p will not

add it. However, the message should not contain an explanatory note such

as (Y or N), because the nature of the interface provided for y-or-n-p by

a given implementation might not involve typing a character on a keyboard;

y-or-n-p will provide such a note if appropriate.

All input and output are performed using the stream in the global variable

*query-io*.

Here are some examples of the use of y-or-n-p:
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(y-or-n-p "Produce listing file?")

(y-or-n-p "Cannot connect to network host ~S. Retry?" host)

y-or-n-p should only be used for questions that the user knows are coming

or in situations where the user is known to be waiting for a response of some

kind. If the user is unlikely to anticipate the question, or if the consequences

of the answer might be grave and irreparable, then y-or-n-p should not be

used because the user might type ahead and thereby accidentally answer the
question. For such questions as “Shall I delete all of your files?” it is better

to use yes-or-no-p.

[Function]yes-or-no-p &optional format-string &rest arguments

This predicate, like y-or-n-p, is for asking the user a question whose answer

is either “yes” or “no.” It types out a message (if supplied), attracts the user’s
attention (for example, by ringing the terminal’s bell), and reads a reply in

some implementation-dependent manner. It is intended that the reply require

the user to take more action than just a single keystroke, such as typing the

full word yes or no followed by a newline.

If the format-string argument is supplied and not nil, then a fresh-line

operation is performed; then a message is printed as if the format-string and

arguments were given to format. Otherwise it is assumed that any message

has already been printed by other means. If you want a question mark at

the end of the message, you must put it there yourself; yes-or-no-p will not
add it. However, the message should not contain an explanatory note such as

(Yes or No) because the nature of the interface provided for yes-or-no-p

by a given implementation might not involve typing the reply on a keyboard;

yes-or-no-p will provide such a note if appropriate.

All input and output are performed using the stream in the global variable
*query-io*.

To allow the user to answer a yes-or-no question with a single character,

use y-or-n-p. yes-or-no-p should be used for unanticipated or momentous

questions; this is why it attracts attention and why it requires a multiple-
action sequence to answer it.
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File System Interface

A frequent use of streams is to communicate with a file system to which groups

of data (files) can be written and from which files can be retrieved.

Common Lisp defines a standard interface for dealing with such a file sys-
tem. This interface is designed to be simple and general enough to accommo-

date the facilities provided by “typical” operating system environments within

which Common Lisp is likely to be implemented. The goal is to make Com-

mon Lisp programs that perform only simple operations on files reasonably

portable.

To this end, Common Lisp assumes that files are named, that given a name

one can construct a stream connected to a file of that name, and that the

names can be fit into a certain canonical, implementation-independent form
called a pathname.

Facilities are provided for manipulating pathnames, for creating streams

connected to files, and for manipulating the file system through pathnames
and streams.

23.1. File Names

Common Lisp programs need to use names to designate files. The main

difficulty in dealing with names of files is that different file systems have

different naming formats for files. For example, here is a table of several

file systems (actually, operating systems that provide file systems) and what

equivalent file names might look like for each one:

661
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System File Name

TOPS-20 <LISPIO>FORMAT.FASL.13

TOPS-10 FORMAT.FAS[1,4]

ITS LISPIO;FORMAT FASL

MULTICS >udd>LispIO>format.fasl

TENEX <LISPIO>FORMAT.FASL;13

VAX/VMS [LISPIO]FORMAT.FAS;13

UNIX /usr/lispio/format.fasl

It would be impossible for each program that deals with file names to know

about each different file name format that exists; a new Common Lisp imple-

mentation might use a format different from any of its predecessors. Therefore,
Common Lisp provides two ways to represent file names: namestrings, which

are strings in the implementation-dependent form customary for the file sys-

tem, and pathnames, which are special abstract data objects that represent

file names in an implementation-independent way. Functions are provided to
convert between these two representations, and all manipulations of files can

be expressed in machine-independent terms by using pathnames.

In order to allow Common Lisp programs to operate in a network environ-

ment that may have more than one kind of file system, the pathname facility

allows a file name to specify which file system is to be used. In this con-
text, each file system is called a host, in keeping with the usual networking

terminology.

Different hosts may use different notations for file names. Common Lisp

allows customary notation to be used for each host, but also supports a system
of logical pathnames that provides a standard framework for naming files in

a portable manner (see section 23.1.5).

23.1.1. Pathnames

All file systems dealt with by Common Lisp are forced into a common frame-

work, in which files are named by a Lisp data object of type pathname.

A pathname always has six components, described below. These compo-

nents are the common interface that allows programs to work the same way
with different file systems; the mapping of the pathname components into the

concepts peculiar to each file system is taken care of by the Common Lisp

implementation.

host

The name of the file system on which the file resides.
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device

Corresponds to the “device” or “file structure” concept in many host file
systems: the name of a (logical or physical) device containing files.

directory

Corresponds to the “directory” concept in many host file systems: the name of

a group of related files (typically those belonging to a single user or project).

name

The name of a group of files that can be thought of as the “same” file.

type

Corresponds to the “filetype” or “extension” concept in many host file sys-

tems; identifies the type of file. Files with the same names but different types

are usually related in some specific way, for instance, one being a source file,

another the compiled form of that source, and a third the listing of error

messages from the compiler.

version

Corresponds to the “version number” concept in many host file systems. Typ-
ically this is a number that is incremented every time the file is modified.

Note that a pathname is not necessarily the name of a specific file. Rather,

it is a specification (possibly only a partial specification) of how to access a file.

A pathname need not correspond to any file that actually exists, and more

than one pathname can refer to the same file. For example, the pathname
with a version of “newest” may refer to the same file as a pathname with the

same components except a certain number as the version. Indeed, a pathname

with version “newest” may refer to different files as time passes, because the

meaning of such a pathname depends on the state of the file system. In file

systems with such facilities as “links,” multiple file names, logical devices,
and so on, two pathnames that look quite different may turn out to address

the same file. To access a file given a pathname, one must do a file system

operation such as open.

Two important operations involving pathnames are parsing and merging.

Parsing is the conversion of a namestring (which might be something sup-

plied interactively by the user when asked to supply the name of a file) into a

pathname object. This operation is implementation-dependent, because the

format of namestrings is implementation-dependent. Merging takes a path-
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name with missing components and supplies values for those components from

a source of defaults.

Not all of the components of a pathname need to be specified. If a com-
ponent of a pathname is missing, its value is nil. Before the file system

interface can do anything interesting with a file, such as opening the file, all

the missing components of a pathname must be filled in (typically from a set

of defaults). Pathnames with missing components may be used internally for
various purposes; in particular, parsing a namestring that does not specify

certain components will result in a pathname with missing components.

X3J13 voted in January 1989 〈136〉 to permit any component of a pathname
to have the value :unspecific, meaning that the component simply does not

exist, for file systems in which such a value makes sense. (For example, a

UNIX file system usually does not support version numbers, so the version

component of a pathname for a UNIX host might be :unspecific. Similarly,

the file type is usually regarded in a UNIX file system as the part of a name
after a period, but some file names contain no periods and therefore have no

file types.)

When a pathname is converted to a namestring, the values nil and

:unspecific have the same effect: they are treated as if the component

were empty (that is, they each cause the component not to appear in the

namestring). When merging, however, only a nil value for a component will

be replaced with the default for that component; the value :unspecific will
be left alone as if the field were filled.

The results are undefined if :unspecific is supplied to a file system in a
component for which :unspecific does not make sense for that file system.

Programming hint: portable programs should be prepared to handle the

value :unspecific in the device, directory, type, or version field in some im-
plementations. Portable programs should not explicitly place :unspecific in

any field because it might not be permitted in some situations, but portable

programs may sometimes do so implicitly (by copying such a value from an-

other pathname, for example).

A component of a pathname can also be the keyword :wild. This is only
........................................................................................................................................................................................................

useful when the pathname is being used with a directory-manipulating op-

eration, where it means that the pathname component matches anything.
The printed representation of a pathname typically designates :wild by an

asterisk; however, this is host-dependent.

See section 23.1.4 for a discussion of new wildcard pathname facilities.

What values are allowed for components of a pathname depends, in general,

on the pathname’s host. However, in order for pathnames to be usable in a

system-independent way, certain global conventions are adhered to. These
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conventions are stronger for the type and version than for the other compo-

nents, since the type and version are explicitly manipulated by many pro-

grams, while the other components are usually treated as something supplied

by the user that just needs to be remembered and copied from place to place.

The type is always a string or nil or :wild. It is expected that most
programs that deal with files will supply a default type for each file.

The version is either a positive integer or a special symbol. The meanings

of nil and :wild have been explained above. The keyword :newest refers to

the largest version number that already exists in the file system when read-
ing a file, or to a version number greater than any already existing in the

file system when writing a new file. Some Common Lisp implementors may

choose to define other special version symbols. Some semi-standard names,

suggested but not required to be supported by every Common Lisp imple-
mentation, are :oldest, to refer to the smallest version number that exists

in the file system; :previous, to refer to the version previous to the newest

version; and :installed, to refer to a version that is officially installed for

users (as opposed to a working or development version). Some Common Lisp

implementors may also choose to attach a meaning to non-positive version
numbers (a typical convention is that 0 is synonymous with :newest and -1

with :previous), but such interpretations are implementation-dependent.

The host may be a string, indicating a file system, or a list of strings, of

which the first names the file system and the rest may be used for such a
purpose as inter-network routing.

The device, directory, and name can each be a string (with host-dependent
........................................................................................................................................................................................................

rules on allowed characters and length) or possibly some other Common Lisp

data structure (in which case such a component is said to be structured and

has an implementation-dependent format). Structured components may be
used to handle such file system features as hierarchical directories. Common

Lisp programs do not need to know about structured components unless they

do host-dependent operations. Specifying a string as a pathname component

for a host that requires a structured component will cause conversion of the
string to the appropriate form.

X3J13 voted in June 1989 〈133〉 to define a specific format for structured

directories (see section 23.1.3).

X3J13 voted in June 1989 〈129〉 to approve the following clarifications and
specifications of precisely what are valid values for the various components of

a pathname.

Pathname component value strings never contain the punctuation charac-

ters that are used to separate fields in a namestring (for example, slashes and

periods as used in UNIX file systems). Punctuation characters appear only in
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namestrings. Characters used as punctuation can appear in pathname com-

ponent values with a non-punctuation meaning if the file system allows it (for

example, UNIX file systems allow a file name to begin with a period).

When examining pathname components, conforming programs must be pre-

pared to encounter any of the following siutations:

. Any component can be nil, which means the component has not been

specified.

. Any component can be :unspecific, which means the component has no

meaning in this particular pathname.

. The device, directory, name, and type can be strings.

. The host can be any object, at the discretion of the implementation.

. The directory can be a list of strings and symbols as described in sec-
tion 23.1.3.

. The version can be any symbol or any integer. The symbol :newest refers

to the largest version number that already exists in the file system when

reading, overwriting, appending, superseding, or directory-listing an exist-
ing file; it refers to the smallest version number greater than any existing

version number when creating a new file. Other symbols and integers have

implementation-defined meaning. It is suggested, but not required, that

implementations use positive integers starting at 1 as version numbers,
recognize the symbol :oldest to designate the smallest existing version

number, and use keyword symbols for other special versions.

When examining wildcard components of a wildcard pathname, conforming

programs must be prepared to encounter any of the following additional values

in any component or any element of a list that is the directory component:

. The symbol :wild, which matches anything.

. A string containing implementation-dependent special wildcard characters.

. Any object, representing an implementation-dependent wildcard pattern.

When constructing a pathname from components, conforming programs

must follow these rules:

. Any component may be nil. Specifying nil for the host may, in some

implementations, result in using a default host rather than an actual nil

value.
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. The host, device, directory, name, and type may be strings. There are

implementation-dependent limits on the number and type of characters in

these strings. A plausible assumption is that letters (of a single case) and

digits are acceptable to most file systems.

. The directory may be a list of strings and symbols as described in sec-

tion 23.1.3. There are implementation-dependent limits on the length and

contents of the list.

. The version may be :newest.

. Any component may be taken from the corresponding component of an-

other pathname. When the two pathnames are for different file systems (in

implementations that support multiple file systems), an appropriate trans-

lation occurs. If no meaningful translation is possible, an error is signaled.
The definitions of “appropriate” and “meaningful” are implementation-

dependent.

. When constructing a wildcard pathname, the name, type, or version may
be :wild, which matches anything.

. An implementation might support other values for some components, but a

portable program should not use those values. A conforming program can

use implementation-dependent values but this can make it non-portable;
for example, it might work only with UNIX file systems.
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The best way to compare two pathnames for equality is with equal, not

eql. (On pathnames, eql is simply the same as eq.) Two pathname objects

are equal if and only if all the corresponding components (host, device, and

so on) are equivalent. (Whether or not uppercase and lowercase letters are

considered equivalent in strings appearing in components depends on the file
name conventions of the file system.) Pathnames that are equal should be

functionally equivalent.

Some host file systems have features that do not fit into this pathname
........................................................................................................................................................................................................

model. For instance, directories might be accessible as files; there might be
complicated structure in the directories or names; or there might be a way to

specify a directory relative to a “current” directory, such as the < syntax in

MULTICS or the special “..” file name of UNIX. Such features are not allowed

for by the standard Common Lisp file system interface. An implementation is

free to accommodate such features in its pathname representation and provide
a parser that can process such specifications in namestrings; such features

are then likely to work within that single implementation. However, note

that once a program depends explicitly on any such features, it will not be

portable.
X3J13 voted in June 1989 〈133〉 to define a specific format for structured

directories (see section 23.1.3), so some of the specific examples in the previous

paragraph no longer apply, but the principle is still correct.

23.1.2. Case Conventions

Issues of alphabetic case in pathnames are a major source of problems. In

some file systems, the customary case is lowercase, in some uppercase, in some
mixed. Some file systems are case-sensitive (that is, they treat FOO and foo

as different file names) and others are not.

There are two kinds of pathname case portability problems: moving pro-

grams from one Common Lisp to another, and moving pathname component

values from one file system to another. The solution to the first problem is the
requirement that all Common Lisp implementations that support a particu-

lar file system must use compatible representations for pathname component

values. The solution to the second problem is the use of a common represen-

tation for the least-common-denominator pathname component values that
exist on all interesting file systems.

Requiring a common representation directly conflicts with the desire among

programmers that use only one file system to work with the local conventions

and to ignore issues of porting to other file systems. The common represen-

tation cannot be the same as local (varying) conventions.
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X3J13 voted in June 1989 〈128〉 to add a keyword argument :case to

each of the functions make-pathname, pathname-host, pathname-device,

pathname-directory, pathname-name, and pathname-type. The possible

values for the argument are :common and :local. The default is :local.

The value :local means that strings given to make-pathname or returned

by any of the pathname component accessors follow the local file system’s
conventions for alphabetic case. Strings given to make-pathname will be used

exactly as written if the file system supports both cases. If the file system

supports only one case, the strings will be translated to that case.

The value :common means that strings given to make-pathname or returned

by any of the pathname component accessors follow this common convention:

. All uppercase means that a file system’s customary case will be used.

. All lowercase means that the opposite of the customary case will be used.

. Mixed case represents itself.

Uppercase is used as the common case for no better reason than consistency

with Lisp symbols. The second and third points allow translation from local

representation to common and back to be information-preserving. (Note that

translation from common to local representation and back may or may not be
information-preserving, depending on the nature of the local representation.)

Namestrings always use :local file system case conventions.

Finally, merge-pathnames and translate-pathname map customary case

in the input pathnames into customary case in the output pathname.

Examples of possible use of this convention:

. TOPS-20 is case-sensitive and prefers uppercase, translating lowercase to
uppercase unless escaped with ^V; for a TOPS-20–based file system, a Com-

mon Lisp implementation should use identical representations for common

and local.

. UNIX is case-sensitive and prefers lowercase; for a UNIX-based file system, a

Common Lisp implementation should translate between common and local
representations by inverting the case of non-mixed-case strings.

. VAX/VMS is uppercase-only (that is, the file system translates all file name

arguments to uppercase); for a VAX/VMS-based file system, a Common

Lisp implementation should translate common representation to local by

converting to uppercase and should translate local representation to com-

mon with no change.
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. The Macintosh operating system is case-insensitive and prefers lowercase,

but remembers the cases of letters actually used to name a file; for a

Macintosh-based file system, a Common Lisp implementation should trans-

late between common and local representations by inverting the case of

non-mixed-case strings and should ignore case when determining whether
two pathnames are equal.
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Here are some examples of this behavior. Assume that the host T runs

TOPS-20, U runs UNIX, V runs VAX/VMS, and M runs the Macintosh oper-

ating system.

;;; Returns two values: the PATHNAME-NAME from a namestring

;;; in :COMMON and :LOCAL representations (in that order).

(defun pathname-example (name)

(let ((path (parse-namestring name))))

(values (pathname-name path :case :common)

(pathname-name path :case :local))))

;Common Local
(pathname-example "T:<ME>FOO.LISP") ⇒ "FOO" and "FOO"

(pathname-example "T:<ME>foo.LISP") ⇒ "FOO" and "FOO"

(pathname-example "T:<ME> V̂f^Vo^Vo.LISP") ⇒ "foo" and "foo"

(pathname-example "T:<ME>TeX.LISP") ⇒ "TEX" and "TEX"

(pathname-example "T:<ME>T V̂eX.LISP") ⇒ "TeX" and "TeX"

(pathname-example "U:/me/FOO.lisp") ⇒ "foo" and "FOO"

(pathname-example "U:/me/foo.lisp") ⇒ "FOO" and "foo"

(pathname-example "U:/me/TeX.lisp") ⇒ "TeX" and "TeX"

(pathname-example "V:[me]FOO.LISP") ⇒ "FOO" and "FOO"

(pathname-example "V:[me]foo.LISP") ⇒ "FOO" and "FOO"

(pathname-example "V:[me]TeX.LISP") ⇒ "TEX" and "TEX"

(pathname-example "M:FOO.LISP") ⇒ "foo" and "FOO"

(pathname-example "M:foo.LISP") ⇒ "FOO" and "foo"

(pathname-example "M:TeX.LISP") ⇒ "TeX" and "TeX"

The following example illustrates the creation of new pathnames. The name

is converted from common representation to local because namestrings always
use local conventions.

(defun make-pathname-example (h n)

(namestring (make-pathname :host h :name n :case :common))

(make-pathname-example "T" "FOO") ⇒ "T:FOO"

(make-pathname-example "T" "foo") ⇒ "T:^Vf^Vo^Vo"

(make-pathname-example "T" "TeX") ⇒ "T:T V̂eX"

(make-pathname-example "U" "FOO") ⇒ "U:foo"

(make-pathname-example "U" "foo") ⇒ "U:FOO"

(make-pathname-example "U" "TeX") ⇒ "U:TeX"

(make-pathname-example "V" "FOO") ⇒ "V:FOO"
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(make-pathname-example "V" "foo") ⇒ "V:FOO"

(make-pathname-example "V" "TeX") ⇒ "V:TeX"

(make-pathname-example "M" "FOO") ⇒ "M:foo"

(make-pathname-example "M" "foo") ⇒ "M:FOO"

(make-pathname-example "M" "TeX") ⇒ "M:TeX"

A big advantage of this set of conventions is that one can, for example, call

make-pathname with :type "LISP" and :case :common, and the result will
appear in a namestring as .LISP or .lisp, whichever is appropriate.

23.1.3. Structured Directories

X3J13 voted in June 1989 〈133〉 to define a specific pathname component
format for structured directories.

The value of a pathname’s directory component may be a list. The car of

the list should be a keyword, either :absolute or :relative. Each remaining
element of the list should be a string or a symbol (see below). Each string

names a single level of directory structure and should consist of only the

directory name without any punctuation characters.

A list whose car is the symbol :absolute represents a directory path start-

ing from the root directory. For example, the list (:absolute) represents the

root directory itself; the list (:absolute "foo" "bar" "baz") represents the

directory that in a UNIX file system would be called /foo/bar/baz.

A list whose car is the symbol :relative represents a directory path start-

ing from a default directory. The list (:relative) has the same meaning
as nil and hence normally is not used. The list (:relative "foo" "bar")

represents the directory named bar in the directory named foo in the default

directory.

In place of a string, at any point in the list, a symbol may occur to indicate

a special file notation. The following symbols have standard meanings.

:wild Wildcard match of one level of directory structure

:wild-inferiors Wildcard match of any number of directory levels

:up Go upward in directory structure (semantic)

:back Go upward in directory structure (syntactic)

(See section 23.1.4 for a discussion of wildcard pathnames.)

Implementations are permitted to add additional objects of any non-string

type if necessary to represent features of their file systems that cannot be
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represented with the standard strings and symbols. Supplying any non-string,

including any of the symbols listed below, to a file system for which it does

not make sense signals an error of type file-error. For example, most

implementations of the UNIX file system do not support :wild-inferiors.

Any directory list in which :absolute or :wild-inferiors is immediately
followed by :up or :back is illegal and when processed causes an error to be

signaled.

The keyword :back has a “syntactic” meaning that depends only on the

pathname and not on the contents of the file system. The keyword :up has

a “semantic” meaning that depends on the contents of the file system; to

resolve a pathname containing :up to a pathname whose directory component
contains only :absolute and strings requires a search of the file system. Note

that use of :up instead of :back can result in designating a different actual

directory only in file systems that support multiple names for directories,

perhaps via symbolic links. For example, suppose that there is a directory

link such that

(:absolute "X" "Y") is linked to (:absolute "A" "B")

and there also exist directories

(:absolute "A" "Q") and (:absolute "X" "Q")

Then

(:absolute "X" "Y" :up "Q") designates (:absolute "A" "Q")

but

(:absolute "X" "Y" :back "Q") designates (:absolute "X" "Q")

If a string is used as the value of the :directory argument to make-

pathname, it should be the name of a top-level directory and should not
contain any punctuation characters. Specifying a string s is equivalent to

specifying the list (:absolute s). Specifying the symbol :wild is equiv-

alent to specifying the list (:absolute :wild-inferiors) (or (:absolute

:wild) in a file system that does not support :wild-inferiors).

The function pathname-directory always returns nil, :unspecific, or a

list—never a string, never :wild. If a list is returned, it is not guaranteed to

be freshly consed; the consequences of modifying this list are undefined.

In non-hierarchical file systems, the only valid list values for the direc-

tory component of a pathname are (:absolute s) (where s is a string) and
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(:absolute :wild). The keywords :relative, :wild-inferiors, :up, and

:back are not used in non-hierarchical file systems.

Pathname merging treats a relative directory specially. Let pathname and

defaults be the first two arguments to merge-pathnames. If (pathname-

directory pathname) is a list whose car is :relative, and (pathname-

directory defaults) is a list, then the merged directory is the value of

(append (pathname-directory defaults)

(cdr ;Remove :relative from the front

(pathname-directory pathname)))

except that if the resulting list contains a string or :wild immediately followed

by :back, both of them are removed. This removal of redundant occurrences

of :back is repeated as many times as possible. If (pathname-directory

defaults) is not a list or (pathname-directory pathname) is not a list whose

car is :relative, the merged directory is the value of

(or (pathname-directory pathname)

(pathname-directory defaults))

A relative directory in the pathname argument to a function such as open

is merged with the value of *default-pathname-defaults* before the file

system is accessed.

Here are some examples of the use of structured directories. Suppose that
host L supports a Symbolics Lisp Machine file system, host U supports a UNIX

file system, and host V supports a VAX/VMS file system.

(pathname-directory (parse-namestring "V:[FOO.BAR]BAZ.LSP"))

⇒ (:ABSOLUTE "FOO" "BAR")

(pathname-directory (parse-namestring "U:/foo/bar/baz.lisp"))

⇒ (:ABSOLUTE "foo" "bar")

(pathname-directory (parse-namestring "U:../baz.lisp"))

⇒ (:RELATIVE :UP)

(pathname-directory (parse-namestring "U:/foo/bar/../mum/baz"))

⇒ (:ABSOLUTE "foo" "bar" :UP "mum")

(pathname-directory (parse-namestring "U:bar/../../ztesch/zip"))

⇒ (:RELATIVE "bar" :UP :UP "ztesch")

(pathname-directory (parse-namestring "L:>foo>**>bar>baz.lisp"))

⇒ (:ABSOLUTE "FOO" :WILD-INFERIORS "BAR")
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(pathname-directory (parse-namestring "L:>foo>*>bar>baz.lisp"))

⇒ (:ABSOLUTE "FOO" :WILD "BAR")

23.1.4. Extended Wildcards

Some file systems provide more complex conventions for wildcards than sim-

ple component-wise wildcards representable by :wild. For example, the

namestring "F*O" might mean a normal three-character name; a three-
character name with the middle character wild; a name with at least two char-

acters, beginning with F and ending with O; or perhaps a wild match spanning

multiple directories. Similarly, the namestring ">foo>**>bar>" might imply

that the middle directory is named "**"; the middle directory is :wild; there

are zero or more middle directories that are :wild; or perhaps that the middle
directory name matches any two-letter name. Some file systems support even

more complex wildcards, such as regular expressions.

X3J13 voted in June 1989 〈137〉 to provide some facilities for dealing with

more general wildcard pathnames in a fairly portable manner.

[Function]wild-pathname-p pathname &optional field-key

Tests a pathname for the presence of wildcard components. If the first argu-
ment is not a pathname, string, or file stream, an error of type type-error

is signaled.

If no field-key is provided, or the field-key is nil, the result is true if and

only if pathname has any wildcard components.

If a non-null field-key is provided, it must be one of :host, :device,
:directory, :name, :type, or :version. In this case, the result is true if

and only if the indicated component of pathname is a wildcard.

Note that X3J13 voted in June 1989 〈129〉 to specify that an implementa-

tion need not support wildcards in all fields; the only requirement is that the

name, type, or version may be :wild. However, portable programs should

be prepared to encounter either :wild or implementation-dependent wild-

cards in any pathname component. The function wild-pathname-p provides
a portable way for testing the presence of wildcards.

[Function]pathname-match-p pathname wildname

This predicate is true if and only if the pathname matches the wildname. The

matching rules are implementation-defined but should be consistent with the
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behavior of the directory function. Missing components of wildname default

to :wild.

If either argument is not a pathname, string, or file stream, an error of type
type-error is signaled. It is valid for pathname to be a wild pathname; a

wildcard field in pathname will match only a wildcard field in wildname; that

is, pathname-match-p is not commutative. It is valid for wildname to be a

non-wild pathname; I believe that in this case pathname-match-p will have
the same behavior as equal, though the X3J13 specification did not say so.

[Function]translate-pathname source from-wildname to-wildname

&key

Translates the pathname source, which must match from-wildname, into a

corresponding pathname (call it result), which is constructed so as to match
to-wildname, and returns result.

The pathname result is a copy of to-wildname with each missing or wild-

card field replaced by a portion of source; for this purpose a wildcard field is a
pathname component with a value of :wild, a :wild element of a list-valued

directory component, or an implementation-defined portion of a component,

such as the * in the complex wildcard string "foo*bar" that some imple-

mentations support. An implementation that adds other wildcard features,
such as regular expressions, must define how translate-pathname extends

to those features. A missing field is a pathname component that is nil.

The portion of source that is copied into result is implementation-defined.
Typically it is determined by the user interface conventions of the file sys-

tems involved. Usually it is the portion of source that matches a wildcard

field of from-wildname that is in the same position as the missing or wild-

card field of to-wildname. If there is no wildcard field in from-wildname at
that position, then usually it is the entire corresponding pathname compo-

nent of source or, in the case of a list-valued directory component, the entire

corresponding list element. For example, if the name components of source,

from-wildname, and to-wildname are "gazonk", "gaz*", and "h*" respec-

tively, then in most file systems the wildcard fields of the name component of
from-wildname and to-wildname are each "*", the matching portion of source

is "onk", and the name component of result is "honk"; however, the exact be-

havior of translate-pathname is not dictated by the Common Lisp language

and may vary according to the user interface conventions of the file systems
involved.

During the copying of a portion of source into result, additional

implementation-defined translations of alphabetic case or file naming con-
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ventions may occur, especially when from-wildname and to-wildname are for

different hosts.

If any of the first three arguments is not a pathname, string, or file stream,

an error of type type-error is signaled. It is valid for source to be a wild

pathname; in general this will produce a wild result pathname. It is valid
for from-wildname or to-wildname or both to be non-wild. An error is sig-

naled if the source pathname does not match the from-wildname, that is, if

(pathname-match-p source from-wildname) would not be true.

There are no specified keyword arguments for translate-pathname, but
implementations are permitted to extend it by adding keyword arguments.

There is one specified return value from translate-pathname; implementa-

tions are permitted to extend it by returning additional values.

Here is an implementation suggestion. One file system performs this op-

eration by examining corresponding pieces of the three pathnames in turn,
where a piece is a pathname component or a list element of a structured com-

ponent such as a hierarchical directory. Hierarchical directory elements in

from-wildname and to-wildname are matched by whether they are wildcards,

not by depth in the directory hierarchy. If the piece in to-wildname is present
and not wild, it is copied into the result. If the piece in to-wildname is :wild

or nil, the corresponding piece in source is copied into the result. Otherwise,

the piece in to-wildname might be a complex wildcard such as "foo*bar";

the portion of the piece in source that matches the wildcard portion of the

corresponding piece in from-wildname (or the entire source piece, if the from-
wildname piece is not wild and therefore equals the source piece) replaces the

wildcard portion of the piece in to-wildname and the value produced is used

in the result.

X3J13 voted in June 1989 〈128〉 to require translate-pathname to map
customary case in argument pathnames to the customary case in returned

pathnames (see section 23.1.2).

Here are some examples of the use of the new wildcard pathname facilities.

These examples are not portable. They are written to run with particular file

systems and particular wildcard conventions and are intended to be illustra-
tive, not prescriptive. Other implementations may behave differently.

(wild-pathname-p (make-pathname :name :wild)) ⇒ t

(wild-pathname-p (make-pathname :name :wild) :name) ⇒ t

(wild-pathname-p (make-pathname :name :wild) :type) ⇒ nil

(wild-pathname-p (pathname "S:>foo>**>")) ⇒ t ;Maybe
(wild-pathname-p (make-pathname :name "F*O")) ⇒ t ;Probably

One cannot rely on rename-file to handle wild pathnames in a predictable
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manner. However, one can use translate-pathname explicitly to control the

process.

(defun rename-files (from to)

"Rename all files that match the first argument by

translating their names to the form of the second

argument. Both arguments may be wild pathnames."

(dolist (file (directory from))

;; DIRECTORY produces only pathnames that match from-wildname.

(rename-file file (translate-pathname file from to))))

Assuming one particular set of popular wildcard conventions, this function

might exhibit the following behavior. Not all file systems will run this example

exactly as written.

(rename-files "/usr/me/*.lisp" "/dev/her/*.l")

renames /usr/me/init.lisp

to /dev/her/init.l

(rename-files "/usr/me/pcl*/*" "/sys/pcl/*/")

renames /usr/me/pcl-5-may/low.lisp

to /sys/pcl/pcl-5-may/low.lisp

(in some file systems the result might be /sys/pcl/5-may/low.lisp)

(rename-files "/usr/me/pcl*/*" "/sys/library/*/")

renames /usr/me/pcl-5-may/low.lisp

to /sys/library/pcl-5-may/low.lisp

(in some file systems the result might be /sys/library/5-may/low.lisp)

(rename-files "/usr/me/foo.bar" "/usr/me2/")

renames /usr/me/foo.bar

to /usr/me2/foo.bar

(rename-files "/usr/joe/*-recipes.text"

"/usr/jim/personal/cookbook/joe’s-*-rec.text")

renames /usr/joe/lamb-recipes.text

to /usr/jim/personal/cookbook/joe’s-lamb-rec.text

renames /usr/joe/veg-recipes.text

to /usr/jim/personal/cookbook/joe’s-veg-rec.text

renames /usr/joe/cajun-recipes.text

to /usr/jim/personal/cookbook/joe’s-cajun-rec.text
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renames /usr/joe/szechuan-recipes.text

to /usr/jim/personal/cookbook/joe’s-szechuan-rec.text

The following examples use UNIX syntax and the wildcard conventions of

one particular version of UNIX.

(namestring

(translate-pathname "/usr/dmr/hacks/frob.l"

"/usr/d*/hacks/*.l"

"/usr/d*/backup/hacks/backup-*.*"))

⇒ "/usr/dmr/backup/hacks/backup-frob.l"

(namestring

(translate-pathname "/usr/dmr/hacks/frob.l"

"/usr/d*/hacks/fr*.l"

"/usr/d*/backup/hacks/backup-*.*"))

⇒ "/usr/dmr/backup/hacks/backup-ob.l"

The following examples are similar to the preceding examples but use two

different hosts; host U supports a UNIX file system and host V supports a

VAX/VMS file system. Note the translation of file type (from l to LSP) and

the change of alphabetic case conventions.

(namestring

(translate-pathname "U:/usr/dmr/hacks/frob.l"

"U:/usr/d*/hacks/*.l"

"V:SYS$DISK:[D*.BACKUP.HACKS]BACKUP-*.*"))

⇒ "V:SYS$DISK:[DMR.BACKUP.HACKS]BACKUP-FROB.LSP"

(namestring

(translate-pathname "U:/usr/dmr/hacks/frob.l"

"U:/usr/d*/hacks/fr*.l"

"V:SYS$DISK:[D*.BACKUP.HACKS]BACKUP-*.*"))

⇒ "V:SYS$DISK:[DMR.BACKUP.HACKS]BACKUP-OB.LSP"

The next example is a version of the function translate-logical-pathname

(simplified a bit) for a logical host named FOO. The points of interest are
the use of pathname-match-p as a :test argument for assoc and the use of

translate-pathname as a substrate for translate-logical-pathname.

(define-condition logical-translation-error (file-error))
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(defun my-translate-logical-pathname (pathname &key rules)

(let ((rule (assoc pathname rules :test #--’pathname-match-p)))

(unless rule

(error ’logical-translation-error :pathname pathname))

(translate-pathname pathname (first rule) (second rule))))

(my-translate-logical-pathname

"FOO:CODE;BASIC.LISP"

:rules ’(("FOO:DOCUMENTATION;" "U:/doc/foo/")

("FOO:CODE;" "U:/lib/foo/")

("FOO:PATCHES;*;" "U:/lib/foo/patch/*/")))

⇒ #--P"U:/lib/foo/basic.l"
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23.1.5. Logical Pathnames

Pathname values are not portable, but sometimes they must be mentioned in
a program (for example, the names of files containing the program and the

data used by the program).

X3J13 voted in June 1989 〈130〉 to provide some facilities for portable path-

name values. The idea is to provide a portable framework for pathname values;
these logical pathnames are then mapped to physical (that is, actual) path-

names by a set of implementation-dependent or site-dependent rules. The

logical pathname facility therefore separates the concerns of program writing

and user software architecture from the details of how a software system is
embedded in a particular file system or operating environment.

Pathname values are not portable because not all Common Lisp implemen-

tations use the same operating system and file name syntax varies widely

among operating systems. In addition, corresponding files at two different
sites may have different names even when the operating system is the same;

for example, they may be on different directories or different devices. The

Common Lisp logical pathname system defines a particular pathname struc-

ture and namestring syntax that must be supported by all implementations.

[Class ]logical-pathname

This is a subclass of pathname.

23.1.5.1. Syntax of Logical Pathname Namestrings

The syntax of a logical pathname namestring is as follows:

logical-namestring ::= [host :] [;] {directory ;}∗ [name] [. type [. version] ]

Note that a logical namestring has no device portion.

host ::= word

directory ::= word | wildcard-word | wildcard-inferiors

name ::= word | wildcard-word
type ::= word | wildcard-word

version ::= word | wildcard-word

word ::= {letter | digit | -}+

wildcard-word ::= [word ] * {word *}∗ [word ]

wildcard-inferiors ::= **
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A word consists of one or more uppercase letters, digits, and hyphens.

A wildcard word consists of one or more asterisks, uppercase letters, digits,

and hyphens, including at least one asterisk, with no two asterisks adjacent.

Each asterisk matches a sequence of zero or more characters. The wildcard

word * parses as :wild; all others parse as strings.

Lowercase letters may also appear in a word or wildcard word occurring in
a namestring. Such letters are converted to uppercase when the namestring

is converted to a pathname. The consequences of using other characters are

unspecified.

The host is a word that has been defined as a logical pathname host by

using setf with the function logical-pathname-translations.

There is no device, so the device component of a logical pathname is

always :unspecific. No other component of a logical pathname can be

:unspecific.

Each directory is a word, a wildcard word, or ** (which is parsed as :wild-

inferiors). If a semicolon precedes the directories, the directory component
is relative; otherwise it is absolute.

The name is a word or a wildcard word.

The type is a word or a wildcard word.

The version is a positive decimal integer or the word NEWEST (which is

parsed as :newest) or * (which is parsed as :wild). The letters in NEWEST

can be in either alphabetic case.

The consequences of using any value not specified here as a logical pathname

component are unspecified. The null string "" is not a valid value for any

component of a logical pathname, since the null string is not a word or a

wildcard word.

23.1.5.2. Parsing of Logical Pathname Namestrings

Logical pathname namestrings are recognized by the functions logical-

pathname and translate-logical-pathname. The host portion of the logical

pathname namestring and its following colon must appear in the namestring

arguments to these functions.

The function parse-namestring recognizes a logical pathname namestring
when the host argument is logical or the defaults argument is a logical path-

name. In this case the host portion of the logical pathname namestring and

its following colon are optional. If the host portion of the namestring and the

host argument are both present and do not match, an error is signaled. The

host argument is logical if it is supplied and came from pathname-host of a
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logical pathname. Whether a host argument is logical if it is a string equal

to a logical pathname host name is implementation-defined.

The function merge-pathnames recognizes a logical pathname namestring

when the defaults argument is a logical pathname. In this case the host portion

of the logical pathname namestring and its following colon are optional.
Whether the other functions that coerce strings to pathnames recognize

logical pathname namestrings is implementation-defined. These functions in-

clude parse-namestring in circumstances other than those described above,

merge-pathnames in circumstances other than those described above, the
:defaults argument to make-pathname, and the following functions:

compile-file file-write-date pathname-name

compile-file-pathname host-namestring pathname-type

delete-file load pathname-version

directory namestring probe-file

directory-namestring open rename-file

dribble pathname translate-pathname

ed pathname-device truename

enough-namestring pathname-directory wild-pathname-p

file-author pathname-host with-open-file

file-namestring pathname-match-p

Note that many of these functions must accept logical pathnames even though

they do not accept logical pathname namestrings.

23.1.5.3. Using Logical Pathnames

Some real file systems do not have versions. Logical pathname translation to

such a file system ignores the version. This implies that a portable program

cannot rely on being able to store in a file system more than one version of a

file named by a logical pathname.
The type of a logical pathname for a Common Lisp source file is LISP. This

should be translated into whatever implementation-defined type is appropriate

in a physical pathname.

The logical pathname host name SYS is reserved for the implementation.
The existence and meaning of logical pathnames for logical host SYS is

implementation-defined.

File manipulation functions must operate with logical pathnames according

to the following requirements:

. The following accept logical pathnames and translate them into physical

pathnames as if by calling the function translate-logical-pathname:
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compile-file ed probe-file

compile-file-pathname file-author rename-file

delete-file file-write-date truename

directory load with-open-file

dribble open

. Applying the function pathname to a stream created by the function open

or the macro with-open-file using a logical pathname produces a logical

pathname.

. The functions truename, probe-file, and directory never return logical

pathnames.

. Calling rename-file with a logical pathname as the second argument re-
turns a logical pathname as the first value.

. make-pathname returns a logical pathname if and only if the host is logical.

If the :host argument to make-pathname is supplied, the host is logical if
it came from the pathname-host of a logical pathname. Whether a :host

argument is logical if it is a string equal to a logical pathname host name

is implementation-defined.

[Function]logical-pathname pathname

Converts the argument to a logical pathname and returns it. The argument

can be a logical pathname, a logical pathname namestring containing a host

component, or a stream for which the pathname function returns a logical

pathname. For any other argument, logical-pathname signals an error of
type type-error.

[Function]translate-logical-pathname pathname &key

Translates a logical pathname to the corresponding physical pathname. The
pathname argument is first coerced to a pathname. If it is not a pathname,

string, or file stream, an error of type type-error is signaled.

If the coerced argument is a physical pathname, it is returned.

If the coerced argument is a logical pathname, the first matching translation

(according to pathname-match-p) of the logical pathname host is applied, as

if by calling translate-pathname. If the result is a logical pathname, this

process is repeated. When the result is finally a physical pathname, it is

returned.
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If no translation matches a logical pathname, an error of type file-error

is signaled.

translate-logical-pathname may perform additional translations, typi-

cally to provide translation of file types to local naming conventions, to ac-

commodate physical file systems with names of limited length, or to deal

with special character requirements such as translating hyphens to under-

scores or uppercase letters to lowercase. Any such additional translations are
implementation-defined. Some implementations do no additional translations.

There are no specified keyword arguments for translate-logical-

pathname but implementations are permitted to extend it by adding keyword

arguments. There is one specified return value from translate-logical-

pathname; implementations are permitted to extend it by returning additional

values.

[Function]logical-pathname-translations host

If the specified host is not the host component of a logical pathname and
is not a string that has been defined as a logical pathname host name by

setf of logical-pathname-translations, this function signals an error of

type type-error; otherwise, it returns the list of translations for the speci-

fied host. Each translation is a list of at least two elements, from-wildname
and to-wildname. Any additional elements are implementation-defined. A

from-wildname is a logical pathname whose host is the specified host. A to-

wildname is any pathname. Translations are searched in the order listed, so

more specific from-wildnames must precede more general ones.

(setf (logical-pathname-translations host) translations) sets the

list of translations for the logical pathname host to translations. If host is

a string that has not previously been used as logical pathname host, a new
logical pathname host is defined; otherwise an existing host’s translations are

replaced. Logical pathname host names are compared with string-equal.

When setting the translations list, each from-wildname can be a logical

pathname whose host is host or a logical pathname namestring s parseable by

(parse-namestring s host-object), where host-object is an appropriate ob-

ject for representing the specified host to parse-namestring. (This circuitous
specification dodges the fact that parse-namestring does not necessarily ac-

cept as its second argument any old string that names a logical host.) Each

to-wildname can be anything coercible to a pathname by application of the

function pathname. If to-wildname coerces to a logical pathname, translate-

logical-pathname will retranslate the result, repeatedly if necessary.
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Implementations may define additional functions that operate on logical

pathname hosts (for example, to specify additional translation rules or op-

tions).

[Function]load-logical-pathname-translations host

If a logical pathname host named host (a string) is already defined, this func-

tion returns nil. Otherwise, it searches for a logical pathname host definition
in an implementation-defined manner. If none is found, it signals an error. If

a definition is found, it installs the definition and returns t.

The search used by load-logical-pathname-translations should be

documented, as logical pathname definitions will be created by users as
well as by Lisp implementors. A typical search technique is to look in an

implementation-defined directory for a file whose name is derived from the

host name in an implementation-defined fashion.

[Function]compile-file-pathname pathname &key :output-file

Returns the pathname that compile-file would write into, if given the
same arguments. If the pathname argument is a logical pathname and the

:output-file argument is unspecified, the result is a logical pathname. If

an implementation supports additional keyword arguments to compile-file,

compile-file-pathname must accept the same arguments.

23.1.5.4. Examples of the Use of Logical Pathnames

Here is a very simple example of setting up a logical pathname host named

FOO. Suppose that no translations are necessary to get around file system
restrictions, so all that is necessary is to specify the root of the physical

directory tree that contains the logical file system. The namestring syntax in

the to-wildname is implementation-specific.

(setf (logical-pathname-translations "foo")

’(("**;*.*.*" "MY-LISPM:>library>foo>**>")))

The following is a sample use of that logical pathname. All return values are

of course implementation-specific; all of the examples in this section are of

course meant to be illustrative and not prescriptive.

(translate-logical-pathname "foo:bar;baz;mum.quux.3")

⇒ #--P"MY-LISPM:>library>foo>bar>baz>mum.quux.3"
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Next we have a more complex example, dividing the files among two file

servers (U, supporting a UNIX file system, and V, supporting a VAX/VMS

file system) and several different directories. This UNIX file system doesn’t

support :wild-inferiors in the directory, so each directory level must be

translated individually. No file name or type translations are required ex-
cept for .MAIL to .MBX. The namestring syntax used for the to-wildnames is

implementation-specific.

(setf (logical-pathname-translations "prog")

’(("RELEASED;*.*.*" "U:/sys/bin/my-prog/")

("RELEASED;*;*.*.*" "U:/sys/bin/my-prog/*/")

("EXPERIMENTAL;*.*.*"

"U:/usr/Joe/development/prog/")

("EXPERIMENTAL;DOCUMENTATION;*.*.*"

"V:SYS$DISK:[JOE.DOC]")

("EXPERIMENTAL;*;*.*.*"

"U:/usr/Joe/development/prog/*/")

("MAIL;**;*.MAIL" "V:SYS$DISK:[JOE.MAIL.PROG...]*.MBX")

))

Here are sample uses of logical host PROG. All return values are of course
implementation-specific.

(translate-logical-pathname "prog:mail;save;ideas.mail.3")

⇒ #--P"V:SYS$DISK:[JOE.MAIL.PROG.SAVE]IDEAS.MBX.3"

(translate-logical-pathname "prog:experimental;spreadsheet.c")

⇒ #--P"U:/usr/Joe/development/prog/spreadsheet.c"

Suppose now that we have a program that uses three files logically named

MAIN.LISP, AUXILIARY.LISP, and DOCUMENTATION.LISP. The following trans-

lations might be provided by a software supplier as examples.

For a UNIX file system with long file names:

(setf (logical-pathname-translations "prog")

’(("CODE;*.*.*" "/lib/prog/")))

(translate-logical-pathname "prog:code;documentation.lisp")

⇒ #--P"/lib/prog/documentation.lisp"

For a UNIX file system with 14-character file names, using .lisp as the type:
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(setf (logical-pathname-translations "prog")

’(("CODE;DOCUMENTATION.*.*" "/lib/prog/docum.*")

("CODE;*.*.*" "/lib/prog/")))

(translate-logical-pathname "prog:code;documentation.lisp")

⇒ #--P"/lib/prog/docum.lisp"

For a UNIX file system with 14-character file names, using .l as the type (the
second translation shortens the compiled file type to .b):

(setf (logical-pathname-translations "prog")

‘(("**;*.LISP.*" ,(logical-pathname "PROG:**;*.L.*"))

(,(compile-file-pathname

(logical-pathname "PROG:**;*.LISP.*"))

,(logical-pathname "PROG:**;*.B.*"))

("CODE;DOCUMENTATION.*.*" "/lib/prog/documentatio.*")

("CODE;*.*.*" "/lib/prog/")))

(translate-logical-pathname "prog:code;documentation.lisp")

⇒ #--P"/lib/prog/documentatio.l"

23.1.5.5. Discussion of Logical Pathnames

Large programs can be moved between sites without changing any pathnames,

provided all pathnames used are logical. A portable system construction tool

can be created that operates on programs defined as sets of files named by
logical pathnames.

Logical pathname syntax was chosen to be easily translated into the for-
mats of most popular file systems, while still being powerful enough for storing

large programs. Although they have hierarchical directories, extended wild-

card matching, versions, and no limit on the length of names, logical path-

names can be mapped onto a less capable real file system by translating each

directory that is used into a flat directory name, processing wildcards in the
Lisp implementation rather than in the file system, treating all versions as

:newest, and using translations to shorten long names.

Logical pathname words are restricted to non-case-sensitive letters, dig-

its, and hyphens to avoid creating problems with real file systems that sup-

port limited character sets for file naming. (If logical pathnames were case-

sensitive, it would be very difficult to map them into a file system that is not

sensitive to case in its file names.)
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It is not a goal of logical pathnames to be able to represent all possible file

names. Their goal is rather to represent just enough file names to be useful

for storing software. Real pathnames, in contrast, need to provide a uniform

interface to all possible file names, including names and naming conventions

that are not under the control of Common Lisp.

The choice of logical pathname syntax, using colon, semicolon, and period,

was guided by the goals of being visually distinct from real file systems and
minimizing the use of special characters.

The logical-pathname function is separate from the pathname function so
that the syntax of logical pathname namestrings does not constrain the syn-

tax of physical pathname namestrings in any way. Logical pathname syntax

must be defined by Common Lisp so that logical pathnames can be conve-

niently exchanged between implementations, but physical pathname syntax
is dictated by the operating environments.

The compile-file-pathname function and the specification of LISP as the

type of a logical pathname for a Common Lisp source file together provide

enough information about compilation to make possible a portable system

construction tool. Suppose that it is desirable to call compile-file only

if the source file is newer than the compiled file. For this to succeed, it
must be possible to know the name of the compiled file without actually

calling compile-file. In some implementations the compiler produces one

of several file types, depending on a variety of implementation-dependent

circumstances, so it is not sufficient simply to prescribe a standard logical
file type for compiled files; compile-file-pathname provides access to the

defaulting that is performed by compile-file “in a manner appropriate to

the implementation’s file system conventions.”

The use of the logical pathname host name SYS for the implementation is

current practice. Standardizing on this name helps users choose logical path-

name host names that avoid conflicting with implementation-defined names.

Loading of logical pathname translations from a site-dependent file allows

software to be distributed using logical pathnames. The assumed model of
software distribution is a division of labor between the supplier of the software

and the user installing it. The supplier chooses logical pathnames to name

all the files used or created by the software, and supplies examples of logical

pathname translations for a few popular file systems. Each example uses an
assumed directory and/or device name, assumes local file naming conventions,

and provides translations that will translate all the logical pathnames used

or generated by the particular software into valid physical pathnames. For

a powerful file system these translations can be quite simple. For a more

restricted file system, it may be necessary to list an explicit translation for
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every logical pathname used (for example, when dealing with restrictions on

the maximum length of a file name).

The user installing the software decides on which device and directory to

store the files and edits the example logical pathname translations accord-

ingly. If necessary, the user also adjusts the translations for local file naming
conventions and any other special aspects of the user’s local file system pol-

icy and local Common Lisp implementation. For example, the files might

be divided among several file server hosts to share the load. The process of

defining site-customized logical pathname translations is quite easy for a user
of a popular file system for which the software supplier has provided an ex-

ample. A user of a more unusual file system might have to take more time;

the supplier can help by providing a list of all the logical pathnames used or

generated by the software.

Once the user has created and executed a suitable setf form for setting the
logical-pathname-translations of the relevant logical host, the software

can be loaded and run. It may be necessary to use the translations again,

or on another workstation at the same site, so it is best to save the setf

form in the standard place where it can be found later by load-logical-

pathname-translations. Often a software supplier will include a program

for restoring software from the distribution medium to the file system and a

program for loading the software from the file system into a Common Lisp;

these programs will start by calling load-logical-pathname-translations

to make sure that the logical pathname host is defined.
Note that the setf of logical-pathname-translations form isn’t part of

the program; it is separate and is written by the user, not by the software

supplier. That separation and a uniform convention for doing the separation

are the key aspects of logical pathnames. For small programs involving only
a handful of files, it doesn’t matter much. The real benefits come with large

programs with hundreds or thousands of files and more complicated situations

such as program-generated file names or porting a program developed on a

system with long file names onto a system with a very restrictive limit on the

length of file names.

23.1.6. Pathname Functions

These functions are what programs use to parse and default file names that

have been typed in or otherwise supplied by the user.

Any argument called pathname in this book may actually be a pathname,
........................................................................................................................................................................................................

a string or symbol, or a stream. Any argument called defaults may likewise

be a pathname, a string or symbol, or a stream.
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X3J13 voted in March 1988 〈134〉 to change the language so that a symbol

is never allowed as a pathname argument. More specifically, the following

functions are changed to disallow a symbol as a pathname argument:

pathname pathname-device namestring

truename pathname-directory file-namestring

parse-namestring pathname-name directory-namestring

merge-pathnames pathname-type host-namestring

pathname-host pathname-version enough-namestring

(The function require was also changed by this vote but was deleted from

the language by a vote in January 1989 〈154〉.) Furthermore, the vote reaf-

firmed that the following functions do not accept symbols as file, filename, or
pathname arguments:

open rename-file file-write-date

with-open-file delete-file file-author

load probe-file directory

compile-file

In older implementations of Lisp that did not have strings, for example

MacLisp, symbols were the only means for specifying pathnames. This was

convenient only because the file systems of the time allowed only uppercase
letters in file names. Typing (load ’foo) caused the function load to re-

ceive the symbol FOO (with uppercase letters because of the way symbols are

parsed) and therefore to load the file named FOO. Now that many file systems,

most notably UNIX, support case-sensitive file names, the use of symbols is
less convenient and more error-prone.

X3J13 voted in March 1988 〈132〉 to specify that a stream may be used as a

pathname, file, or filename argument only if it was created by use of open

or with-open-file, or if it is a synonym stream whose symbol is bound to a
stream that may be used as a pathname.

If such a stream is used as a pathname, it is as if the pathname function

were applied to the stream and the resulting pathname used in place of the
stream. This represents the name used to open the file. This may be, but is

not required to be, the actual name of the file.

It is an error to attempt to obtain a pathname from a stream created by

any of the following:
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make-two-way-stream make-string-input-stream

make-echo-stream make-string-output-stream

make-broadcast-stream with-input-from-string

make-concatenated-stream with-output-to-string

In the examples, it is assumed that the host named CMUC runs the TOPS-20

operating system, and therefore uses TOPS-20 file system syntax; further-
more, an explicit host name is indicated by following the host name with a

double colon. Remember, however, that namestring syntax is implementation-

dependent, and this syntax is used here purely for the sake of examples.

[Function]pathname pathname

The pathname function converts its argument to be a pathname. The argu-

ment may be a pathname, a string or symbol, or a stream; the result is always

a pathname.

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and
to specify exactly which streams may be used as pathnames 〈132〉.

X3J13 voted in January 1989 〈15〉 to specify that pathname is unaffected

by whether its argument, if a stream, is open or closed. X3J13 further com-

mented that because some implementations cannot provide the “true name”

of a file until the file is closed, in such an implementation pathname might, in
principle, return a different (perhaps more specific) file name after the stream

is closed. However, such behavior is prohibited; pathname must return the

same pathname after a stream is closed as it would have while the stream was

open. See truename.

[Function]truename pathname

The truename function endeavors to discover the “true name” of the file as-

sociated with the pathname within the file system. If the pathname is an open
stream already associated with a file in the file system, that file is used. The

“true name” is returned as a pathname. An error is signaled if an appropriate

file cannot be located within the file system for the given pathname.

The truename function may be used to account for any file name transla-

tions performed by the file system, for example.

For example, suppose that DOC: is a TOPS-20 logical device name that is
translated by the TOPS-20 file system to be PS:<DOCUMENTATION>.

(setq file (open "CMUC::DOC:DUMPER.HLP"))

(namestring (pathname file)) ⇒ "CMUC::DOC:DUMPER.HLP"
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(namestring (truename file))

⇒ "CMUC::PS:<DOCUMENTATION>DUMPER.HLP.13"

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and
to specify exactly which streams may be used as pathnames 〈132〉.

X3J13 voted in January 1989 〈15〉 to specify that truename may be applied

to a stream whether the stream is open or closed. X3J13 further commented
that because some implementations cannot provide the “true name” of a file

until the file is closed, in principle it would be possible in such an implemen-

tation for truename to return a different file name after the stream is closed.

Such behavior is permitted; in this respect truename differs from pathname.

X3J13 voted in June 1989 〈137〉 to clarify that truename accepts only non-

wild pathnames; an error is signaled if wild-pathname-pwould be true of the

pathname argument.

X3J13 voted in June 1989 〈130〉 to require truename to accept logical path-

names (see section 23.1.5). However, truename never returns a logical path-
name.

[Function]parse-namestring thing &optional host defaults &key

:start :end :junk-allowed

This turns thing into a pathname. The thing is usually a string (that is, a
........................................................................................................................................................................................................

namestring), but it may be a symbol (in which case the print name is used)

or a pathname or stream (in which case no parsing is needed, but an error

check may be made for matching hosts).

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and

to specify exactly which streams may be used as pathnames 〈132〉. The thing

argument may not be a symbol.

X3J13 voted in June 1989 〈130〉 to require parse-namestring to accept

logical pathname namestrings (see section 23.1.5).

This function does not, in general, do defaulting of pathname components,

even though it has an argument named defaults; it only does parsing. The host

and defaults arguments are present because in some implementations it may be

that a namestring can only be parsed with reference to a particular file name
syntax of several available in the implementation. If host is non-nil, it must be

a host name that could appear in the host component of a pathname, or nil;

if host is nil then the host name is extracted from the default pathname in

defaults and used to determine the syntax convention. The defaults argument

defaults to the value of *default-pathname-defaults*.
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For a string (or symbol) argument, parse-namestring parses a file name

within it in the range delimited by the :start and :end arguments (which are

integer indices into string, defaulting to the beginning and end of the string).

See chapter 14 for a discussion of :start and :end arguments.

If :junk-allowed is not nil, then the first value returned is the pathname
parsed, or nil if no syntactically correct pathname was seen.

If :junk-allowed is nil (the default), then the entire substring is scanned.

The returned value is the pathname parsed. An error is signaled if the sub-

string does not consist entirely of the representation of a pathname, possibly
surrounded on either side by whitespace characters if that is appropriate to

the cultural conventions of the implementation.

In either case, the second value is the index into the string of the delimiter

that terminated the parse, or the index beyond the substring if the parse

terminated at the end of the substring (as will always be the case if :junk-
allowed is false).

If thing is not a string or symbol, then start (which defaults to zero in any

case) is always returned as the second value.

Parsing an empty string always succeeds, producing a pathname with all
components (except the host) equal to nil.

Note that if host is specified and not nil, and thing contains a manifest

host name, an error is signaled if the hosts do not match.

If thing contains an explicit host name and no explicit device name, then

it might be appropriate, depending on the implementation environment, for
parse-namestring to supply the standard default device for that host as the

device component of the resulting pathname.
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[Function]merge-pathnames pathname &optional defaults

default-version

This is the function that most programs should call to process a file name
........................................................................................................................................................................................................

supplied by the user. It fills in unspecified components of pathname from the

defaults, and returns a new pathname. The pathname and defaults arguments
may each be a pathname, stream, string, or symbol. The result is always a

pathname.

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and

to specify exactly which streams may be used as pathnames 〈132〉.
X3J13 voted in June 1989 〈130〉 to require merge-namestrings to recognize

a logical pathname namestring as its first argument if its second argument is

a logical pathname (see section 23.1.5).

X3J13 voted in January 1989 〈15〉 to specify that merge-pathname is unaf-

fected by whether the first argument, if a stream, is open or closed. If the first

argument is a stream, merge-pathname behaves as if the function pathname

were applied to the stream and the resulting pathname used instead.

X3J13 voted in June 1989 〈128〉 to require merge-pathnames to map cus-

tomary case in argument pathnames to the customary case in returned path-

names (see section 23.1.2).

defaults defaults to the value of *default-pathname-defaults*.

default-version defaults to :newest.

Here is an example of the use of merge-pathnames:

(merge-pathnames "CMUC::FORMAT"

"CMUC::PS:<LISPIO>.FASL")

⇒ a pathname object that re-expressed as a namestring would be

"CMUC::PS:<LISPIO>FORMAT.FASL.0"

Defaulting of pathname components is done by filling in components taken

from another pathname. This is especially useful for cases such as a program

that has an input file and an output file, and asks the user for the name of

both, letting the unsupplied components of one name default from the other.

Unspecified components of the output pathname will come from the input
pathname, except that the type should default not to the type of the input

but to the appropriate default type for output from this program.

The pathname merging operation takes as input a given pathname, a de-

faults pathname, and a default version, and returns a new pathname. Basi-

cally, the missing components in the given pathname are filled in from the

defaults pathname, except that if no version is specified the default version

is used. The default version is usually :newest; if no version is specified the
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newest version in existence should be used. The default version can be nil,

to preserve the information that it was missing in the input pathname.

If the given pathname explicitly specifies a host and does not supply a

device, then if the host component of the defaults matches the host component

of the given pathname, then the device is taken from the defaults; otherwise
the device will be the default file device for that host. Next, if the given

pathname does not specify a host, device, directory, name, or type, each such

component is copied from the defaults. The merging rules for the version are

more complicated and depend on whether the pathname specifies a name.
If the pathname doesn’t specify a name, then the version, if not provided,

will come from the defaults, just like the other components. However, if the

pathname does specify a name, then the version is not affected by the defaults.

The reason is that the version “belongs to” some other file name and is unlikely

to have anything to do with the new one. Finally, if this process leaves the
version missing, the default version is used.

The net effect is that if the user supplies just a name, then the host, device,

directory, and type will come from the defaults, but the version will come from

the default version argument to the merging operation. If the user supplies
nothing, or just a directory, the name, type, and version will come over from

the defaults together. If the host’s file name syntax provides a way to input

a version without a name or type, the user can let the name and type default

but supply a version different from the one in the defaults.

X3J13 voted in June 1989 〈135〉 to agree to disagree: merge-pathname

might or might not perform plausibility checking on its arguments to ensure

that the resulting pathname can be converted a valid namestring. User be-

ware: this could cause portability problems.

For example, suppose that host LOSER constrains file types to be three
characters or fewer but host CMUC does not. Then "LOSER::FORMAT" is a valid

namestring and "CMUC::PS:<LISPIO>.FASL" is a valid namestring, but

(merge-pathnames "LOSER::FORMAT" "CMUC::PS:<LISPIO>.FASL")

might signal an error in some implementations because the hypothetical result
would be a pathname equivalent to the namestring "LOSER::FORMAT.FASL"

which is illegal because the file type FASL has more than three characters. In

other implementations merge-pathname might return a pathname but that

pathname might cause namestring to signal an error.

[Variable]*default-pathname-defaults*

This is the default pathname-defaults pathname; if any pathname primitive
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that needs a set of defaults is not given one, it uses this one. As a general

rule, however, each program should have its own pathname defaults rather

than using this one.

[Function]make-pathname &key :host :device :directory :name
........................................................................................................................................................................................................

:type :version :defaults

Given some components, make-pathname constructs and returns a pathname.

After the components specified explicitly by the :host, :device, :directory,

:name, :type, and :version arguments are filled in, the merging rules used by

merge-pathnames are used to fill in any missing components from the defaults

specified by the :defaults argument. The default value of the :defaults

argument is a pathname whose host component is the same as the host com-

ponent of the value of *default-pathname-defaults*, and whose other com-

ponents are all nil.

Whenever a pathname is constructed, whether by make-pathname or some

other function, the components may be canonicalized if appropriate. For
example, if a file system is insensitive to case, then alphabetic characters may

be forced to be all uppercase or all lowercase by the implementation.

The following example assumes the use of UNIX syntax and conventions.

(make-pathname :host "technodrome"

:directory ’(:absolute "usr" "krang")

:name "shredder")

⇒ #--P"technodrome:/usr/krang/shredder"

X3J13 voted in June 1989 〈128〉 to add a new keyword argument :case to
make-pathname. The new argument description is therefore as follows:

[Function]make-pathname &key :host :device :directory :name

:type :version :defaults :case

See section 23.1.2 for a description of the :case argument.

X3J13 voted in June 1989 〈135〉 to agree to disagree: make-pathnamemight
or might not check on its arguments to ensure that the resulting pathname

can be converted to a valid namestring. If make-pathname does not check its

arguments and signal an error in problematical cases, namestring yet might

or might not signal an error when given the resulting pathname. User beware:

this could cause portability problems.
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[Function]pathnamep object

This predicate is true if object is a pathname, and otherwise is false.

(pathnamep x) ≡ (typep x ’pathname)

[Function]pathname-host pathname
........................................................................................................................................................................................................

[Function]pathname-device pathname

[Function]pathname-directory pathname

[Function]pathname-name pathname

[Function]pathname-type pathname
[Function]pathname-version pathname

These return the components of the argument pathname, which may be a
pathname, string or symbol, or stream. The returned values can be strings,

special symbols, or some other object in the case of structured components.

The type will always be a string or a symbol. The version will always be a

number or a symbol.

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and

to specify exactly which streams may be used as pathnames 〈132〉.
X3J13 voted in January 1989 〈15〉 to specify that these operations are un-

affected by whether the first argument, if a stream, is open or closed. If the

first argument is a stream, each operation behaves as if the function pathname

were applied to the stream and the resulting pathname used instead.

X3J13 voted in June 1989 〈128〉 to add a keyword argument :case to

all of the pathname accessor functions except pathname-version. The new

argument descriptions are therefore as follows:

[Function]pathname-host pathname &key :case

[Function]pathname-device pathname &key :case

[Function]pathname-directory pathname &key :case

[Function]pathname-name pathname &key :case

[Function]pathname-type pathname &key :case

[Function]pathname-version pathname

See section 23.1.2 for a description of the :case argument.

X3J13 voted in June 1989 〈133〉 to specify that pathname-directory al-

ways returns nil, :unspecific, or a list—never a string, never :wild (see

section 23.1.3). If a list is returned, it is not guaranteed to be freshly consed;

the consequences of modifying this list are undefined.
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[Function]namestring pathname

[Function]file-namestring pathname

[Function]directory-namestring pathname

[Function]host-namestring pathname

[Function]enough-namestring pathname &optional defaults

The pathname argument may be a pathname, a string or symbol, or a stream

that is or was open to a file. The name represented by pathname is returned

as a namelist in canonical form.
If pathname is a stream, the name returned represents the name used to

open the file, which may not be the actual name of the file (see truename).

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and

to specify exactly which streams may be used as pathnames 〈132〉.
X3J13 voted in January 1989 〈15〉 to specify that these operations are un-

affected by whether the first argument, if a stream, is open or closed. If the

first argument is a stream, each operation behaves as if the function pathname

were applied to the stream and the resulting pathname used instead.

namestring returns the full form of the pathname as a string. file-

namestring returns a string representing just the name, type, and version

components of the pathname; the result of directory-namestring represents

just the directory-name portion; and host-namestring returns a string for

just the host-name portion. Note that a valid namestring cannot necessarily

be constructed simply by concatenating some of the three shorter strings in
some order.

enough-namestring takes another argument, defaults. It returns an ab-

breviated namestring that is just sufficient to identify the file named by path-

name when considered relative to the defaults (which defaults to the value of
*default-pathname-defaults*). That is, it is required that

(merge-pathnames (enough-namestring pathname defaults) defaults) ≡
(merge-pathnames (parse-namestring pathname nil defaults) defaults)

in all cases; and the result of enough-namestring is, roughly speaking, the

shortest reasonable string that will still satisfy this criterion.

X3J13 voted in June 1989 〈135〉 to agree to disagree: make-pathname and

merge-pathnames might or might not be able to produce pathnames that
cannot be converted to valid namestrings. User beware: this could cause

portability problems.

[Function]user-homedir-pathname &optional host

Returns a pathname for the user’s “home directory” on host. The host argu-
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ment defaults in some appropriate implementation-dependent manner. The

concept of “home directory” is itself somewhat implementation-dependent,

but from the point of view of Common Lisp it is the directory where the user

keeps personal files such as initialization files and mail. If it is impossible

to determine this information, then nil is returned instead of a pathname;
however, user-homedir-pathname never returns nil if the host argument is

not specified. This function returns a pathname without any name, type, or

version component (those components are all nil).

23.2. Opening and Closing Files

When a file is opened, a stream object is constructed to serve as the file

system’s ambassador to the Lisp environment; operations on the stream are

reflected by operations on the file in the file system. The act of closing the
file (actually, the stream) ends the association; the transaction with the file

system is terminated, and input/output may no longer be performed on the

stream. The stream function close may be used to close a file; the functions

described below may be used to open them. The basic operation is open, but
with-open-file is usually more convenient for most applications.

[Function]open filename &key :direction :element-type :if-exists

:if-does-not-exist :external-format

X3J13 voted in June 1989 〈122〉 to add to the function open a new keyword

argument :external-format. This argument did not appear in the preceding

argument description in the first edition.

This returns a stream that is connected to the file specified by filename.

The filename is the name of the file to be opened; it may be a string, a

pathname, or a stream. (If the filename is a stream, then it is not closed first
or otherwise affected; it is used merely to provide a file name for the opening

of a new stream.)

X3J13 voted in January 1989 〈167〉 to specify that the result of open, if it
is a stream, is always a stream of type file-stream.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be

used as pathnames. See section 23.1.6.

X3J13 voted in January 1989 〈15〉 to specify that open is unaffected by

whether the first argument, if a stream, is open or closed. If the first argument

is a stream, open behaves as if the function pathname were applied to the

stream and the resulting pathname used instead.



FILE SYSTEM INTERFACE 701

X3J13 voted in June 1989 〈137〉 to clarify that open accepts only non-wild

pathnames; an error is signaled if wild-pathname-pwould be true of filename.

X3J13 voted in June 1989 〈130〉 to require open to accept logical pathnames

(see section 23.1.5).

The keyword arguments specify what kind of stream to produce and how
to handle errors:

:direction

This argument specifies whether the stream should handle input, output, or

both.

:input

The result will be an input stream. This is the default.

:output

The result will be an output stream.

:io

The result will be a bidirectional stream.

:probe

The result will be a no-directional stream (in effect, the stream is created

and then closed). This is useful for determining whether a file exists without

actually setting up a complete stream.

:element-type

This argument specifies the type of the unit of transaction for the stream.

Anything that can be recognized as being a finite subtype of character or

integer is acceptable. In particular, the following types are recognized:

string-char........................................................................................................................................................................................................

The unit of transaction is a string-character. The functions read-char

and/or write-char may be used on the stream. This is the default.

character

The unit of transaction is any character, not just a string-character. The

functions read-char and/or write-char may be used on the stream.

X3J13 voted in June 1989 〈122〉 to eliminate the type string-char, add

the type base-character, and redefine open to use the type character as

the default :element-type.
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The preceding two possibilities should therefore be replaced by the follow-

ing.

character

The unit of transaction is any character, not just a string-character. The

functions read-char and write-char (depending on the value of the

:direction argument) may be used on the stream. This is the default.

base-character

The unit of transaction is a base character. The functions read-char and
write-char (depending on the value of the :direction argument) may be

used on the stream.

(unsigned-byte n)

The unit of transaction is an unsigned byte (a non-negative integer) of

size n. The functions read-byte and/or write-byte may be used on the

stream.

unsigned-byte

The unit of transaction is an unsigned byte (a non-negative integer); the

size of the byte is determined by the file system. The functions read-byte
and/or write-byte may be used on the stream.

(signed-byte n)

The unit of transaction is a signed byte of size n. The functions read-byte

and/or write-byte may be used on the stream.

signed-byte

The unit of transaction is a signed byte; the size of the byte is determined

by the file system. The functions read-byte and/or write-byte may be

used on the stream.

bit

The unit of transaction is a bit (values 0 and 1). The functions read-byte

and/or write-byte may be used on the stream.

(mod n)

The unit of transaction is a non-negative integer less than n. The functions

read-byte and/or write-byte may be used on the stream.
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:default

The unit of transaction is to be determined by the file system, based on the
file it finds. The type can be determined by using the function stream-

element-type.

:if-exists

This argument specifies the action to be taken if the :direction is :output

or :io and a file of the specified name already exists. If the direction is :input

or :probe, this argument is ignored.

:error

Signals an error. This is the default when the version component of the

filename is not :newest.

:new-version

Creates a new file with the same file name but with a larger version number.

This is the default when the version component of the filename is :newest.

:rename

Renames the existing file to some other name and then creates a new file

with the specified name.

:rename-and-delete

Renames the existing file to some other name and then deletes it (but does

not expunge it, on those systems that distinguish deletion from expunging).

Then create a new file with the specified name.

:overwrite

Uses the existing file. Output operations on the stream will destructively

modify the file. If the :direction is :io, the file is opened in a bidirectional

mode that allows both reading and writing. The file pointer is initially
positioned at the beginning of the file; however, the file is not truncated

back to length zero when it is opened. This mode is most useful when the

file-position function can be used on the stream.

:append

Uses the existing file. Output operations on the stream will destructively

modify the file. The file pointer is initially positioned at the end of the file.

If the :direction is :io, the file is opened in a bidirectional mode that

allows both reading and writing.
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:supersede

Supersedes the existing file. If possible, the implementation should arrange
not to destroy the old file until the new stream is closed, against the pos-

sibility that the stream will be closed in “abort” mode (see close). This

differs from :new-version in that :supersede creates a new file with the

same name as the old one, rather than a file name with a higher version
number.

nil

Does not create a file or even a stream, but instead simply returns nil to

indicate failure.

If the :direction is :output or :io and the value of :if-exists is :new-

version, then the version of the (newly created) file that is opened will be
a version greater than that of any other file in the file system whose other

pathname components are the same as those of filename.

If the :direction is :input or :probe or the value of :if-exists is not

:new-version, and the version component of the filename is :newest, then
the file opened is that file already existing in the file system that has a version

greater than that of any other file in the file system whose other pathname

components are the same as those of filename.

Some file systems permit yet other actions to be taken when a file already
exists; therefore, some implementations provide implementation-specific :if-

exist options.

Implementation note: The various file systems in existence today have widely
differing capabilities. A given implementation may not be able to support all of these
options in exactly the manner stated. An implementation is required to recognize
all of these option keywords and to try to do something “reasonable” in the context
of the host operating system. Implementors are encouraged to approximate the
semantics specified here as closely as possible.

As an example, suppose that a file system does not support distinct file versions
and does not distinguish the notions of deletion and expunging (in some file systems
file deletion is reversible until an expunge operation is performed). Then :new-

version might be treated the same as :rename or :supersede, and :rename-and-

delete might be treated the same as :supersede.
If it is utterly impossible for an implementation to handle some option in a manner

close to what is specified here, it may simply signal an error. The opening of files is
an area where complete portability is too much to hope for; the intent here is simply
to make things as portable as possible by providing specific names for a range of
commonly supportable options.
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:if-does-not-exist

This argument specifies the action to be taken if a file of the specified name
does not already exist.

:error

Signals an error. This is the default if the :direction is :input, or if the
:if-exists argument is :overwrite or :append.

:create

Creates an empty file with the specified name and then proceeds as if it had

already existed (but do not perform any processing directed by the :if-

exists argument). This is the default if the :direction is :output or :io,

and the :if-exists argument is anything but :overwrite or :append.

nil

Does not create a file or even a stream, but instead simply returns nil to

indicate failure. This is the default if the :direction is :probe.
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X3J13 voted in June 1989 〈122〉 to add to the function open a new keyword

argument :external-format.

:external-format

This argument specifies an implementation-recognized scheme for representing

characters in files. The default value is :default and is implementation-
defined but must support the base characters. An error is signaled if the

implementation does recognize the specified format.

This argument may be specified if the :direction argument is :input,

:output, or :io. It is an error to write a character to the resulting stream that

cannot be represented by the specified file format. (However, the #--\Newline

character cannot produce such an error; implementations must provide ap-

propriate line division behavior for all character streams.)

See stream-external-format.

When the caller is finished with the stream, it should close the file by using

the close function. The with-open-file form does this automatically, and

so is preferred for most purposes. open should be used only when the control

structure of the program necessitates opening and closing of a file in some way

more complex than provided by with-open-file. It is suggested that any
program that uses open directly should use the special form unwind-protect

to close the file if an abnormal exit occurs.

[Macro]with-open-file (stream filename {options}∗ )
{declaration}∗ { form}∗

with-open-file evaluates the forms of the body (an implicit progn) with

the variable stream bound to a stream that reads or writes the file named by
the value of filename. The options are evaluated and are used as keyword

arguments to the function open.

When control leaves the body, either normally or abnormally (such as by use

of throw), the file is automatically closed. If a new output file is being written,

and control leaves abnormally, the file is aborted and the file system is left,
so far as possible, as if the file had never been opened. Because with-open-

file always closes the file, even when an error exit is taken, it is preferred

over open for most applications.

filename is the name of the file to be opened; it may be a string, a pathname,

or a stream.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be

used as pathnames. See section 23.1.6.
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X3J13 voted in June 1989 〈137〉 to clarify that with-open-file accepts

only non-wild pathnames; an error is signaled if wild-pathname-p would be

true of the filename argument.

X3J13 voted in June 1989 〈130〉 to require with-open-file to accept logical

pathnames (see section 23.1.5).

For example:

(with-open-file (ifile name

:direction :input)

(with-open-file (ofile (merge-pathname-defaults ifile

nil

"out")

:direction :output

:if-exists :supersede)

(transduce-file ifile ofile)))

X3J13 voted in June 1989 〈184〉 to specify that the variable stream is not

always bound to a stream; rather it is bound to whatever would be returned by

a call to open. For example, if the options include :if-does-not-exist nil,

stream will be bound to nil if the file does not exist. In this case the value of
stream should be tested within the body of the with-open-file form before

it is used as a stream. For example:

(with-open-file (ifile name

:direction :input

:if-does-not-exist nil)

;; Process the file only if it actually exists.

(when (streamp name)

(compile-cobol-program ifile)))

Implementation note: While with-open-file tries to automatically close the
stream on exit from the construct, for robustness it is helpful if the garbage collector
can detect discarded streams and automatically close them.

23.3. Renaming, Deleting, and Other File Operations

These functions provide a standard interface to operations provided in some

form by most file systems. It may be that some implementations of Common

Lisp cannot support them all completely.
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[Function]rename-file file new-name

The specified file is renamed to new-name (which must be a file name). The

file may be a string, a pathname, or a stream. If it is an open stream associated

with a file, then the stream itself and the file associated with it are affected
(if the file system permits).

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be

used as pathnames. See section 23.1.6.

rename-file returns three values if successful. The first value is the
new-name with any missing components filled in by performing a merge-

pathnames operation using file as the defaults. The second value is the

truename of the file before it was renamed. The third value is the truename

of the file after it was renamed.

If the renaming operation is not successful, an error is signaled.
It is an error to specify a file name containing a :wild component, for

........................................................................................................................................................................................................

file to contain a nil component where the file system does not permit a nil

component, or for the result of defaulting missing components of new-name

from file to contain a nil component where the file system does not permit a
nil component.

X3J13 voted in June 1989 〈137〉 to specify that supplying a wild pathname

as the file argument to rename-file has implementation-dependent conse-

quences; rename-file might signal an error, for example, or might rename

all files that match the wild pathname.
X3J13 voted in June 1989 〈130〉 to require rename-file to accept logical

pathnames (see section 23.1.5).

Compatibility note: This corresponds to the function called renamef in MacLisp
and Lisp Machine Lisp. The name renamef is not used in Common Lisp because
the convention that a trailing f means “file” conflicts with the use of a trailing f for
forms related to setf.

[Function]delete-file file

The specified file is deleted. The file may be a string, a pathname, or a stream.

If it is an open stream associated with a file, then the stream itself and the

file associated with it are affected (if the file system permits), in which case
the stream may or may not be closed immediately, and the deletion may be

immediate or delayed until the stream is explicitly closed, depending on the

requirements of the file system.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be

used as pathnames. See section 23.1.6.
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delete-file returns a non-nil value if successful. It is left to the discretion

of the implementation whether an attempt to delete a non-existent file is

considered to be successful. If the deleting operation is not successful, an

error is signaled.

It is an error to specify a file name that contains a :wild component or one
........................................................................................................................................................................................................

that contains a nil component where the file system does not permit a nil

component.

X3J13 voted in June 1989 〈137〉 to clarify that supplying a wild pathname
as the file argument to delete-file has implementation-dependent conse-

quences; delete-file might signal an error, for example, or might delete all

files that match the wild pathname.

X3J13 voted in June 1989 〈130〉 to require delete-file to accept logical

pathnames (see section 23.1.5).

Compatibility note: This corresponds to the function called deletef in MacLisp
and Lisp Machine Lisp.

[Function]probe-file file

This predicate is false if there is no file named file, and otherwise returns a

pathname that is the true name of the file (which may be different from file
because of file links, version numbers, or other artifacts of the file system).

Note that if the file is an open stream associated with a file, then probe-file

cannot return nil but will produce the true name of the associated file. See

truename and the :probe value for the :direction argument to open.

Compatibility note: This corresponds to the function called probef in MacLisp
and Lisp Machine Lisp.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be

used as pathnames. See section 23.1.6.

X3J13 voted in June 1989 〈137〉 to clarify that probe-file accepts only

non-wild pathnames; an error is signaled if wild-pathname-p would be true

of the file argument.

X3J13 voted in June 1989 〈130〉 to require probe-file to accept logical

pathnames (see section 23.1.5). However, probe-file never returns a logical

pathname.

X3J13 voted in January 1989 〈15〉 to specify that probe-file is unaffected

by whether the first argument, if a stream, is open or closed. If the first
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argument is a stream, probe-file behaves as if the function pathname were

applied to the stream and the resulting pathname used instead. However,

X3J13 further commented that the treatment of open streams may differ con-

siderably from one implementation to another; for example, in some operating

systems open files are written under a temporary or invisible name and later
renamed when closed. In general, programmers writing code intended to be

portable should be very careful when using probe-file.

[Function]file-write-date file

file can be a file name or a stream that is open to a file. This returns the time

at which the file was created or last written as an integer in universal time

format (see section 25.4.1), or nil if this cannot be determined.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be

used as pathnames. See section 23.1.6.

X3J13 voted in June 1989 〈137〉 to clarify that file-write-date accepts

only non-wild pathnames; an error is signaled if wild-pathname-p would be
true of the file argument.

X3J13 voted in June 1989 〈130〉 to require file-write-date to accept
logical pathnames (see section 23.1.5).

[Function]file-author file

file can be a file name or a stream that is open to a file. This returns the
name of the author of the file as a string, or nil if this cannot be determined.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be
used as pathnames. See section 23.1.6.

X3J13 voted in June 1989 〈137〉 to clarify that file-author accepts only

non-wild pathnames; an error is signaled if wild-pathname-p would be true

of the file argument.

X3J13 voted in June 1989 〈130〉 to require file-author to accept logical

pathnames (see section 23.1.5).

[Function]file-position file-stream &optional position

file-position returns or sets the current position within a random-access

file.

(file-position file-stream) returns a non-negative integer indicating the

current position within the file-stream, or nil if this cannot be determined.

The file position at the start of a file will be zero. The value returned by



FILE SYSTEM INTERFACE 711

file-position increases monotonically as input or output operations are

performed. For a character file, performing a single read-char or write-

char operation may cause the file position to be increased by more than 1

because of character-set translations (such as translating between the Com-

mon Lisp #--\Newline character and an external ASCII carriage-return/line-
feed sequence) and other aspects of the implementation. For a binary file,

every read-byte or write-byte operation increases the file position by 1.

(file-position file-stream position) sets the position within file-stream

to be position. The position may be an integer, or :start for the beginning

of the stream, or :end for the end of the stream. If the integer is too large

or otherwise inappropriate, an error is signaled (the file-length function
returns the length beyond which file-position may not access). An integer

returned by file-position of one argument should, in general, be acceptable

as a second argument for use with the same file. With two arguments, file-

position returns t if the repositioning was performed successfully, or nil if
it was not (for example, because the file was not random-access).

Implementation note: Implementations that have character files represented as
a sequence of records of bounded size might choose to encode the file position as,
for example, record-number*256+character-within-record. This is a valid encoding
because it increases monotonically as each character is read or written, though not
necessarily by 1 at each step. An integer might then be considered “inappropriate”
as a second argument to file-position if, when decoded into record number and
character number, it turned out that the specified record was too short for the
specified character number.

Compatibility note: This corresponds to the function called filepos in MacLisp
and Lisp Machine Lisp.

[Function]file-length file-stream

file-stream must be a stream that is open to a file. The length of the file is

returned as a non-negative integer, or nil if the length cannot be determined.
For a binary file, the length is specifically measured in units of the :element-

type specified when the file was opened (see open).

Compatibility note: This corresponds to the function called lengthf in MacLisp
and Lisp Machine Lisp.
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[Function]file-string-length file-stream object

X3J13 voted in June 1989 〈122〉 to add the function file-string-length.

The object must be a string or a character. The function file-string-

length returns a non-negative integer that is the difference between what

the file-position of the file-stream would be after and before writing the
object to the file-stream, or nil if this difference cannot be determined. The

value returned may depend on the current state of the file-stream; that is,

calling file-string-length on the same arguments twice may in certain

circumstances produce two different integers.

23.4. Loading Files

To load a file is to read through the file, evaluating each form in it. Pro-
grams are typically stored in files containing calls to constructs such as defun,

defmacro, and defvar, which define the functions and variables of the pro-

gram.

Loading a compiled (“fasload”) file is similar, except that the file does not

contain text but rather pre-digested expressions created by the compiler that
can be loaded more quickly.

[Function]load filename &key :verbose :print :if-does-not-exist

This function loads the file named by filename into the Lisp environment.

It is assumed that a text (character file) can be automatically distinguished

from an object (binary) file by some appropriate implementation-dependent

means, possibly by the file type. The defaults for filename are taken from the
variable *default-pathname-defaults*. If the filename (after the merging

in of the defaults) does not explicitly specify a type, and both text and object

types of the file are available in the file system, load should try to select the

more appropriate file by some implementation-dependent means.

If the first argument is a stream rather than a pathname, then load deter-
mines what kind of stream it is and loads directly from the stream.

The :verbose argument (which defaults to the value of *load-verbose*),

if true, permits load to print a message in the form of a comment (that is,

with a leading semicolon) to *standard-output* indicating what file is being

loaded and other useful information.

The :print argument (default nil), if true, causes the value of each ex-
........................................................................................................................................................................................................

pression loaded to be printed to *standard-output*. If a binary file is being
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loaded, then what is printed may not reflect precisely the contents of the

source file, but nevertheless some information will be printed.

X3J13 voted in March 1989 〈26〉 to add the variable *load-print*; its

value is used as the default for the :print argument to load.

The function load rebinds *package* to its current value. If some form
in the file changes the value of *package* during loading, the old value will

be restored when the loading is completed. (This was specified in the first

edition under the description of *package*; for convenience I now mention it

here as well.)
X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be

used as pathnames. See section 23.1.6.

X3J13 voted in June 1989 〈137〉 to clarify that supplying a wild pathname as

the filename argument to load has implementation-dependent consequences;

load might signal an error, for example, or might load all files that match the
pathname.

X3J13 voted in June 1989 〈130〉 to require load to accept logical pathnames

(see section 23.1.5).

If a file is successfully loaded, load always returns a non-nil value. If :if-
does-not-exist is specified and is nil, load just returns nil rather than

signaling an error if the file does not exist.

X3J13 voted in March 1989 〈104〉 to require that load bind *readtable*

to its current value at the time load is called; the dynamic extent of the bind-

ing should encompass all of the file-loading activity. This allows a portable
program to include forms such as

(in-package "FOO")

(eval-when (:execute :load-toplevel :compile-toplevel)

(setq *readtable* foo:my-readtable))

without performing a net global side effect on the loading environment. Such

statements allow the remainder of such a file to be read either as interpreted

code or by compile-file in a syntax determined by an alternative readtable.
X3J13 voted in June 1989 〈112〉 to require that load bind two new variables

*load-pathname* and *load-truename*; the dynamic extent of the bindings

should encompass all of the file-loading activity.

[Variable]*load-verbose*

This variable provides the default for the :verbose argument to load. Its

initial value is implementation-dependent.
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[Variable]*load-print*

X3J13 voted in March 1989 〈26〉 to add *load-print*. This variable provides

the default for the :print argument to load. Its initial value is nil.

[Variable]*load-pathname*

X3J13 voted in June 1989 〈112〉 to introduce *load-pathname*; it is initially

nil but load binds it to a pathname that represents the file name given as

the first argument to load merged with the defaults (see merge-pathname).

[Variable]*load-truename*

X3J13 voted in June 1989 〈112〉 to introduce *load-truename*; it is ini-

tially nil but load binds it to the “true name” of the file being loaded. See

truename.

X3J13 voted in March 1989 〈110〉 to introduce a facility based on the Ob-
ject System whereby a user can specify how compile-file and load must

cooperate to reconstruct compile-time constant objects at load time. The

protocol is simply this: compile-file calls the generic function make-load-

form on any object that is referenced as a constant or as a self-evaluating
form, if the object’s metaclass is standard-class, structure-class, any

user-defined metaclass (not a subclass of built-in-class), or any of a pos-

sibly empty implementation-defined list of other metaclasses; compile-file

will call make-load-form only once for any given object (as determined by eq)

within a single file. The user-programmability stems from the possibility of
user-defined methods for make-load-form. The helper function make-load-

form-saving-slots makes it easy to write commonly used versions of such

methods.

[Generic function]make-load-form object

The argument is an object that is referenced as a constant or as a self-

evaluating form in a file being compiled by compile-file. The objective
is to enable load to construct an equivalent object.

The first value, called the creation form, is a form that, when evaluated at

load time, should return an object that is equivalent to the argument. The

exact meaning of “equivalent” depends on the type of object and is up to the

programmer who defines a method for make-load-form. This allows the user

to program the notion of “similar as a constant” (see section 25.1).
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The second value, called the initialization form, is a form that, when eval-

uated at load time, should perform further initialization of the object. The

value returned by the initialization form is ignored. If the make-load-form

method returns only one value, the initialization form is nil, which has no

effect. If the object used as the argument to make-load-form appears as a
constant in the initialization form, at load time it will be replaced by the

equivalent object constructed by the creation form; this is how the further

initialization gains access to the object.

Two values are returned so that circular structures may be handled. The

order of evaluation rules discussed below for creation and initialization forms
eliminates the possibility of partially initialized objects in the absence of cir-

cular structures and reduces the possibility to a minimum in the presence of

circular structures. This allows nodes in non-circular structures to be built

out of fully initialized subparts.

Both the creation form and the initialization form can contain references
to objects of user-defined types (defined precisely below). However, there

must not be any circular dependencies in creation forms. An example of a

circular dependency: the creation form for the object X contains a reference

to the object Y , and the creation form for the object Y contains a reference

to the object X . A simpler example: the creation form for the object X
contains a reference to X itself. Initialization forms are not subject to any

restriction against circular dependencies, which is the entire reason for having

initialization forms. See the example of circular data structures below.

The creation form for an object is always evaluated before the initialization

form for that object. When either the creation form or the initialization form
refers to other objects of user-defined types that have not been referenced

earlier in the compile-file, the compiler collects all of the creation and ini-

tialization forms. Each initialization form is evaluated as soon as possible

after its creation form, as determined by data flow. If the initialization form

for an object does not refer to any other objects of user-defined types that
have not been referenced earlier in the compile-file, the initialization form

is evaluated immediately after the creation form. If a creation or initialization

form F references other objects of user-defined types that have not been refer-

enced earlier in the compile-file, the creation forms for those other objects
are evaluated before F and the initialization forms for those other objects are

also evaluated before F whenever they do not depend on the object created

or initialized by F. Where the above rules do not uniquely determine an order

of evaluation, it is unspecified which of the possible orders of evaluation is

chosen.

While these creation and initialization forms are being evaluated, the ob-
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jects are possibly in an uninitialized state, analogous to the state of an object

between the time it has been created by allocate-instance and it has been

processed fully by initialize-instance. Programmers writing methods for

make-load-form must take care in manipulating objects not to depend on

slots that have not yet been initialized.
It is unspecified whether load calls eval on the forms or does some other

operation that has an equivalent effect. For example, the forms might be

translated into different but equivalent forms and then evaluated; they might

be compiled and the resulting functions called by load (after they themselves
have been loaded); or they might be interpreted by a special-purpose inter-

preter different from eval. All that is required is that the effect be equivalent

to evaluating the forms.

It is valid for user programs to call make-load-form in circumstances other

than compilation, providing the argument’s metaclass is not built-in-class
or a subclass of built-in-class.

Applying make-load-form to an object whose metaclass is standard-class

or structure-class for which no user-defined method is applicable signals

an error. It is valid to implement this either by defining default methods for
the classes standard-object and structure-object that signal an error or

by having no applicable method for those classes.

See load-time-eval.

In the following example, an equivalent instance of my-class is recon-

structed by using the values of two of its slots. The value of the third slot is
derived from those two values.

(defclass my-class () ((a :initarg :a :reader my-a)

(b :initarg :b :reader my-b)

(c :accessor my-c)))

(defmethod shared-initialize ((self my-class) slots &rest inits)

(declare (ignore slots inits))

(unless (slot-boundp self ’c)

(setf (my-c self)

(some-computation (my-a self) (my-b self)))))

(defmethod make-load-form ((self my-class))

‘(make-instance ’,(class-name (class-of self))

:a ’,(my-a self) :b ’,(my-b self)))

This code will fail if either of the first two slots of some instance of my-

class contains the instance itself. Another way to write the last form in the
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preceding example is

(defmethod make-load-form ((self my-class))

(make-load-form-saving-slots self ’(a b)))

This has the advantages of conciseness and handling circularities correctly.

In the next example, instances of class my-frob are “interned” in some way.

An equivalent instance is reconstructed by using the value of the name slot

as a key for searching for existing objects. In this case the programmer has
chosen to create a new object if no existing object is found; an alternative

possibility would be to signal an error in that case.

(defclass my-frob ()

((name :initarg :name :reader my-name)))

(defmethod make-load-form ((self my-frob))

‘(find-my-frob ’,(my-name self) :if-does-not-exist :create))

In the following example, the data structure to be dumped is circular, be-

cause each node of a tree has a list of its children and each child has a reference

back to its parent.

(defclass tree-with-parent () ((parent :accessor tree-parent)

(children :initarg :children)))

(defmethod make-load-form ((x tree-with-parent))

(values

‘(make-instance ’,(class-of x)

:children ’,(slot-value x ’children))

‘(setf (tree-parent ’,x) ’,(slot-value x ’parent))))

Suppose make-load-form is called on one object in such a structure. The

creation form creates an equivalent object and fills in the children slot, which

forces creation of equivalent objects for all of its children, grandchildren, etc.
At this point none of the parent slots have been filled in. The initialization

form fills in the parent slot, which forces creation of an equivalent object for

the parent if it was not already created. Thus the entire tree is recreated at

load time. At compile time, make-load-form is called once for each object in
the tree. All the creation forms are evaluated, in unspecified order, and then

all the initialization forms are evaluated, also in unspecified order.

In this final example, the data structure to be dumped has no special proper-

ties and an equivalent structure can be reconstructed simply by reconstructing

the slots’ contents.
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(defstruct my-struct a b c)

(defmethod make-load-form ((s my-struct))

(make-load-form-saving-slots s))

This is easy to code using make-load-form-saving-slots.

[Function]make-load-form-saving-slots object &optional slots

This returns two values suitable for return from a make-load-form method.

The first argument is the object. The optional second argument is a list of

the names of slots to preserve; it defaults to all of the local slots.

make-load-form-saving-slots returns forms that construct an equivalent

object using make-instance and setf of slot-value for slots with values,

or slot-makunbound for slots without values, or other functions of equivalent
effect.

Because make-load-form-saving-slots returns two values, it can deal
with circular structures; it works for any object of metaclass standard-class

or structure-class. Whether the result is useful depends on whether the ob-

ject’s type and slot contents fully capture an application’s idea of the object’s

state.

23.5. Accessing Directories

The following function is a very simple portable primitive for examining a

directory. Most file systems can support much more powerful directory-

searching primitives, but no two are alike. It is expected that most implemen-
tations of Common Lisp will extend the directory function or provide more

powerful primitives.

[Function]directory pathname &key

A list of pathnames is returned, one for each file in the file system that matches

the given pathname. (The pathname argument may be a pathname, a string,

or a stream associated with a file.) For a file that matches, the truename

appears in the result list. If no file matches the pathname, it is not an error;

directory simply returns nil, the list of no results. Keywords such as :wild
and :newest may be used in pathname to indicate the search space.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be

used as pathnames. See section 23.1.6.
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X3J13 voted in January 1989 〈15〉 to specify that directory is unaffected

by whether the first argument, if a stream, is open or closed. If the first

argument is a stream, directory behaves as if the function pathname were

applied to the stream and the resulting pathname used instead. However,

X3J13 commented that the treatment of open streams may differ considerably
from one implementation to another; for example, in some operating systems

open files are written under a temporary or invisible name and later renamed

when closed. In general, programmers writing code intended to be portable

should be careful when using directory.
X3J13 voted in June 1989 〈130〉 to require directory to accept logical

pathnames (see section 23.1.5). However, the result returned by directory

never contains a logical pathname.

Implementation note: It is anticipated that an implementation may need to
provide additional parameters to control the directory search. Therefore directory

is specified to take additional keyword arguments so that implementations may
experiment with extensions, even though no particular keywords are specified here.

As a simple example of such an extension, for a file system that supports the
notion of cross-directory file links, a keyword argument :links might, if non-nil,
specify that such links be included in the result list.
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Errors

Errors may be signaled for a variety of reasons. Many built-in Common

Lisp functions may signal an error when given incorrect arguments. Other

functions, described in this chapter, may be called by user programs for the
purpose of signaling an error.

When an error is signaled, it is handled in an implementation-dependent

way. It is expected that each implementation of Common Lisp will provide

an interactive debugger that prints the error message along with suitable

contextual information such as which function detected the error. The user
may interact with the debugger to examine or modify the state of the program

in various ways, including abandoning the current computation (“aborting to

top level”) and continuing from the error. What “continuing” means depends

on how the error is signaled; the details of this are specified below for each
error-signaling function.

An implementation may also choose to provide means (such as the errset
........................................................................................................................................................................................................

special form in MacLisp) for a program to trap all errors and prevent the

debugger from stepping in for certain errors.

Rationale: Error handling of adequate flexibility and power for all systems written
in Common Lisp appears to require a complex error classification system. Experience
with several error-handling systems in such dialects as MacLisp and Lisp Machine
Lisp indicates that further experimentation is needed in this area; it is too early
to define a standard error-handling mechanism. Therefore Common Lisp provides
standard ways to signal errors, but no standard ways to handle errors. Of course a
complete Lisp system requires error-handling mechanisms, but many useful portable
programs do not require them. It is expected that a future revision of Common Lisp
will address the problem of portable error-handling mechanisms.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This was the result of the research and experimentation

720
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alluded to in the preceding paragraph. Conditions subsume and generalize

the notion of errors. The condition system also provides means for handling

conditions (of which errors are a special case) and for restarting a computation

after a condition has been signaled. See chapter 29.

Compatibility note: What is here called “continuing,” Lisp Machine Lisp calls
“proceeding” from an error.

In the new terminology introduced in chapter 29, what Lisp Machine Lisp called
“proceeding” would be called “restarting,” and “continuing” refers to the particular
restart named continue.

24.1. General Error-Signaling Functions

The functions in this section provide various mechanisms for signaling warn-
ings, breaks, continuable errors, and fatal errors.

In each case, the caller specifies an error message (a string) that may be

processed (and perhaps displayed to the user) by the error-handling mecha-

nism. All messages are constructed by applying the function format to the
quantities nil, format-string, and all the args to produce a string.

An error message string should not contain a newline character at either

the beginning or end, and should not contain any sort of herald indicating

that it is an error. The system will take care of these according to whatever

its preferred style may be.
Conventionally, error messages are complete English sentences ending with

a period. Newlines in the middle of long messages are acceptable. There

should be no indentation after a newline in the middle of an error message.

The error message need not mention the name of the function that signals the
error; it is assumed that the debugger will make this information available.

Implementation note: If the debugger in a particular implementation displays
error messages indented from the prevailing left margin (for example, indented by
seven spaces because they are prefixed by the seven-character herald “Error: ”),
then the debugger should take care of inserting the appropriate indentation into a
multi-line error message. Similarly, a debugger that prefixes error messages with
semicolons so that they appear to be comments should take care of inserting a
semicolon at the beginning of each line in a multi-line error message. These rules
are suggested because, even within a single implementation, there may be more than
one program that presents error messages to the user, and they may use different
styles of presentation. The caller of error cannot anticipate all such possible styles,
and so it is incumbent upon the presenter of the message to make any necessary
adjustments.
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Common Lisp does not specify the manner in which error messages and

other messages are displayed. For the purposes of exposition, a fairly simple

style of textual presentation will be used in the examples in this chapter. The

character > is used to represent the command prompt symbol for a debugger.

[Function]error format-string &rest args

This function signals a fatal error. It is impossible to continue from this kind
........................................................................................................................................................................................................

of error; thus error will never return to its caller.

The debugger printout in the following example is typical of what an imple-

mentation might print when error is called. Suppose that the (misspelled)
symbol emergnecy-shutdown has no property named command (all too likely,

as it is probably a typographical error for emergency-shutdown).

(defun command-dispatch (cmd)

(let ((fn (get cmd ’command)))

(if (not (null fn))

(funcall fn))

(error "The command ~S is unrecognized." cmd))))

(command-dispatch ’emergnecy-shutdown)

Error: The command EMERGNECY-SHUTDOWN is unrecognized.

Error signaled by function COMMAND-DISPATCH.

>

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of error to specify

its interaction with the condition system. See section 29.4.1.

Compatibility note: Lisp Machine Lisp calls this function ferror. MacLisp has
a function named error that takes different arguments and can signal either a fatal
or a continuable error.

[Function]cerror continue-format-string error-format-string

&rest args

cerror is used to signal continuable errors. Like error, it signals an error and
........................................................................................................................................................................................................

enters the debugger. However, cerror allows the program to be continued

from the debugger after resolving the error.

If the program is continued after encountering the error, cerror returns

nil. The code that follows the call to cerror will then be executed. This
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code should correct the problem, perhaps by accepting a new value from the

user if a variable was invalid.

If the code that corrects the problem interacts with the program’s use and

might possibly be misled, it should make sure the error has really been cor-
rected before continuing. One way to do this is to put the call to cerror and

the correction code in a loop, checking each time to see if the error has been

corrected before terminating the loop.

The continue-format-string argument, like the error-format-string argu-
ment, is given as a control string to format along with the args to construct a

message string. The error message string is used in the same way that error

uses it. The continue message string should describe the effect of continuing.

The intent is that this message can be displayed as an aid to the user in de-

ciding whether and how to continue. For example, it might be used by an
interactive debugger as part of the documentation of its “continue” command.

The content of the continue message should adhere to the rules of style for

error messages. It should not include any statement of how the “continue”

command is given, since this may be different for each debugger. (It is up to
the debugger to supply this information according to its own particular style

of presentation and user interaction.)

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of cerror to specify
its interaction with the condition system. See section 29.4.1.

Here is an example where the caller of cerror, if continued, fixes the prob-

lem without any further user interaction:

(let ((nvals (list-length vals)))

(unless (UU nvals 3)

(cond ((< nvals 3)

(cerror "Assume missing values are zero."

"Too few values in ~S;~%~

three are required, ~

but ~R ~:[were~;was~] supplied."

nvals (UU nvals 1))

(setq vals (append vals (subseq ’(0 0 0) nvals))))

(t (cerror "Ignore all values after the first three."

"Too many values in ~S;~%~

three are required, ~

but ~R were supplied."

nvals)

(setq vals (subseq vals 0 3))))))
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If vals were the list (-47), the interaction might look like this:

Error: Too few values in (-47);

three are required, but one was supplied.

Error signaled by function EXAMPLE.

If continued: Assume missing values are zero.

>

In this example, a loop is used to ensure that a test is satisfied. (This example

could be written more succinctly using assert or check-type, which indeed

supply such loops.)

(do ()

((known-wordp word) word)

(cerror "You will be prompted for a replacement word."

"~S is an unknown word (possibly misspelled)."

word)

(format *query-io* "~&New word: ")

(setq word (read *query-io*)))

In complex cases where the error-format-string uses some of the args and

the continue-format-string uses others, it may be necessary to use the format

directives ~* and ~@* to skip over unwanted arguments in one or both of the
format control strings.

Compatibility note: The Lisp Machine Lisp function fsignal is similar to this,
but returns :no-action rather than nil, and fails to distinguish between the error
message and the continue message.

[Function]warn format-string &rest args

warn prints an error message but normally doesn’t go into the debugger.
........................................................................................................................................................................................................

(However, this may be controlled by the variable *break-on-warnings*.)

X3J13 voted in March 1989 〈10〉 to remove *break-on-warnings* from the

language. See *break-on-signals*.

warn returns nil.
........................................................................................................................................................................................................

This function would be just the same as format with the output di-

rected to the stream in error-output, except that warn may perform various

implementation-dependent formatting and other actions. For example, an im-

plementation of warn should take care of advancing to a fresh line before and
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after the error message and perhaps supplying the name of the function that

called warn.

Compatibility note: The Lisp Machine Lisp function compiler:warn is an ap-
proximate equivalent to this.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of warn to specify its

interaction with the condition system. See section 29.4.9.

[Variable]*break-on-warnings*
........................................................................................................................................................................................................

If *break-on-warnings* is not nil, then the function warn behaves like

break. It prints its message and then goes to the debugger or break loop.

Continuing causes warn to return nil. This flag is intended primarily for use
when the user is debugging programs that issue warnings; in “production”

use, the value of *break-on-warnings* should be nil.

X3J13 voted in March 1989 〈10〉 to remove *break-on-warnings* from the

language. See *break-on-signals*.

[Function]break &optional format-string &rest args

break prints the message and goes directly into the debugger, without allowing
........................................................................................................................................................................................................

any possibility of interception by programmed error-handling facilities. (Right
now, there aren’t any error-handling facilities defined in Common Lisp, but

there might be in particular implementations, and there will be some defined

by Common Lisp in the future.) When continued, break returns nil. It is

permissible to call break with no arguments; a suitable default message will
be provided.

break is presumed to be used as a way of inserting temporary debugging
“breakpoints” in a program, not as a way of signaling errors; it is expected that

continuing from a break will not trigger any unusual recovery action. For this

reason, break does not take the additional format control string argument

that cerror takes. This and the lack of any possibility of interception by
programmed error handling are the only program-visible differences between

break and cerror. The interactive debugger may choose to display them

differently; for instance, a cerror message might be prefixed with the herald

“Error: ” and a break message with “Break: ”. This depends on the user-

interface style of the particular implementation. A particular implementation
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may choose, according to its own style and needs, when break is called to go

into a debugger different from the one used for handling errors. For example,

it might go into an ordinary read-eval-print loop identical to the top-level one

except for the provision of a “continue” command that causes break to return

nil.

Compatibility note: In MacLisp, break is a special form (FEXPR) that takes
two optional arguments. The first is a symbol (it would be a string if MacLisp
had strings), which is not evaluated. The second is evaluated to produce a truth
value specifying whether break should break (true) or return immediately (false). In
Common Lisp one makes a call to break conditional by putting it inside a conditional
form such as when or unless.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of break to specify

its interaction with the condition system. See section 29.4.11.

24.2. Specialized Error-Signaling Forms and Macros

These facilities are designed to make it convenient for the user to insert error

checks into code.

[Macro]check-type place typespec [string]

check-type signals an error if the contents of place are not of the desired
........................................................................................................................................................................................................

type. Upon continuing from this error, the user will be asked for a new value;
check-type will store the new value in place and start over, checking the type

of the new value and signaling another error if it is still not of the desired type.

Subforms of place may be evaluated multiple times because of the implicit loop

generated. check-type returns nil.
The place must be a generalized variable reference acceptable to setf. The

typespec must be a type specifier; it is not evaluated. The string should be

an English description of the type, starting with an indefinite article (“a” or

“an”); it is evaluated. If string is not supplied, it is computed automatically

from typespec. (The optional string argument is allowed because some ap-
plications of check-type may require a more specific description of what is

wanted than can be generated automatically from the type specifier.)

The error message will mention place, its contents, and the desired type.

The precise format and content of the error message is implementation-

dependent. The example shown below is representative of current practice.
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Implementation note: An implementation may choose to generate a somewhat
differently worded error message if it recognizes that place is of a particular form,
such as one of the arguments to the function that called check-type.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of check-type to

specify its interaction with the condition system. See section 29.4.2.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-

tion 7.2).
Examples:

(setq aardvarks ’(sam harry fred))

(check-type aardvarks (vector integer))

Error: The value of AARDVARKS, (SAM HARRY FRED),

is not a vector of integers.

(setq naards ’foo)

(check-type naards (integer 0 *) "a positive integer")

Error: The value of NAARDS, FOO, is not a positive integer.

Compatibility note: In Lisp Machine Lisp the equivalent facility is called check-

arg-type.

[Macro]assert test-form [( {place}∗ ) [string {arg}∗ ] ]

assert signals an error if the value of test-form is nil. Continuing from this
........................................................................................................................................................................................................

error will allow the user to alter the values of some variables, and assert will

then start over, evaluating test-form again. assert returns nil.

test-form is any form. Each place (there may be any number of them, or

none) must be a generalized-variable reference acceptable to setf. These
should be variables on which test-form depends, whose values may sensibly

be changed by the user in attempting to correct the error. Subforms of each

place are only evaluated if an error is signaled, and may be re-evaluated if the

error is re-signaled (after continuing without actually fixing the problem).
The string is an error message string, and the args are additional arguments;

they are evaluated only if an error is signaled, and re-evaluated if the error is

signaled again. The function format is applied in the usual way to string and

args to produce the actual error message. If string is omitted (and therefore

also the args), a default error message is used.
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Implementation note: The debugger need not include the test-form in the error
message, and the places should not be included in the message, but they should be
made available for the user’s perusal. If the user gives the “continue” command,
he should be presented with the opportunity to alter the values of any or all of the
references. The details of this depend on the implementation’s style of user interface,
of course.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of assert to specify

its interaction with the condition system. See section 29.4.2.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-

tion 7.2).

X3J13 voted in June 1989 〈159〉 to extend the specification of assert to al-

low a place whose setf method has more than one store variable (see define-

setf-method).

Examples:

(assert (valve-closed-p v1))

(assert (valve-closed-p v1) ()

"Live steam is escaping!")

(assert (valve-closed-p v1)

((valve-manual-control v1))

"Live steam is escaping!")

;; Note here that the user is invited to change BASE,

;; but not the bounds MINBASE and MAXBASE.

(assert (<UU minbase base maxbase)

(base)

"Base ~D is not in the range ~D, ~D"

base minbase maxbase)

;; Note here that it is probably not desirable to include the

;; entire contents of the two matrices in the error message.

;; It is reasonable to assume that the debugger will give

;; the user access to the values of the places A and B.
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(assert (UU (array-dimension a 1)

(array-dimension b 0))

(a b)

"Cannot multiply a ~D-by-~D matrix ~

and a ~D-by-~D matrix."

(array-dimension a 0)

(array-dimension a 1)

(array-dimension b 0)

(array-dimension b 1))

24.3. Special Forms for Exhaustive Case Analysis

The syntax for etypecase and ctypecase is the same as for typecase, except

that no otherwise clause is permitted. Similarly, the syntax for ecase and

ccase is the same as for case except for the otherwise clause.

etypecase and ecase are similar to typecase and case, respectively, but
signal a non-continuable error rather than returning nil if no clause is se-

lected.

ctypecase and ccase are also similar to typecase and case, but signal a
continuable error if no clause is selected.

[Macro]etypecase keyform {(type { form}∗ )}∗

This control construct is similar to typecase, but no explicit otherwise or t
........................................................................................................................................................................................................

clause is permitted. If no clause is satisfied, etypecase signals an error with

a message constructed from the clauses. It is not permissible to continue from

this error. To supply an application-specific error message, the user should use
typecase with an otherwise clause containing a call to error. The name of

this function stands for “exhaustive type case” or “error-checking type case.”

For example:

(setq x 1/3)

(etypecase x

(integer x)

(symbol (symbol-value x)))

Error: The value of X, 1/3, is neither

an integer nor a symbol.

>
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X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of etypecase to
specify its interaction with the condition system. See section 29.4.3.

[Macro]ctypecase keyplace {(type { form}∗ )}∗

This control construct is similar to typecase, but no explicit otherwise or
........................................................................................................................................................................................................

t clause is permitted. The keyplace must be a generalized variable reference
acceptable to setf. If no clause is satisfied, ctypecase signals an error with

a message constructed from the clauses. Continuing from this error causes

ctypecase to accept a new value from the user, store it into keyplace, and

start over, making the type tests again. Subforms of keyplace may be evaluated

multiple times. The name of this function stands for “continuable exhaustive
type case.”

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of ctypecase to

specify its interaction with the condition system. See section 29.4.3.
X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-

tion 7.2).

[Macro]ecase keyform {( {( {key}∗ ) | key} { form}∗ )}∗

This control construct is similar to case, but no explicit otherwise or t
........................................................................................................................................................................................................

clause is permitted. If no clause is satisfied, ecase signals an error with
a message constructed from the clauses. It is not permissible to continue

from this error. To supply an error message, the user should use case with

an otherwise clause containing a call to error. The name of this function

stands for “exhaustive case” or “error-checking case.” For example:

(setq x 1/3)

(ecase x

(alpha (foo))

(omega (bar))

((zeta phi) (baz)))

Error: The value of X, 1/3, is not

ALPHA, OMEGA, ZETA, or PHI.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of ecase to specify

its interaction with the condition system. See section 29.4.3.
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[Macro]ccase keyplace {( {( {key}∗ ) | key} { form}∗ )}∗

This control construct is similar to case, but no explicit otherwise or t
........................................................................................................................................................................................................

clause is permitted. The keyplace must be a generalized variable reference

acceptable to setf. If no clause is satisfied, ccase signals an error with
a message constructed from the clauses. Continuing from this error causes

ccase to accept a new value from the user, store it into keyplace, and start

over, making the clause tests again. Subforms of keyplace may be evaluated

multiple times. The name of this function stands for “continuable exhaustive
case.”

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp

Condition System. This proposal modifies the definition of ccase to specify

its interaction with the condition system. See section 29.4.3.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see sec-
tion 7.2).

Rationale: The special forms etypecase, ctypecase, ecase, and ccase are in-
cluded in Common Lisp, even though a user could write them himself using the
other standard facilities provided, because it is likely that many users will want
these. Common Lisp therefore provides a standard consistent set rather than allow-
ing a variety of incompatible dialects to develop.

In addition, experience has shown that some Lisp programmers are too lazy to
put an appropriate otherwise clause into every case statement to check for cases
they didn’t anticipate, even if they would agree that it will probably hurt them
later. If an otherwise clause can be included very easily by adding one character
to the name of the construct, it is perhaps more likely that programmers will take
the trouble to do it.

The e versions do nothing more than supply automatically generated otherwise

clauses, but correct implementation of the c versions requires some care. It is
therefore especially important that the c versions be provided by the system so
users don’t have to puzzle them out on their own. Individual implementations
may be able to do a better job of supporting these special forms, using their own
idiosyncratic facilities, than can be done using the error-signaling facilities defined
by Common Lisp.
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Miscellaneous Features

In this chapter are described various things that don’t seem to fit neatly any-

where else in this book: the compiler, the documentation function, debugging

aids, environment inquiries (including facilities for calculating and measuring

time), and the identity function.

25.1. The Compiler

The compiler is a program that may make code run faster by translating
........................................................................................................................................................................................................

programs into an implementation-dependent form that can be executed more

efficiently by the computer. Most of the time you can write programs with-
out worrying about the compiler; compiling a file of code should produce an

equivalent but more efficient program. When doing more esoteric things, you

may need to think carefully about what happens at “compile time” and what

happens at “load time.” Then the difference between the syntaxes #--. and

#--, becomes important, and the eval-when construct becomes particularly
useful.

X3J13 voted in January 1989 〈162〉 to remove #--, from the language.

Most declarations are not used by the Common Lisp interpreter; they may

be used to give advice to the compiler. The compiler may attempt to check

your advice and warn you if it is inconsistent.

Unlike most other Lisp dialects, Common Lisp recognizes special decla-

rations in interpreted code as well as compiled code. This potential source of

incompatibility between interpreted and compiled code is thereby eliminated

in Common Lisp.

The internal workings of a compiler will of course be highly implementation-

dependent. The following functions provide a standard interface to the com-

piler, however.

732
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[Function]compile name &optional definition

If definition is supplied, it should be a lambda-expression, the interpreted
........................................................................................................................................................................................................

function to be compiled. If it is not supplied, then name should be a sym-
bol with a definition that is a lambda-expression; that definition is compiled

and the resulting compiled code is put back into the symbol as its function

definition.

X3J13 voted in October 1988 〈18〉 to restate the preceding paragraph more
precisely and to extend the capabilities of compile. If the optional definition

argument is supplied, it may be either a lambda-expression (which is coerced

to a function) or a function to be compiled; if no definition is supplied, the

symbol-function of the symbol is extracted and compiled. It is permissible

for the symbol to have a macro definition rather than a function definition;
both macros and functions may be compiled.

It is an error if the function to be compiled was defined interpretively in a

non-null lexical environment. (An implementation is free to extend the be-

havior of compile to compile such functions properly, but portable programs
may not depend on this capability.) The consequences of calling compile on

a function that is already compiled are unspecified.

The definition is compiled and a compiled-function object produced. If
........................................................................................................................................................................................................

name is a non-nil symbol, then the compiled-function object is installed as
the global function definition of the symbol and the symbol is returned. If

name is nil, then the compiled-function object itself is returned. For example:

(defun foo ...) ⇒ foo ;A function definition
(compile ’foo) ⇒ foo ;Compile it

;Now foo runs faster (maybe)

(compile nil

’(lambda (a b c) (- (* b b) (* 4 a c))))

⇒ a compiled function of three arguments that computes b2 − 4ac

X3J13 voted in June 1989 〈24〉 to specify that compile returns two ad-

ditional values indicating whether the compiler issued any diagnostics (see

section 25.1.1).

X3J13 voted in March 1989 〈89〉 to extend compile to accept as a name any

function-name (a symbol or a list whose car is setf—see section 7.1). One

may write (compile ’(setf cadr)) to compile the setf expansion function

for cadr.
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[Function]compile-file input-pathname &key :output-file
........................................................................................................................................................................................................

The input-pathname must be a valid file specifier, such as a pathname. The

defaults for input-filename are taken from the variable *default-pathname-

defaults*. The file should be a Lisp source file; its contents are compiled
and written as a binary object file.

X3J13 voted in March 1989 〈26〉 to add two new keyword arguments
:verbose and :print to compile-file by analogy with load. The new

function definition is as follows.

[Function]compile-file input-pathname &key :output-file :verbose

:print

The :verbose argument (which defaults to the value of *compile-verbose*),

if true, permits compile-file to print a message in the form of a comment to
*standard-output* indicating what file is being compiled and other useful

information.

The :print argument (which defaults to the value of *compile-print*), if

true, causes information about top-level forms in the file being compiled to be
printed to *standard-output*. Exactly what is printed is implementation-

dependent; nevertheless something will be printed.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be
used as pathnames (see section 23.1.6).

X3J13 voted in June 1989 〈137〉 to clarify that supplying a wild path-

name as the input-pathname argument to compile-file has implementation-

dependent consequences; compile-file might signal an error, for example,
or might compile all files that match the wild pathname.

X3J13 voted in June 1989 〈130〉 to require compile-file to accept logical

pathnames (see section 23.1.5).

The :output-file argument may be used to specify an output pathname;

it defaults in a manner appropriate to the implementation’s file system con-
ventions.

X3J13 voted in June 1989 〈24〉 to specify that compile-file returns three

values: the truename of the output file (or nil if the file could not be created)

and two values indicating whether the compiler issued any diagnostics (see
section 25.1.1).

X3J13 voted in October 1988 〈21〉 to specify that compile-file, like load,

rebinds *package* to its current value. If some form in the file changes

the value of *package*, the old value will be restored when compilation is

completed.
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X3J13 voted in June 1989 〈22〉 to specify restrictions on conforming pro-

grams to ensure consistent handling of symbols and packages.

In order to guarantee that compiled files can be loaded correctly, the user
must ensure that the packages referenced in the file are defined consistently

at compile and load time. Conforming Common Lisp programs must satisfy

the following requirements.

. The value of *package* when a top-level form in the file is processed by

compile-file must be the same as the value of *package* when the code

corresponding to that top-level form in the compiled file is executed by the
loader. In particular, any top-level form in a file that alters the value of

*package* must change it to a package of the same name at both compile

and load time; moreover, if the first non-atomic top-level form in the file is

not a call to in-package, then the value of *package* at the time load is
called must be a package with the same name as the package that was the

value of *package* at the time compile-file was called.

. For every symbol appearing lexically within a top-level form that was acces-

sible in the package that was the value of *package* during processing of

that top-level form at compile time, but whose home package was another

package, at load time there must be a symbol with the same name that

is accessible in both the load-time *package* and in the package with the
same name as the compile-time home package.

. For every symbol in the compiled file that was an external symbol in its
home package at compile time, there must be a symbol with the same name

that is an external symbol in the package with the same name at load time.

If any of these conditions do not hold, the package in which load looks for

the affected symbols is unspecified. Implementations are permitted to signal

an error or otherwise define this behavior.

These requirements are merely an explicit statement of the status quo,

namely that users cannot depend on any particular behavior if the package

environment at load time is inconsistent with what existed at compile time.

X3J13 voted in March 1989 〈104〉 to specify that compile-file must bind

*readtable* to its current value at the time compile-file is called; the

dynamic extent of the binding should encompass all of the file-loading activity.

This allows a portable program to include forms such as
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(in-package "FOO")

(eval-when (:execute :load-toplevel :compile-toplevel)

(setq *readtable* foo:my-readtable))

without performing a net global side effect on the loading environment. Such

statements allow the remainder of such a file to be read either as interpreted

code or by compile-file in a syntax determined by an alternative readtable.

X3J13 voted in June 1989 〈112〉 to require that compile-file bind two

new variables *compile-file-pathname* and *compile-file-truename*;
the dynamic extent of the bindings should encompass all of the file-compiling

activity.

[Variable]*compile-verbose*

X3J13 voted in March 1989 〈26〉 to add *compile-verbose*. This variable

provides the default for the :verbose argument to compile-file. Its initial

value is implementation-dependent.
A proposal was submitted to X3J13 in October 1989 to rename this

*compile-file-verbose* for consistency.

[Variable]*compile-print*

X3J13 voted in March 1989 〈26〉 to add *compile-print*. This variable

provides the default for the :print argument to compile-file. Its initial
value is implementation-dependent.

A proposal was submitted to X3J13 in October 1989 to rename this

*compile-file-print* for consistency.

[Variable]*compile-file-pathname*

X3J13 voted in June 1989 〈112〉 to introduce *compile-file-pathname*; it is

initially nil but compile-file binds it to a pathname that represents the file
name given as the first argument to compile-file merged with the defaults

(see merge-pathname).

[Variable]*compile-file-truename*

X3J13 voted in June 1989 〈112〉 to introduce *compile-file-truename*; it is

initially nil but compile-file binds it to the “true name” of the pathname

of the file being compiled. See truename.
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[Special form]load-time-value form [read-only-p]

X3J13 voted in March 1989 〈111〉 to add a mechanism for delaying evaluation
of a form until it can be done in the run-time environment.

If a load-time-value expression is seen by compile-file, the compiler

performs its normal semantic processing (such as macro expansion and trans-

lation into machine code) on the form, but arranges for the execution of the
form to occur at load time in a null lexical environment, with the result of this

evaluation then being treated as an immediate quantity (that is, as if origi-

nally quoted) at run time. It is guaranteed that the evaluation of the form

will take place only once when the file is loaded, but the order of evaluation
with respect to the execution of top-level forms in the file is unspecified.

If a load-time-value expression appears within a function compiled with

compile, the form is evaluated at compile time in a null lexical environment.
The result of this compile-time evaluation is treated as an immediate quantity

in the compiled code.

In interpreted code, form is evaluated (by eval) in a null lexical environ-
ment and one value is returned. Implementations that implicitly compile (or

partially compile) expressions passed to eval may evaluate the form only

once, at the time this compilation is performed. This is intentionally simi-

lar to the freedom that implementations are given for the time of expanding

macros in interpreted code.

If the same (as determined by eq) list (load-time-value form) is evalu-

ated or compiled more than once, it is unspecified whether the form is evalu-

ated only once or is evaluated more than once. This can happen both when
an expression being evaluated or compiled shares substructure and when the

same expression is passed to eval or to compile multiple times. Since a

load-time-value expression may be referenced in more than one place and

may be evaluated multiple times by the interpreter, it is unspecified whether
each execution returns a “fresh” object or returns the same object as some

other execution. Users must use caution when destructively modifying the

resulting object.

If two lists (load-time-value form) are equal but not eq, their values

always come from distinct evaluations of form. Coalescing of these forms is

not permitted.

The optional read-only-p argument designates whether the result may be

considered a read-only constant. If nil (the default), the result must be con-

sidered ordinary, modifiable data. If t, the result is a read-only quantity that

may, as appropriate, be copied into read-only space and may, as appropriate,

be shared with other programs. The read-only-p argument is not evaluated
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and only the literal symbols t and nil are permitted.

This new feature addresses the same set of needs as the now-defunct #--,

reader syntax but in a cleaner and more general manner. Note that #--, syntax

was reliably useful only inside quoted structure (though this was not explicitly

mentioned in the first edition), whereas a load-time-value form must appear
outside quoted structure in a for-evaluation position.

See make-load-form.

[Function]disassemble name-or-compiled-function

The argument should be a function object, a lambda-expression, or a symbol

with a function definition. If the relevant function is not a compiled function,

it is first compiled. In any case, the compiled code is then “reverse-assembled”

and printed out in a symbolic format. This is primarily useful for debugging

the compiler, but also often of use to the novice who wishes to understand
the workings of compiled code.

Implementation note: Implementors are encouraged to make the output readable,
preferably with helpful comments.

X3J13 voted in March 1988 〈65〉 to clarify that when disassemble com-
piles a function, it never installs the resulting compiled-function object in the

symbol-function of a symbol.

X3J13 voted in March 1989 〈89〉 to extend disassemble to accept as a name

any function-name (a symbol or a list whose car is setf—see section 7.1).
Thus one may write (disassemble ’(setf cadr)) to disassemble the setf

expansion function for cadr.

[Function]function-lambda-expression fn

X3J13 voted in January 1989 〈88〉 to add a new function to allow the source
code for a defined function to be recovered. (The committee noted that the

first edition provided no portable way to recover a lambda-expression once it

had been compiled or evaluated to produce a function.)

This function takes one argument, which must be a function, and returns
three values.

The first value is the defining lambda-expression for the function, or nil

if that information is not available. The lambda-expression may have been

preprocessed in some ways but should nevertheless be of a form suitable as an

argument to the function compile or for use in the function special form.
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The second value is nil if the function was definitely produced by closing

a lambda-expression in the null lexical environment; it is some non-nil value

if the function might have been closed in some non-null lexical environment.

The third value is the “name” of the function; this is nil if the name is not

available or if the function had no name. The name is intended for debugging
purposes only and may be any Lisp object (not necessarily one that would be

valid for use as a name in a defun or function special form, for example).

Implementation note: An implementation is always free to return the values
nil, t, nil from this function but is encouraged to make more useful information
available as appropriate. For example, it may not be desirable for files of compiled
code to retain the source lambda-expressions for use after the file is loaded, but it
is probably desirable for functions produced by “in-core” calls to eval, compile, or
defun to retain the defining lambda-expression for debugging purposes. The func-
tion function-lambda-expression makes this information, if retained, accessible in
a standard and portable manner.

[Macro]with-compilation-unit ( {option-name option-value}∗ ) { form}∗

X3J13 voted in March 1989 〈183〉 to add with-compilation-unit, which

executes the body forms as an implicit progn. Within the dynamic context of

this form, warnings deferred by the compiler until “the end of compilation”

will be deferred until the end of the outermost call to with-compilation-

unit. The results are the same as those of the last of the forms (or nil if
there is no form).

Each option-name is an unevaluated keyword; each option-value is evalu-

ated. The set of keywords permitted may be extended by the implementation,

but the only standard option keyword is :override; the default value for this

option is nil. If with-compilation-unit forms are nested dynamically, only
the outermost such call has any effect unless the :override value of an inner

call is true.

The function compile-file should provide the effect of

(with-compilation-unit (:override nil) ...)

around its code.

Any implementation-dependent extensions to this behavior may be pro-

vided only as the result of an explicit programmer request by use of an

implementation-dependent keyword. It is forbidden for an implementation

to attach additional meaning to a conforming use of this macro.
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Note that not all compiler warnings are deferred. In some implementations,

it may be that none are deferred. This macro only creates an interface to the

capability where it exists, it does not require the creation of the capability.

An implementation that does not defer any compiler warnings may correctly

implement this macro as an expansion into a simple progn.

25.1.1. Compiler Diagnostics

X3J13 voted in June 1987 〈27〉 to specify that compile and compile-file

may output warning messages; any such messages should go to the stream

that is the value of *error-output*.

X3J13 voted in June 1989 〈24〉 to specify the use of conditions to signal

various erroneous situations during compilation. First, note that error and
warning conditions may be signaled either by the compiler itself or by code

being processed by the compiler (for example, arbitrary errors may occur dur-

ing compile-time macro expansion or processing of eval-when forms). Con-

sidering only those conditions signaled by the compiler (as opposed to during

compilation):

. Conditions of type error may be signaled by the compiler in situations

where the compilation cannot proceed without intervention. Examples of

such situations may include errors when opening a file or syntax errors.

. Conditions of type warning may be signaled by the compiler in situations

where the standard explicitly states that a warning must, should, or may be
signaled. They may also be signaled when the compiler can determine that

a situation would result at runtime that would have undefined consequences

or would cause an error to be signaled. Examples of such situations may

include violations of type declarations, altering or rebinding a constant
defined with defconstant, calls to built-in Lisp functions with too few or

too many arguments or with malformed keyword argument lists, referring

to a variable declared ignore, or unrecognized declaration specifiers.

. The compiler is permitted to signal diagnostics about matters of program-

ming style as conditions of type style-warning, a subtype of warning.

Although a style-warning condition may be signaled in these situations,
no implementation is required to do so. However, if an implementation does

choose to signal a condition, that condition will be of type style-warning

and will be signaled by a call to the function warn. Examples of such situa-

tions may include redefinition of a function with an incompatible argument

list, calls to functions (other than built-in functions) with too few or too
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many arguments or with malformed keyword argument lists, unreferenced

local variables not declared ignore, or standard declaration specifiers that

are ignored by the particular compiler in question.

Both compile and compile-file are permitted (but not required) to estab-
lish a handler for conditions of type error. Such a handler might, for example,

issue a warning and restart compilation from some implementation-dependent

point in order to let the compilation proceed without manual intervention.

The functions compile and compile-file each return three values. See

the definitions of these functions for descriptions of the first value. The sec-

ond value is nil if no compiler diagnostics were issued, and true otherwise.

The third value is nil if no compiler diagnostics other than style warnings
were issued; a non-nil value indicates that there were “serious” compiler di-

agnostics issued or that other conditions of type error or warning (but not

style-warning) were signaled during compilation.

25.1.2. Compiled Functions

X3J13 voted in June 1989 〈23〉 to impose certain requirements on the functions

produced by the compilation process.

If a function is of type compiled-function, then all macro calls appear-

ing lexically within the function have already been expanded and will not be

expanded again when the function is called. The process of compilation effec-

tively turns every macrolet or symbol-macrolet construct into a progn (or
a locally) with all instances of the local macros in the body fully expanded.

If a function is of type compiled-function, then all load-time-value

forms appearing lexically within the function have already been pre-evaluated

and will not be evaluated again when the function is called.

Implementations are free to classify every function as a compiled-function

provided that all functions satisfy the preceding requirements. Conversely, it

is permissible for a function that is not a compiled-function to satisfy the

preceding requirements.

If one or more functions are defined in a file that is compiled with compile-

file and the compiled file is subsequently loaded by the function load, the

resulting loaded function definitions must be of type compiled-function.

The function compile must produce an object of type compiled-function

as the value that is either returned or stored into the symbol-function of a
symbol argument.

Note that none of these restrictions addresses questions of the compilation

technology or target instruction set. For example, a compiled function does
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not necessarily consist of native machine instructions. These requirements

merely specify the behavior of the type system with respect to certain actions

taken by compile, compile-file, and load.

25.1.3. Compilation Environment

X3J13 voted in June 1989 〈19〉 to specify what information must be available
at compile time for correct compilation and what need not be available until

run time.

The following information must be present in the compile-time environment

for a program to be compiled correctly. This information need not also be
present in the run-time environment.

. In conforming code, macros referenced in the code being compiled must have

been previously defined in the compile-time environment. The compiler

must treat as a function call any form that is a list whose car is a symbol

that does not name a macro or special form. (This implies that setf

methods must also be available at compile time.)

. In conforming code, proclamations for special variables must be made in

the compile-time environment before any bindings of those variables are

processed by the compiler. The compiler must treat any binding of an

undeclared variable as a lexical binding.

The compiler may incorporate the following kinds of information into the

code it produces, if the information is present in the compile-time environment
and is referenced within the code being compiled; however, the compiler is

not required to do so. When compile-time and run-time definitions differ,

it is unspecified which will prevail within the compiled code (unless some

other behavior is explicitly specified below). It is also permissible for an
implementation to signal an error at run time on detecting such a discrepancy.

In all cases, the absence of the information at compile time is not an error,

but its presence may enable the compiler to generate more efficient code.

. The compiler may assume that functions that are defined and declared

inline in the compile-time environment will retain the same definitions at

run time.

. The compiler may assume that, within a named function, a recursive call

to a function of the same name refers to the same function, unless that

function has been declared notinline. (This permits tail-recursive calls of

a function to itself to be compiled as jumps, for example, thereby turning

certain recursive schemas into efficient loops.)
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. In the absence of notinline declarations to the contrary, compile-file

may assume that a call within the file being compiled to a named function

that is defined in that file refers to that function. (This rule permits block

compilation of files.) The behavior of the program is unspecified if functions

are redefined individually at run time.

. The compiler may assume that the signature (or “interface contract”) of all
built-in Common Lisp functions will not change. In addition, the compiler

may treat all built-in Common Lisp functions as if they had been proclaimed

inline.

. The compiler may assume that the signature (or “interface contract”) of

functions with ftype information available will not change.

. The compiler may “wire in” (that is, open-code or inline) the values of sym-

bolic constants that have been defined with defconstant in the compile-
time environment.

. The compiler may assume that any type definition made with defstruct

or deftype in the compile-time environment will retain the same definition

in the run-time environment. It may also assume that a class defined by

defclass in the compile-time environment will be defined in the run-time

environment in such a way as to have the same superclasses and metaclass.
This implies that subtype/supertype relationships of type specifiers will not

change between compile time and run time. (Note that it is not an error

for an unknown type to appear in a declaration at compile time, although

it is reasonable for the compiler to emit a warning in such a case.)

. The compiler may assume that if type declarations are present in the

compile-time environment, the corresponding variables and functions
present in the run-time environment will actually be of those types. If this

assumption is violated, the run-time behavior of the program is undefined.

The compiler must not make any additional assumptions about consistency

between the compile-time and run-time environments. In particular, the com-
piler may not assume that functions that are defined in the compile-time en-

vironment will retain either the same definition or the same signature at run

time, except as described above. Similarly, the compiler may not signal an

error if it sees a call to a function that is not defined at compile time, since
that function may be provided at run time.

X3J13 voted in January 1989 〈20〉 to specify the compile-time side effects

of processing various macro forms.
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Calls to defining macros such as defmacro or defvar appearing within a

file being processed by compile-file normally have compile-time side ef-

fects that affect how subsequent forms in the same file are compiled. A

convenient model for explaining how these side effects happen is that each

defining macro expands into one or more eval-when forms and that compile-
time side effects are caused by calls occurring in the body of an (eval-when

(:compile-toplevel) ...) form.

The affected defining macros and their specific side effects are as follows.

In each case, it is identified what a user must do to ensure that a program

is conforming, and what a compiler must do in order to correctly process a

conforming program.

deftype

The user must ensure that the body of a deftype form is evaluable at compile

time if the type is referenced in subsequent type declarations. The compiler
must ensure that a type specifier defined by deftype is recognized in subse-

quent type declarations. If the expansion of a type specifier is not defined fully

at compile time (perhaps because it expands into an unknown type specifier

or a satisfies of a named function that isn’t defined in the compile-time
environment), an implementation may ignore any references to this type in

declarations and may signal a warning.

defmacro and define-modify-macro

The compiler must store macro definitions at compile time, so that occur-

rences of the macro later on in the file can be expanded correctly. The user

must ensure that the body of the macro is evaluable at compile time if it is
referenced within the file being compiled.

defun

No required compile-time side effects are associated with defun forms. In

particular, defun does not make the function definition available at compile

time. An implementation may choose to store information about the function
for the purposes of compile-time error checking (such as checking the number

of arguments on calls) or to permit later inline expansion of the function.

defvar and defparameter

The compiler must recognize that the variables named by these forms have

been proclaimed special. However, it must not evaluate the initial-value

form or set the variable at compile time.
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defconstant

The compiler must recognize that the symbol names a constant. An imple-
mentation may choose to evaluate the value-form at compile time, load time,

or both. Therefore the user must ensure that the value-form is evaluable at

compile time (regardless of whether or not references to the constant appear

in the file) and that it always evaluates to the same value. (There has been
considerable variance among implementations on this point. The effect of this

specification is to legitimize all of the implementation variants by requiring

care of the user.)

defsetf and define-setf-method

The compiler must make setf methods available so that they may be used to

expand calls to setf later on in the file. Users must ensure that the body of
a call to define-setf-method or the complex form of defsetf is evaluable

at compile time if the corresponding place is referred to in a subsequent setf

in the same file. The compiler must make these setf methods available to

compile-time calls to get-setf-method when its environment argument is a

value received as the &environment parameter of a macro.

defstruct

The compiler must make the structure type name recognized as a valid type

name in subsequent declarations (as described above for deftype) and make

the structure slot accessors known to setf. In addition, the compiler must

save enough information so that further defstruct definitions can include

(with the :include option) a structure type defined earlier in the file being
compiled. The functions that defstruct generates are not defined in the

compile-time environment, although the compiler may save enough informa-

tion about the functions to allow inline expansion of subsequent calls to

these functions. The #--S reader syntax may or may not be available for that
structure type at compile time.

define-condition

The rules are essentially the same as those for defstruct. The compiler must

make the condition type recognizable as a valid type name, and it must be

possible to reference the condition type as the parent-type of another condition

type in a subsequent define-condition form in the file being compiled.

defpackage

All of the actions normally performed by the defpackage macro at load time
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must also be performed at compile time.

Compile-time side effects may cause information about a definition to be

stored in a different manner from information about definitions processed ei-
ther interpretively or by loading a compiled file. In particular, the information

stored by a defining macro at compile time may or may not be available to

the interpreter (either during or after compilation) or during subsequent calls

to compile or compile-file. For example, the following code is not portable

because it assumes that the compiler stores the macro definition of foo where
it is available to the interpreter.

(defmacro foo (x) ‘(car ,x))

(eval-when (:execute :compile-toplevel :load-toplevel)

(print (foo ’(a b c)))) ;Wrong

The goal may be accomplished portably by including the macro definition
within the eval-when form:

(eval-when (eval compile load)

(defmacro foo (x) ‘(car ,x))

(print (foo ’(a b c)))) ;Right

declaim

X3J13 voted in June 1989 〈144〉 to add a new macro declaim for making

proclamations recognizable at compile time. The declaration specifiers in

the declaim form are effectively proclaimed at compile time so as to affect
compilation of subsequent forms. (Note that compiler processing of a call

to proclaim does not have any compile-time side effects, for proclaim is a

function.)

in-package

X3J13 voted in March 1989 〈103〉 to specify that all of the actions normally

performed by the in-package macro at load time must also be performed at

compile time.

X3J13 voted in June 1989 〈13〉 to specify the compile-time side effects of pro-

cessing various CLOS-related macro forms. Top-level calls to the CLOS defin-

ing macros have the following compile-time side effects; any other compile-

time behavior is explicitly left unspecified.
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defclass

The class name may appear in subsequent type declarations and can be used as
a specializer in subsequent defmethod forms. Thus the compile-time behavior

of defclass is similar to that of deftype or defstruct.

defgeneric

The generic function can be referenced in subsequent defmethod forms, but

the compiler does not arrange for the generic function to be callable at compile

time.

defmethod

The compiler does not arrange for the method to be callable at compile time.
If there is a generic function with the same name defined at compile time,

compiling a defmethod form does not add the method to that generic function;

the method is added to the generic function only when the defmethod form

is actually executed.

The error-signaling behavior described in the specification of defmethod in
chapter 28 (if the function isn’t a generic function or if the lambda-list is not

congruent) occurs only when the defining form is executed, not at compile

time.

The forms in eql parameter specializers are evaluated when the defmethod

form is executed. The compiler is permitted to build in knowledge about what

the form in an eql specializer will evaluate to in cases where the ultimate
result can be syntactically inferred without actually evaluating it.

define-method-combination

The method combination can be used in subsequent defgeneric forms.

The body of a define-method-combination form is evaluated no earlier

than when the defining macro is executed and possibly as late as generic

function invocation time. The compiler may attempt to evaluate these forms

at compile time but must not depend on being able to do so.

25.1.4. Similarity of Constants

X3J13 voted in March 1989 〈34〉 to specify what objects can be in compiled

constants and what relationship there must be between a constant passed to

the compiler and the one that is established by compiling it and then loading

its file.
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The key is a definition of an equivalence relationship called “similarity as

constants” between Lisp objects. Code passed through the file compiler and

then loaded must behave as though quoted constants in it are similar in this

sense to quoted constants in the corresponding source code. An object may

be used as a quoted constant processed by compile-file if and only if the
compiler can guarantee that the resulting constant established by loading the

compiled file is “similar as a constant” to the original. Specific requirements

are spelled out below.

Some types of objects, such as streams, are not supported in constants

processed by the file compiler. Such objects may not portably appear as con-
stants in code processed with compile-file. Conforming implementations

are required to handle such objects either by having the compiler or loader

reconstruct an equivalent copy of the object in some implementation-specific

manner or by having the compiler signal an error.

Of the types supported in constants, some are treated as aggregate objects.
For these types, being similar as constants is defined recursively. We say that

an object of such a type has certain “basic attributes”; to be similar as a

constant to another object, the values of the corresponding attributes of the

two objects must also be similar as constants.

A definition of this recursive form has problems with any circular or in-

finitely recursive object such as a list that is an element of itself. We use

the idea of depth-limited comparison and say that two objects are similar as

constants if they are similar at all finite levels. This idea is implicit in the

definitions below, and it applies in all the places where attributes of two ob-
jects are required to be similar as constants. The question of handling circular

constants is the subject of a separate vote by X3J13 (see below).

The following terms are used throughout this section. The term constant

refers to a quoted or self-evaluating constant, not a named constant defined by

defconstant. The term source code is used to refer to the objects constructed
when compile-file calls read (or the equivalent) and to additional objects

constructed by macro expansion during file compilation. The term compiled

code is used to refer to objects constructed by load.

Two objects are similar as a constant if and only if they are both of one of

the types listed below and satisfy the additional requirements listed for that
type.

number

Two numbers are similar as constants if they are of the same type and repre-

sent the same mathematical value.
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character

Two characters are similar as constants if they both represent the same char-
acter. (The intent is that this be compatible with how eql is defined on

characters.)

symbol

X3J13 voted in June 1989 〈22〉 to define similarity as a constant for interned

symbols. A symbol S appearing in the source code is similar as a constant to

a symbol S ′ in the compiled code if their print names are similar as constants

and either of the following conditions holds:

. S is accessible in *package* at compile time and S ′ is accessible in

*package* at load time.

. S ′ is accessible in the package that is similar as a constant to the home

package of symbol S.

The “similar as constants” relationship for interned symbols has nothing to

do with *readtable* or how the function read would parse the characters in

the print name of the symbol.

An uninterned symbol in the source code is similar as a constant to an

uninterned symbol in the compiled code if their print names are similar as

constants.

package

A package in the source code is similar as a constant to a package in the

compiled code if their names are similar as constants. Note that the loader
finds the corresponding package object as if by calling find-package with

the package name as an argument. An error is signaled if no package of that

name exists at load time.

random-state

We say that two random-state objects are functionally equivalent if applying

random to them repeatedly always produces the same pseudo-random numbers

in the same order.

Two random-states are similar as constants if and only if copies of them

made via make-random-state are functionally equivalent. (Note that a con-

stant random-state object cannot be used as the state argument to the func-

tion random because random performs a side effect on that argument.)
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cons

Two conses are similar as constants if the values of their respective car and
cdr attributes are similar as constants.

array

Two arrays are similar as constants if the corresponding values of each of

the following attributes are similar as constants: for vectors (one-dimensional

arrays), the length and element-type and the result of elt for all valid

indices; for all other arrays, the array-rank, the result of array-dimension
for all valid axis numbers, the array-element-type, and the result of aref

for all valid indices. (The point of distinguishing vectors is to take any fill

pointers into account.)

If the array in the source code is a simple-array, then the corresponding

array in the compiled code must also be a simple-array, but if the array
in the source code is displaced, has a fill pointer, or is adjustable, the corre-

sponding array in the compiled code is permitted to lack any or all of these

qualities.

hash-table

Two hash tables are similar as constants if they meet three requirements.
First, they must have the same test (for example, both are eql hash tables

or both are equal hash tables). Second, there must be a unique bijective cor-

respondence between the keys of the two tables, such that the corresponding

keys are similar as constants. Third, for all keys, the values associated with

two corresponding keys must be similar as constants.
If there is more than one possible one-to-one correspondence between the

keys of the two tables, it is unspecified whether the two tables are similar as

constants. A conforming program cannot use such a table as a constant.

pathname

Two pathnames are similar as constants if all corresponding pathname com-

ponents are similar as constants.

stream, readtable, and method

Objects of these types are not supported in compiled constants.

function

X3J13 voted in June 1989 〈35〉 to specify that objects of type function are

not supported in compiled constants.
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structure and standard-object

X3J13 voted in March 1989 〈110〉 to introduce a facility based on the Common

Lisp Object System whereby a user can specify how compile-file and load

must cooperate to reconstruct compile-time constant objects at load time (see

make-load-form).

X3J13 voted in March 1989 〈33〉 to specify the circumstances under which
constants may be coalesced in compiled code.

Suppose A and B are two objects used as quoted constants in the source

code, and that A′ and B ′ are the corresponding objects in the compiled code.

If A′ and B ′ are eql but A and B were not eql, then we say that A and B

have been coalesced by the compiler.

An implementation is permitted to coalesce constants appearing in code to
be compiled if and only if they are similar as constants, except that objects of

type symbol, package, structure, or standard-object obey their own rules

and may not be coalesced by a separate mechanism.

Rationale: Objects of type symbol and package cannot be coalesced because the
fact that they are named, interned objects means they are already as coalesced as it
is useful for them to be. Uninterned symbols could perhaps be coalesced, but that
was thought to be more dangerous than useful. Structures and objects could be
coalesced if a “similar as a constant” predicate were defined for them; it would be a
generic function. However, at present there is no such predicate. Currently make-

load-form provides a protocol by which compile-file and load work together to
construct an object in the compiled code that is equivalent to the object in the
source code; a different mechanism would have to be added to permit coalescing.

Note that coalescing is possible only because it is forbidden to destructively

modify constants 〈36〉 (see quote).
X3J13 voted in March 1989 〈32〉 to specify that objects containing circular

or infinitely recursive references may legitimately appear as constants to be

compiled. The compiler is required to preserve eql-ness of substructures

within a file compiled by compile-file.

25.2. Documentation
........................................................................................................................................................................................................

A simple facility is provided for attaching strings to symbols for the purpose

of on-line documentation. Rather than using the property list of the symbol,

a separate function documentation is provided so that implementations can

optimize the storage of documentation strings.
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[Function]documentation symbol doc-type

This function returns the documentation string of type doc-type for the symbol,

or nil if none exists. Both arguments must be symbols. Some kinds of docu-

mentation are provided automatically by certain Common Lisp constructs if

the user writes an optional documentation string within them:

Construct Documentation Type

defvar variable

defparameter variable

defconstant variable

defun function

defmacro function

defstruct structure

deftype type

defsetf setf
........................................................................................................................................................................................................

In addition, names of special forms may also have function documentation.

(Macros and special forms are not really functions, of course, but it is conve-
nient to group them with functions for documentation purposes.)

setf may be used with documentation to update documentation informa-
tion.

X3J13 voted in June 1988 〈12〉 to make documentation a CLOS generic
function (see chapter 28).

X3J13 voted in March 1989 〈89〉 to extend documentation to accept
any function-name (a symbol or a list whose car is setf—see section 7.1).

Thus one may write (documentation ’(setf cadr) ’function) to deter-

mine whether there is any documentation for a setf expansion function for

cadr.

25.3. Debugging Tools

The utilities described in this section are sufficiently complex and sufficiently

dependent on the host environment that their complete definition is beyond

the scope of this book. However, they are also sufficiently useful to warrant

mention here. It is expected that every implementation will provide some

version of these utilities, however clever or however simple.
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[Macro]trace { function-name}∗
[Macro]untrace { function-name}∗

Invoking trace with one or more function-names (symbols) causes the func-
........................................................................................................................................................................................................

tions named to be traced. Henceforth, whenever such a function is invoked,

information about the call, the arguments passed, and the eventually returned

values, if any, will be printed to the stream that is the value of *trace-

output*. For example:

(trace fft gcd string-upcase)

If a function call is open-coded (possibly as a result of an inline declaration),

then such a call may not produce trace output.

Invoking untrace with one or more function names will cause those func-

tions not to be traced any more.

Tracing an already traced function, or untracing a function not currently

being traced, should produce no harmful effects but may produce a warning

message.

Calling trace with no argument forms will return a list of functions cur-

rently being traced.

Calling untrace with no argument forms will cause all currently traced
functions to be no longer traced.

X3J13 voted in March 1989 〈89〉 to extend trace and untrace to accept any

function-name (a symbol or a list whose car is setf—see section 7.1). Thus
one may write (trace (setf cadr)) to trace the setf expansion function

for cadr.

X3J13 voted in January 1989 〈156〉 to specify that the values returned
by trace and untrace when given argument forms are implementation-

dependent.

trace and untrace may also accept additional implementation-dependent
argument formats. The format of the trace output is implementation-

dependent.

[Macro]step form

This evaluates form and returns what form returns. However, the user is
allowed to interactively “single-step” through the evaluation of form, at least

through those evaluation steps that are performed interpretively. The nature

of the interaction is implementation-dependent. However, implementations

are encouraged to respond to the typing of the character ? by providing help,

including a list of commands.
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X3J13 voted in January 1989 〈166〉 to clarify that step evaluates its argu-

ment form in the current lexical environment (not simply a null environment),

and that calls to step may be compiled, in which case an implementation may

step through only those parts of the evaluation that are interpreted. (In other

words, the form itself is unlikely to be stepped, but if executing it happens to
invoke interpreted code, then that code may be stepped.)

[Macro]time form

This evaluates form and returns what form returns. However, as a side effect,

various timing data and other information are printed to the stream that is the
value of *trace-output*. The nature and format of the printed information

is implementation-dependent. However, implementations are encouraged to

provide such information as elapsed real time, machine run time, storage

management statistics, and so on.

Compatibility note: This facility is inspired by the Interlisp facility of the same
name. Note that the MacLisp/Lisp Machine Lisp function time does something else
entirely, namely return a quantity indicating relative elapsed real time.

X3J13 voted in January 1989 〈166〉 to clarify that time evaluates its argu-

ment form in the current lexical environment (not simply a null environment),

and that calls to time may be compiled.

[Function]describe object
........................................................................................................................................................................................................

describe prints, to the stream in the variable *standard-output*, informa-

tion about the object. Sometimes it will describe something that it finds inside

something else; such recursive descriptions are indented appropriately. For in-

stance, describe of a symbol will exhibit the symbol’s value, its definition,

and each of its properties. describe of a floating-point number will exhibit
its internal representation in a way that is useful for tracking down round-off

errors and the like. The nature and format of the output is implementation-

dependent.

describe returns no values (that is, it returns what the expression
(values) returns: zero values).

X3J13 voted in March 1989 〈63〉 to let describe take an optional second

argument:
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[Function]describe object &optional stream

The output is sent to the specified stream, which defaults to the value

of *standard-output*; the stream may also be nil (meaning *standard-

output*) or t (meaning *terminal-io*).

The behavior of describe depends on the generic function describe-

object (see below).

X3J13 voted in January 1989 〈62〉 to specify that describe is forbidden

to prompt for or require user input when given exactly one argument; it

also voted to permit implementations to extend describe to accept keyword

arguments that may cause it to prompt for or to require user input.

[Generic function]describe-object object stream

[Primary method ]describe-object (object standard-object) stream

X3J13 voted in March 1989 〈63〉 to add the generic function describe-

object, which writes a description of an object to a stream. The function

describe-object is called by the describe function; it should not be called

by the user.

Each implementation must provide a method on the class standard-object

and methods on enough other classes to ensure that there is always an ap-

plicable method. Implementations are free to add methods for other classes.
Users can write methods for describe-object for their own classes if they

do not wish to inherit an implementation-supplied method.

The first argument may be any Lisp object. The second argument is a

stream; it cannot be t or nil. The values returned by describe-object are

unspecified.

Methods on describe-objectmay recursively call describe. Indentation,

depth limits, and circularity detection are all taken care of automatically,

provided that each method handles exactly one level of structure and calls

describe recursively if there are more structural levels. If this rule is not
obeyed, the results are undefined.

In some implementations the stream argument passed to a describe-

object method is not the original stream but is an intermediate stream that

implements parts of describe. Methods should therefore not depend on the

identity of this stream.

Rationale: This proposal was closely modeled on the CLOS description of print-
object, which was well thought out and provides a great deal of functionality and
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implementation freedom. Implementation techniques for print-object are applica-
ble to describe-object.

The reason for making the return values for describe-object unspecified is to
avoid forcing users to write (values) explicitly in all their methods; describe should
take care of that.

[Function]inspect object

inspect is an interactive version of describe. The nature of the interaction
is implementation-dependent, but the purpose of inspect is to make it easy

to wander through a data structure, examining and modifying parts of it.

Implementations are encouraged to respond to the typing of the character ?

by providing help, including a list of commands.

X3J13 voted in January 1989 〈156〉 to specify that the values returned by
inspect are implementation-dependent.

[Function]room &optional x

room prints, to the stream in the variable *standard-output*, information

about the state of internal storage and its management. This might include
descriptions of the amount of memory in use and the degree of memory com-

paction, possibly broken down by internal data type if that is appropriate. The

nature and format of the printed information is implementation-dependent.

The intent is to provide information that may help a user to tune a program

to a particular implementation.

(room nil) prints out a minimal amount of information. (room t) prints
out a maximal amount of information. Simply (room) prints out an interme-

diate amount of information that is likely to be useful.

X3J13 voted in January 1989 〈157〉 to specify that the argument x may also

be the keyword :default, which has the same effect as passing no argument

at all.

[Function]ed &optional x

If the implementation provides a resident editor, this function should invoke

it.

(ed) or (ed nil) simply enters the editor, leaving you in the same state

as the last time you were in the editor.

(ed pathname) edits the contents of the file specified by pathname. The

pathname may be an actual pathname or a string.
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X3J13 voted in June 1989 〈130〉 to require ed to accept logical pathnames

(see section 23.1.5).

(ed symbol) tries to let you edit the text for the function named sym-

bol. The means by which the function text is obtained is implementation-

dependent; it might involve searching the file system, or pretty printing resi-

dent interpreted code, for example.

X3J13 voted in March 1989 〈89〉 to extend compile to accept as a name
any function-name (a symbol or a list whose car is setf—see section 7.1).

Thus one may write (ed ’(setf cadr)) to edit the setf expansion function

for cadr.

[Function]dribble &optional pathname

(dribble pathname) may rebind *standard-input* and *standard-

output*, and may take other appropriate action, so as to send a record of the

input/output interaction to a file named by pathname. The primary purpose

of this is to create a readable record of an interactive session.

(dribble) terminates the recording of input and output and closes the

dribble file.

X3J13 voted in June 1989 〈130〉 to require dribble to accept logical path-
names (see section 23.1.5).

X3J13 voted in March 1988 〈68〉 to clarify that dribble is intended pri-

marily for interactive debugging and that its effect cannot be relied upon for

use in portable programs.

Different implementations of Common Lisp have used radically different

techniques for implementing dribble. All are reasonable interpretations of

the original specification, and all behave in approximately the same way if
dribble is called only from the interactive top level. However, they may have

quite different behaviors if dribble is called from within compound forms.

Consider two models of the operation of dribble. In the “redirecting”

model, a call to dribble with a pathname argument alters certain global

variables such as *standard-output*, perhaps by constructing a broadcast

stream directed to both the original value of *standard-output* and to the
dribble file; other streams may be affected as well. A call to dribble with no

arguments undoes these side effects.

In the “recursive” model, by contrast, a call to dribble with a pathname

argument creates a new interactive command loop and calls it recursively.

This new command loop is just like an ordinary read-eval-print loop except

that it also echoes the interaction to the dribble file. A call to dribble with
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no arguments does a throw that exits the recursive command loop and returns

to the original caller of dribble with an argument.

The two models may be distinguished by this test case:

(progn (dribble "basketball")

(print "Larry")

(dribble)

(princ "Bird"))

If this form is input to the Lisp top level, in either model a newline (provided
by the function print) and the words Larry Bird will be printed to the

standard output. The redirecting dribble model will additionally print all but

the word Bird to a file named basketball.

By contrast, the recursive dribble model will enter a recursive command

loop and not print anything until (dribble) is executed from within the new
interactive command loop. At that time the file named basketball will be

closed, and then execution of the progn form will be resumed. A newline and

“Larry ” (note the trailing space) will be printed to the standard output,

and then the call (dribble) may complain that there is no active dribble file.
Once this error is resolved, the word Bird may be printed to the standard

output.

Here is a slightly different test case:

(dribble "baby-food")

(progn (print "Mashed banana")

(dribble)

(princ "and cream of rice"))

If this form is input to the Lisp top level, in the redirecting model a newline

and the words Mashed banana and cream of rice will be printed to the

standard output and all but the words and cream of rice will be sent to a
file named baby-food.

The recursive model will direct exactly the same output to the file named

baby-food but will never print the words and cream of rice to the standard

output because the call (dribble) does not return normally; it throws.

The redirecting model may be intuitively more appealing to some. The

recursive model, however, may be more robust; it carefully limits the extent

of the dribble operation and disables dribbling if a throw of any kind occurs.

The vote by X3J13 was an explicit decision not to decide which model to use.

Users are advised to call dribble only interactively, at top level.
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[Function]apropos string &optional package

[Function]apropos-list string &optional package

(apropos string) tries to find all available symbols whose print names contain

string as a substring. (A symbol may be supplied for the string, in which case

the print name of the symbol is used.) Whenever apropos finds a symbol,
it prints out the symbol’s name; in addition, information about the function

definition and dynamic value of the symbol, if any, is printed. If package

is specified and not nil, then only symbols available in that package are

examined; otherwise “all” packages are searched, as if by do-all-symbols.

Because a symbol may be available by way of more than one inheritance path,
apropos may print information about the same symbol more than once. The

information is printed to the stream that is the value of *standard-output*.

apropos returns no values (that is, it returns what the expression (values)

returns: zero values).

apropos-list performs the same search that apropos does but prints noth-

ing. It returns a list of the symbols whose print names contain string as a
substring.

25.4. Environment Inquiries

Environment inquiry functions provide information about the environment in
which a Common Lisp program is being executed. They are described here

in two categories: first, those dealing with determination and measurement of

time, and second, all the others, most of which deal with identification of the

computer hardware and software.

25.4.1. Time Functions

Time is represented in three different ways in Common Lisp: Decoded Time,

Universal Time, and Internal Time. The first two representations are used

primarily to represent calendar time and are precise only to one second. Inter-
nal Time is used primarily to represent measurements of computer time (such

as run time) and is precise to some implementation-dependent fraction of a

second, as specified by internal-time-units-per-second. Decoded Time

format is used only for absolute time indications. Universal Time and Internal

Time formats are used for both absolute and relative times.

Decoded Time format represents calendar time as a number of components:

. Second: an integer between 0 and 59, inclusive.
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. Minute: an integer between 0 and 59, inclusive.

. Hour: an integer between 0 and 23, inclusive.

. Date: an integer between 1 and 31, inclusive (the upper limit actually

depends on the month and year, of course).

. Month: an integer between 1 and 12, inclusive; 1 means January, 12 means

December.

. Year: an integer indicating the year A.D. However, if this integer is between
0 and 99, the “obvious” year is used; more precisely, that year is assumed

that is equal to the integer modulo 100 and within fifty years of the current

year (inclusive backwards and exclusive forwards). Thus, in the year 1978,

year 28 is 1928 but year 27 is 2027. (Functions that return time in this
format always return a full year number.)

Compatibility note: This is incompatible with the Lisp Machine Lisp definition
in two ways. First, in Lisp Machine Lisp a year between 0 and 99 always has 1900
added to it. Second, in Lisp Machine Lisp time functions return the abbreviated year
number between 0 and 99 rather than the full year number. The incompatibility
is prompted by the imminent arrival of the twenty-first century. Note that (mod

year 100) always reliably converts a year number to the abbreviated form, while
the inverse conversion can be very difficult.

. Day-of-week: an integer between 0 and 6, inclusive; 0 means Monday, 1

means Tuesday, and so on; 6 means Sunday.

. Daylight-saving-time-p: a flag that, if not nil, indicates that daylight saving
time is in effect.

. Time-zone: an integer specified as the number of hours west of GMT

(Greenwich Mean Time). For example, in Massachusetts the time zone

is 5, and in California it is 8. Any adjustment for daylight saving time is

separate from this.

X3J13 voted in March 1989 〈178〉 to specify that the time zone part of
Decoded Time need not be an integer, but may be any rational number (either

an integer or a ratio) in the range -24 to 24 (inclusive on both ends) that is

an integral multiple of 1/3600.

Rationale: For all possible time designations to be accommodated, it is necessary
to allow the time zone to be non-integral, for some places in the world have time
standards offset from Greenwich Mean Time by a non-integral number of hours.
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There appears to be no user demand for floating-point time zones. Since such
zones would introduce inexact arithmetic, X3J13 did not consider adding them at
this time.

This specification does require time zones to be represented as integral multiples
of 1 second (rather than 1 hour). This prevents problems that could otherwise occur
in converting Decoded Time to Universal Time.

Universal Time represents time as a single non-negative integer. For relative
time purposes, this is a number of seconds. For absolute time, this is the

number of seconds since midnight, January 1, 1900 GMT. Thus the time

1 is 00:00:01 (that is, 12:00:01 A.M.) on January 1, 1900 GMT. Similarly,

the time 2398291201 corresponds to time 00:00:01 on January 1, 1976 GMT.

Recall that the year 1900 was not a leap year; for the purposes of Common
Lisp, a year is a leap year if and only if its number is divisible by 4, except that

years divisible by 100 are not leap years, except that years divisible by 400 are

leap years. Therefore the year 2000 will be a leap year. (Note that the “leap

seconds” that are sporadically inserted by the world’s official timekeepers as
an additional correction are ignored; Common Lisp assumes that every day

is exactly 86400 seconds long.) Universal Time format is used as a standard

time representation within the ARPANET; see reference [22]. Because the

Common Lisp Universal Time representation uses only non-negative integers,

times before the base time of midnight, January 1, 1900 GMT cannot be
processed by Common Lisp.

Internal Time also represents time as a single integer, but in terms of an

implementation-dependent unit. Relative time is measured as a number of

these units. Absolute time is relative to an arbitrary time base, typically the

time at which the system began running.

[Function]get-decoded-time

The current time is returned in Decoded Time format. Nine values are re-

turned: second, minute, hour, date, month, year, day-of-week, daylight-saving-
time-p, and time-zone.

Compatibility note: In Lisp Machine Lisp time-zone is not currently returned.
Consider, however, the use of Common Lisp in some mobile vehicle. It is entirely
plausible that the time zone might change from time to time.
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[Function]get-universal-time

The current time of day is returned as a single integer in Universal Time

format.

[Function]decode-universal-time universal-time &optional time-zone

The time specified by universal-time in Universal Time format is converted to
Decoded Time format. Nine values are returned: second, minute, hour, date,

month, year, day-of-week, daylight-saving-time-p, and time-zone.

Compatibility note: In Lisp Machine Lisp time-zone is not currently returned.
Consider, however, the use of Common Lisp in some mobile vehicle. It is entirely
plausible that the time zone might change from time to time.

The time-zone argument defaults to the current time zone.

X3J13 voted in January 1989 〈47〉 to specify that decode-universal-time,
like encode-universal-time, ignores daylight saving time information if a

time-zone is explicitly specified; in this case the returned daylight-saving-time-

p value will necessarily be nil even if daylight saving time happens to be in

effect in that time zone at the specified time.

[Function]encode-universal-time second minute hour date month

year &optional time-zone

The time specified by the given components of Decoded Time format is en-

coded into Universal Time format and returned. If you do not specify time-

zone, it defaults to the current time zone adjusted for daylight saving time.

If you provide time-zone explicitly, no adjustment for daylight saving time is
performed.

[Constant ]internal-time-units-per-second

This value is an integer, the implementation-dependent number of internal

time units in a second. (The internal time unit must be chosen so that one

second is an integral multiple of it.)

Rationale: The reason for allowing the internal time units to be implementation-
dependent is so that get-internal-run-time and get-internal-real-time can
execute with minimum overhead. The idea is that it should be very likely that a
fixnum will suffice as the returned value from these functions. This probability can
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be tuned to the implementation by trading off the speed of the machine against the
word size. Any particular unit will be inappropriate for some implementations: a
microsecond is too long for a very fast machine, while a much smaller unit would
force many implementations to return bignums for most calls to get-internal-time,
rendering that function less useful for accurate timing measurements.

[Function]get-internal-run-time

The current run time is returned as a single integer in Internal Time format.

The precise meaning of this quantity is implementation-dependent; it may

measure real time, run time, CPU cycles, or some other quantity. The intent
is that the difference between the values of two calls to this function be the

amount of time between the two calls during which computational effort was

expended on behalf of the executing program.

[Function]get-internal-real-time

The current time is returned as a single integer in Internal Time format. This

time is relative to an arbitrary time base, but the difference between the values
of two calls to this function will be the amount of elapsed real time between

the two calls, measured in the units defined by internal-time-units-per-

second.

[Function]sleep seconds

(sleep n) causes execution to cease and become dormant for approximately
n seconds of real time, whereupon execution is resumed. The argument may

be any non-negative non-complex number. sleep returns nil.

25.4.2. Other Environment Inquiries

For any of the following functions, if no appropriate and relevant result can

be produced, nil is returned instead of a string.

Rationale: These inquiry facilities are functions rather than variables against the
possibility that a Common Lisp process might migrate from machine to machine.
This need not happen in a distributed environment; consider, for example, dumping
a core image file containing a compiler and then shipping it to another site.
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[Function]lisp-implementation-type

A string is returned that identifies the generic name of the particular Common

Lisp implementation. Examples: "Spice LISP", "Zetalisp".

[Function]lisp-implementation-version

A string is returned that identifies the version of the particular Common Lisp

implementation; this information should be of use to maintainers of the imple-
mentation. Examples: "1192", "53.7 with complex numbers", "1746.9A,

NEWIO 53, ETHER 5.3".

[Function]machine-type

A string is returned that identifies the generic name of the computer hardware

on which Common Lisp is running. Examples: "IMLAC", "DEC PDP-10", "DEC

VAX-11/780".

[Function]machine-version

A string is returned that identifies the version of the computer hardware on

which Common Lisp is running. Example: "KL10, microcode 9".

[Function]machine-instance

A string is returned that identifies the particular instance of the computer

hardware on which Common Lisp is running; this might be a local nickname,

for example, or a serial number. Examples: "MIT-MC", "CMU GP-VAX".

[Function]software-type

A string is returned that identifies the generic name of any relevant supporting

software. Examples: "Spice", "TOPS-20", "ITS".

[Function]software-version

A string is returned that identifies the version of any relevant supporting soft-

ware; this information should be of use to maintainers of the implementation.
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[Function]short-site-name

[Function]long-site-name

A string is returned that identifies the physical location of the computer hard-

ware. Examples of short names: "MIT AI Lab", "CMU-CSD". Examples of long
names:

"MIT Artificial Intelligence Laboratory"

"Massachusetts Institute of Technology

Artificial Intelligence Laboratory"

"Carnegie-Mellon University Computer Science Department"

See also user-homedir-pathname.

[Variable]*features*

The value of the variable *features* should be a list of symbols that

name “features” provided by the implementation. Most such names will be

implementation-specific; typically a name for the implementation will be in-

cluded.
One standard feature name is ieee-floating-point, which should be

........................................................................................................................................................................................................

present if and only if full IEEE proposed floating-point arithmetic [23] is

supported.

The value of this variable is used by the #--+ and #--- reader syntax.

X3J13 voted in March 1988 〈163〉 to specify that feature names used with #--+

and #--- are read in the keyword package unless an explicit prefix designating

some other package appears. The standard feature name ieee-floating-

point is therefore actually the keyword :ieee-floating-point, though one

need not write the colon when using it with #--+ or #---; thus #--+ieee-floating-
point and #--+:ieee-floating-point mean the same thing.

25.5. Identity Function

This function is occasionally useful as an argument to other functions that

require functions as arguments. (Got that?)

[Function]identity object

The object is returned as the value of identity.

The identity function is the default value for the :key argument to many

sequence functions (see chapter 14).
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Table 12-1 illustrates the behavior in the complex plane of the identity

function regarded as a function of a complex numerical argument.

Many other constructs in Common Lisp have the behavior of identity

when given a single argument. For example, one might well use values in

place of identity. However, writing values of a single argument convention-
ally indicates that the argument form might deliver multiple values and that

the intent is to pass on only the first of those values.

Compatibility note: In Maclisp, progn was a function of any number of arguments
that returned its last argument, so progn could be used as an identity function. In
Common Lisp, progn is a special form and therefore cannot be used for that purpose.
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Loop

BY JON L WHITE

preface: X3J13 voted in January 1989 〈115〉 to adopt an extended def-
inition of the loop macro as a part of the forthcoming draft Common Lisp

standard.

This chapter presents the bulk of the Common Lisp Loop Facility proposal,

written by Jon L White. I have edited it only very lightly to conform to

the overall style of this book and have inserted a small number of bracketed
remarks, identified by the initials GLS. (See the Acknowledgments to this

second edition for acknowledgments to others who contributed to the Loop

Facility proposal.)

—Guy L. Steele Jr.

26.1. Introduction

A loop is a series of expressions that are executed one or more times, a process

known as iteration. The Loop Facility defines a variety of useful methods,

indicated by loop keywords, to iterate and to accumulate values in a loop.

Loop keywords are not true Common Lisp keywords; they are symbols

that are recognized by the Loop Facility and that provide such capabilities
as controlling the direction of iteration, accumulating values inside the body

of a loop, and evaluating expressions that precede or follow the loop body. If

you do not use any loop keywords, the Loop Facility simply executes the loop

body repeatedly.

26.2. How the Loop Facility Works

The driving element of the Loop Facility is the loop macro. When Lisp

encounters a loop macro call form, it invokes the Loop Facility and passes to

it the loop clauses as a list of unevaluated forms, as with any macro. The loop

767
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clauses contain Common Lisp forms and loop keywords. The loop keywords

are recognized by their symbol name, regardless of the packages that contain

them. The loop macro translates the given form into Common Lisp code and

returns the expanded form.

The expanded loop form is one or more lambda-expressions for the local

binding of loop variables and a block and a tagbody that express a looping

control structure. The variables established in the loop construct are bound

as if by using let or lambda. Implementations can interleave the setting of
initial values with the bindings. However, the assignment of the initial values

is always calculated in the order specified by the user. A variable is thus

sometimes bound to a harmless value of the correct data type, and then later

in the prologue it is set to the true initial value by using setq.

The expanded form consists of three basic parts in the tagbody:

. The loop prologue contains forms that are executed before iteration begins,

such as initial settings of loop variables and possibly an initial termination

test.

. The loop body contains those forms that are executed during iteration,

including application-specific calculations, termination tests, and variable

stepping. Stepping is the process of assigning a variable the next item in a
series of items.

. The loop epilogue contains forms that are executed after iteration termi-
nates, such as code to return values from the loop.

Expansion of the loop macro produces an implicit block (named nil).

Thus, the Common Lisp macro return and the special form return-from

can be used to return values from a loop or to exit a loop.

Within the executable parts of loop clauses and around the entire loop form,

you can still bind variables by using the Common Lisp special form let.

26.3. Parsing Loop Clauses

The syntactic parts of a loop construct are called clauses; the scope of each

clause is determined by the top-level parsing of that clause’s keyword. The

following example shows a loop construct with six clauses:
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(loop for i from 1 to (compute-top-value) ;First clause

while (not (unacceptable i)) ;Second clause

collect (square i) ;Third clause

do (format t "Working on ~D now" i) ;Fourth clause

when (evenp i) ;Fifth clause
do (format t "~D is a non-odd number" i)

finally (format t "About to exit!")) ;Sixth clause

Each loop keyword introduces either a compound loop clause or a simple

loop clause that can consist of a loop keyword followed by a single Lisp form.

The number of forms in a clause is determined by the loop keyword that
begins the clause and by the auxiliary keywords in the clause. The keywords

do, initially, and finally are the only loop keywords that can take any

number of Lisp forms and group them as if in a single progn form.

Loop clauses can contain auxiliary keywords, which are sometimes called

prepositions. For example, the first clause in the preceding code includes the

prepositions from and to, which mark the value from which stepping begins

and the value at which stepping ends.

26.3.1. Order of Execution

With the exceptions listed below, clauses are executed in the loop body in
the order in which they appear in the source. Execution is repeated until

a clause terminates the loop or until a Common Lisp return, go, or throw

form is encountered. The following actions are exceptions to the linear order

of execution:

. All variables are initialized first, regardless of where the establishing clauses

appear in the source. The order of initialization follows the order of these

clauses.

. The code for any initially clauses is collected into one progn in the order

in which the clauses appear in the source. The collected code is executed

once in the loop prologue after any implicit variable initializations.

. The code for any finally clauses is collected into one progn in the order

in which the clauses appear in the source. The collected code is executed

once in the loop epilogue before any implicit values from the accumulation

clauses are returned. Explicit returns anywhere in the source, however, will

exit the loop without executing the epilogue code.
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. A with clause introduces a variable binding and an optional initial value.

The initial values are calculated in the order in which the with clauses

occur.

. Iteration control clauses implicitly perform the following actions:

– initializing variables

– stepping variables, generally between each execution of the loop body

– performing termination tests, generally just before the execution of the
loop body

26.3.2. Kinds of Loop Clauses

Loop clauses fall into one of the following categories:

. variable initialization and stepping

– The for and as constructs provide iteration control clauses that establish

a variable to be initialized. You can combine for and as clauses with the
loop keyword and to get parallel initialization and stepping.

– The with construct is similar to a single let clause. You can combine

with clauses using and to get parallel initialization.

– The repeat construct causes iteration to terminate after a specified num-

ber of times. It uses an internal variable to keep track of the number of
iterations.

You can specify data types for loop variables (see section 26.12.1). It is

an error to bind the same variable twice in any variable-binding clause of
a single loop expression. Such variables include local variables, iteration

control variables, and variables found by destructuring.

. value accumulation

– The collect construct takes one form in its clause and adds the value

of that form to the end of a list of values. By default, the list of values is

returned when the loop finishes.

– The append construct takes one form in its clause and appends the value

of that form to the end of a list of values. By default, the list of values is

returned when the loop finishes.
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– The nconc construct is similar to append, but its list values are concate-

nated as if by the Common Lisp function nconc. By default, the list of

values is returned when the loop finishes.

– The sum construct takes one form in its clause that must evaluate to
a number and adds that number into a running total. By default, the

cumulative sum is returned when the loop finishes.

– The count construct takes one form in its clause and counts the number
of times that the form evaluates to a non-nil value. By default, the

count is returned when the loop finishes.

– The minimize construct takes one form in its clause and determines

the minimum value obtained by evaluating that form. By default, the
minimum value is returned when the loop finishes.

– The maximize construct takes one form in its clause and determines

the maximum value obtained by evaluating that form. By default, the

maximum value is returned when the loop finishes.

. termination conditions

– The loop-finish Lisp macro terminates iteration and returns any accu-
mulated result. If specified, any finally clauses are evaluated.

– The for and as constructs provide a termination test that is determined

by the iteration control clause.

– The repeat construct causes termination after a specified number of

iterations.

– The while construct takes one form, a condition, and terminates the

iteration if the condition evaluates to nil. A while clause is equivalent
to the expression (if (not condition) (loop-finish)).

– The until construct is the inverse of while; it terminates the iteration

if the condition evaluates to any non-nil value. An until clause is
equivalent to the expression (if condition (loop-finish)).

– The always construct takes one form and terminates the loop if the form

ever evaluates to nil; in this case, it returns nil. Otherwise, it provides

a default return value of t.
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– The never construct takes one form and terminates the loop if the form

ever evaluates to non-nil; in this case, it returns nil. Otherwise, it

provides a default return value of t.

– The thereis construct takes one form and terminates the loop if the

form ever evaluates to non-nil; in this case, it returns that value.

. unconditional execution

– The do construct simply evaluates all forms in its clause.

– The return construct takes one form and returns its value. It is equiva-

lent to the clause do (return value).

. conditional execution

– The if construct takes one form as a predicate and a clause that is

executed when the predicate is true. The clause can be a value accumu-

lation, unconditional, or another conditional clause; it can also be any
combination of such clauses connected by the loop keyword and.

– The when construct is a synonym for if.

– The unless construct is similar to when except that it complements the

predicate; it executes the following clause if the predicate is false.

– The else construct provides an optional component of if, when, and

unless clauses that is executed when the predicate is false. The compo-

nent is one of the clauses described under if.

– The end construct provides an optional component to mark the end of a

conditional clause.

. miscellaneous operations

– The named construct assigns a name to a loop construct.

– The initially construct causes its forms to be evaluated in the loop

prologue, which precedes all loop code except for initial settings specified
by the constructs with, for, or as.

– The finally construct causes its forms to be evaluated in the loop epi-
logue after normal iteration terminates. An unconditional clause can also

follow the loop keyword finally.
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26.3.3. Loop Syntax

The following syntax description provides an overview of the syntax for loop

clauses. Detailed syntax descriptions of individual clauses appear in sec-
tions 26.6 through 26.12. A loop consists of the following types of clauses:

initial-final ::= initially | finally

variables ::= with | initial-final | for-as | repeat

main ::= unconditional | accumulation | conditional | termination | initial-final

loop ::= (loop [named name] {variables}∗ {main}∗ )

Note that a loop must have at least one clause; however, for backward
compatibility, the following format is also supported:

(loop {tag | expr}∗ )

where expr is any Common Lisp expression that can be evaluated, and tag

is any symbol not identifiable as a loop keyword. Such a format is roughly

equivalent to the following one:

(loop do {tag | expr}∗ )

A loop prologue consists of any automatic variable initializations prescribed
by the variable clauses, along with any initially clauses in the order they

appear in the source.

A loop epilogue consists of finally clauses, if any, along with any implicit

return value from an accumulation clause or an end-test clause.

26.4. User Extensibility

There is currently no specified portable method for users to add extensions to
the Loop Facility. The names defloop and define-loop-method have been

suggested as candidates for such a method.

26.5. Loop Constructs

The remaining sections of this chapter describe the constructs that the Loop

Facility provides. The descriptions are organized according to the function-

ality of the constructs. Each section begins with a general discussion of a

particular operation; it then presents the constructs that perform the opera-

tion.
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. Section 26.6, “Iteration Control,” describes iteration control clauses that

allow directed loop iteration.

. Section 26.7, “End-Test Control,” describes clauses that stop iteration by

providing a conditional expression that can be tested after each execution

of the loop body.

. Section 26.8, “Value Accumulation,” describes constructs that accumulate

values during iteration and return them from a loop. This section also

discusses ways in which accumulation clauses can be combined within the

Loop Facility.

. Section 26.9, “Variable Initializations,” describes the with construct, which

provides local variables for use within the loop body, and other constructs

that provide local variables.

. Section 26.10, “Conditional Execution,” describes how to execute loop
clauses conditionally.

. Section 26.11, “Unconditional Execution,” describes the do and return

constructs. It also describes constructs that are used in the loop prologue

and loop epilogue.

. Section 26.12, “Miscellaneous Features,” discusses loop data types and de-

structuring. It also presents constructs for naming a loop and for specifying

initial and final actions.

26.6. Iteration Control

Iteration control clauses allow you to direct loop iteration. The loop keywords

as, for, and repeat designate iteration control clauses.

Iteration control clauses differ with respect to the specification of termina-

tion conditions and the initialization and stepping of loop variables. Iteration

clauses by themselves do not cause the Loop Facility to return values, but

they can be used in conjunction with value-accumulation clauses to return

values (see section 26.8).

All variables are initialized in the loop prologue. The scope of the vari-

able binding is lexical unless it is proclaimed special; thus, the variable can

be accessed only by expressions that lie textually within the loop. Stepping

assignments are made in the loop body before any other expressions are eval-

uated in the body.
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The variable argument in iteration control clauses can be a destructuring

list. A destructuring list is a tree whose non-null atoms are symbols that can

be assigned a value (see section 26.12.2).

The iteration control clauses for, as, and repeat must precede any other

loop clauses except initially, with, and named, since they establish variable

bindings. When iteration control clauses are used in a loop, termination tests
in the loop body are evaluated before any other loop body code is executed.

If you use multiple iteration clauses to control iteration, variable initializa-
tion and stepping occur sequentially by default. You can use the and construct

to connect two or more iteration clauses when sequential binding and stepping

are not necessary. The iteration behavior of clauses joined by and is analogous

to the behavior of the Common Lisp macro do relative to do*.

[X3J13 voted in March 1989 〈114〉 to correct a minor inconsistency in the

original syntactic specification for loop. Only for and as clauses (not repeat
clauses) may be joined by the and construct. The precise syntax is as follows.

for-as ::= {for | as} for-as-subclause {and for-as-subclause}∗
for-as-subclause ::= for-as-arithmetic | for-as-in-list

| for-as-on-list | for-as-equals-then
| for-as-across | for-as-hash | for-as-package

for-as-arithmetic ::= var [type-spec] [ {from | downfrom | upfrom} expr1 ]

[ {to | downto | upto | below | above} expr2 ]

[by expr3 ]
for-as-in-list ::= var [type-spec] in expr1 [by step-fun]

for-as-on-list ::= var [type-spec] on expr1 [by step-fun]

for-as-equals-then ::= var [type-spec] UU expr1 [then step-fun]

for-as-across ::= var [type-spec] across vector

for-as-hash ::= var [type-spec] being {each | the}
{hash-key | hash-keys | hash-value | hash-values}
{in | of} hash-table

[using ( {hash-value | hash-key} other-var)]

for-as-package ::= var [type-spec] being {each | the}
for-as-package-keyword

{in | of} package

for-as-package-keyword ::= symbol | present-symbol | external-symbol
| symbols | present-symbols | external-symbols

This correction made for and as clauses syntactically similar to with clauses.

I have changed all examples in this chapter to reflect the corrected syntax.—

GLS]
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In the following example, the variable x is stepped before y is stepped; thus,

the value of y reflects the updated value of x:

(loop for x from 1 to 9

for y UU nil then x

collect (list x y))

⇒ ((1 NIL) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9))

In the following example, x and y are stepped in parallel:

(loop for x from 1 to 9

and y UU nil then x

collect (list x y))

⇒ ((1 NIL) (2 1) (3 2) (4 3) (5 4) (6 5) (7 6) (8 7) (9 8))

The for and as clauses iterate by using one or more local loop variables that

are initialized to some value and that can be modified or stepped after each

iteration. For these clauses, iteration terminates when a local variable reaches
some specified value or when some other loop clause terminates iteration. At

each iteration, variables can be stepped by an increment or a decrement or

can be assigned a new value by the evaluation of an expression. Destructuring

can be used to assign initial values to variables during iteration.

The for and as keywords are synonyms and may be used interchange-

ably. There are seven syntactic representations for these constructs. In each

syntactic description, the data type of var can be specified by the optional

type-spec argument. If var is a destructuring list, the data type specified by

the type-spec argument must appropriately match the elements of the list (see
sections 26.12.1 and 26.12.2).

[Loop clause]for var [type-spec] [ {from | downfrom | upfrom} expr1]

[ {to | downto | upto | below | above} expr2]
[by expr3]

[Loop clause]as var [type-spec] [ {from | downfrom | upfrom} expr1]

[ {to | downto | upto | below | above} expr2]

[by expr3]

[This is the first of seven for/as syntaxes.—GLS]

The for or as construct iterates from the value specified by expr1 to the

value specified by expr2 in increments or decrements denoted by expr3. Each

expression is evaluated only once and must evaluate to a number.
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The variable var is bound to the value of expr1 in the first iteration and is

stepped by the value of expr3 in each succeeding iteration, or by 1 if expr3 is

not provided.

The following loop keywords serve as valid prepositions within this syntax.

from

The loop keyword from marks the value from which stepping begins, as spec-

ified by expr1. Stepping is incremental by default. For decremental stepping,

use above or downto with expr2. For incremental stepping, the default from

value is 0.

downfrom, upfrom

The loop keyword downfrom indicates that the variable var is decreased in

decrements specified by expr3; the loop keyword upfrom indicates that var is

increased in increments specified by expr3.

to

The loop keyword to marks the end value for stepping specified in expr2.

Stepping is incremental by default. For decremental stepping, use downto,

downfrom, or above with expr2.

downto, upto

The loop keyword downto allows iteration to proceed from a larger number

to a smaller number by the decrement expr3. The loop keyword upto allows

iteration to proceed from a smaller number to a larger number by the incre-

ment expr3. Since there is no default for expr1 in decremental stepping, you
must supply a value with downto.

below, above

The loop keywords below and above are analogous to upto and downto, re-

spectively. These keywords stop iteration just before the value of the variable
var reaches the value specified by expr2 ; the end value of expr2 is not in-

cluded. Since there is no default for expr1 in decremental stepping, you must

supply a value with above.

by

The loop keyword by marks the increment or decrement specified by expr3.

The value of expr3 can be any positive number. The default value is 1.

At least one of these prepositions must be used with this syntax.
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In an iteration control clause, the for or as construct causes termination

when the specified limit is reached. That is, iteration continues until the value

var is stepped to the exclusive or inclusive limit specified by expr2 . The range

is exclusive if expr3 increases or decreases var to the value of expr2 without

reaching that value; the loop keywords below and above provide exclusive
limits. An inclusive limit allows var to attain the value of expr2; to, downto,

and upto provide inclusive limits.

A common convention is to use for to introduce new iterations and as to
introduce iterations that depend on a previous iteration specification. [How-

ever, loop does not enforce this convention, and some of the examples below

violate it. De gustibus non disputandum est.—GLS]

Examples:

;;; Print some numbers.

(loop as i from 1 to 5

do (print i)) ;Prints 5 lines

1

2

3

4

5

⇒ NIL

;;; Print every third number.

(loop for i from 10 downto 1 by 3

do (print i)) ;Prints 4 lines
10

7

4

1

⇒ NIL

;;; Step incrementally from the default starting value.

(loop as i below 5

do (print i)) ;Prints 5 lines
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0

1

2

3

4

⇒ NIL

[Loop clause]for var [type-spec] in expr1 [by step-fun]

[Loop clause]as var [type-spec] in expr1 [by step-fun]

[This is the second of seven for/as syntaxes.—GLS]

This construct iterates over the contents of a list. It checks for the end of

the list as if using the Common Lisp function endp. The variable var is bound

to the successive elements of the list expr1 before each iteration. At the end
of each iteration, the function step-fun is called on the list and is expected to

produce a successor list; the default value for step-fun is the cdr function.

The for or as construct causes termination when the end of the list is
reached. The loop keywords in and by serve as valid prepositions in this

syntax.

Examples:

;;; Print every item in a list.

(loop for item in ’(1 2 3 4 5) do (print item)) ;Prints 5 lines
1

2

3

4

5

⇒ NIL

;;; Print every other item in a list.

(loop for item in ’(1 2 3 4 5) by #--’cddr

do (print item)) ;Prints 3 lines

1

3

5

⇒ NIL
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;;; Destructure items of a list, and sum the x values

;;; using fixnum arithmetic.

(loop for (item . x) (t . fixnum)

in ’((A . 1) (B . 2) (C . 3))

unless (eq item ’B) sum x)

⇒ 4

[Loop clause]for var [type-spec] on expr1 [by step-fun]

[Loop clause]as var [type-spec] on expr1 [by step-fun]

[This is the third of seven for/as syntaxes.—GLS]

This construct iterates over the contents of a list. It checks for the end

of the list as if using the Common Lisp function endp. The variable var is

bound to the successive tails of the list expr1. At the end of each iteration, the

function step-fun is called on the list and is expected to produce a successor

list; the default value for step-fun is the cdr function.

The loop keywords on and by serve as valid prepositions in this syntax. The

for or as construct causes termination when the end of the list is reached.

Examples:

;;; Collect successive tails of a list.

(loop for sublist on ’(a b c d)

collect sublist)

⇒ ((A B C D) (B C D) (C D) (D))

;;; Print a list by using destructuring with the loop keyword ON.

(loop for (item) on ’(1 2 3)

do (print item)) ;Prints 3 lines

1

2

3

⇒ NIL

;;; Print items in a list without using destructuring.

(loop for item in ’(1 2 3)

do (print item)) ;Prints 3 lines

1

2

3

⇒ NIL
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[Loop clause]for var [type-spec] UU expr1 [then expr2]

[Loop clause]as var [type-spec] UU expr1 [then expr2]

[This is the fourth of seven for/as syntaxes.—GLS]

This construct initializes the variable var by setting it to the result of eval-

uating expr1 on the first iteration, then setting it to the result of evaluating
expr2 on the second and subsequent iterations. If expr2 is omitted, the con-

struct uses expr1 on the second and subsequent iterations. When expr2 is

omitted, the expanded code shows the following optimization:

;;; Sample original code:

(loop for x UU expr1 then expr2 do (print x))

;;; The usual expansion:

(tagbody

(setq x expr1)

tag (print x)

(setq x expr2)

(go tag))

;;; The optimized expansion:

(tagbody

tag (setq x expr1)

(print x)

(go tag))

The loop keywords UU and then serve as valid prepositions in this syntax.

This construct does not provide any termination conditions.

Example:

;;; Collect some numbers.

(loop for item UU 1 then (+ item 10)

repeat 5

collect item)

⇒ (1 11 21 31 41)

[Loop clause]for var [type-spec] across vector

[Loop clause]as var [type-spec] across vector

[This is the fifth of seven for/as syntaxes.—GLS]

This construct binds the variable var to the value of each element in the

array vector.
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The loop keyword across marks the array vector; across is used as a

preposition in this syntax. Iteration stops when there are no more elements

in the specified array that can be referenced.

Some implementations might use a [user-supplied—GLS] the special form

in the vector form to produce more efficient code.
Example:

(loop for char across (the simple-string (find-message port))

do (write-char char stream))

[Loop clause]for var [type-spec] being {each | the}
{hash-key | hash-keys | hash-value | hash-values}
{in | of} hash-table [using ( {hash-value | hash-key} other-var)]

[Loop clause]as var [type-spec] being {each | the}
{hash-key | hash-keys | hash-value | hash-values}
{in | of} hash-table [using ( {hash-value | hash-key} other-var)]

[This is the sixth of seven for/as syntaxes.—GLS]

This construct iterates over the elements, keys, and values of a hash table.

The variable var takes on the value of each hash key or hash value in the
specified hash table.

The following loop keywords serve as valid prepositions within this syntax.

being

The keyword being marks the loop method to be used, either hash-key or

hash-value.

each, the

For purposes of readability, the loop keyword each should follow the loop

keyword being when hash-key or hash-value is used. The loop keyword

the is used with hash-keys and hash-values.

hash-key, hash-keys

These loop keywords access each key entry of the hash table. If the name
hash-value is specified in a using construct with one of these loop methods,

the iteration can optionally access the keyed value. The order in which the

keys are accessed is undefined; empty slots in the hash table are ignored.

hash-value, hash-values

These loop keywords access each value entry of a hash table. If the name
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hash-key is specified in a using construct with one of these loop methods,

the iteration can optionally access the key that corresponds to the value. The

order in which the keys are accessed is undefined; empty slots in the hash

table are ignored.

using

The loop keyword using marks the optional key or the keyed value to be

accessed. It allows you to access the hash key if iterating over the hash

values, and the hash value if iterating over the hash keys.

in, of

These loop prepositions mark the hash table hash-table.

Iteration stops when there are no more hash keys or hash values to be
referenced in the specified hash table.

[Loop clause]for var [type-spec] being {each | the}
{symbol | present-symbol | external-symbol |
symbols | present-symbols | external-symbols}
{in | of} package

[Loop clause]as var [type-spec] being {each | the}
{symbol | present-symbol | external-symbol |
symbols | present-symbols | external-symbols}
{in | of} package

[This is the last of seven for/as syntaxes.—GLS]

This construct iterates over the symbols in a package. The variable var
takes on the value of each symbol in the specified package.

The following loop keywords serve as valid prepositions within this syntax.

being

The keyword being marks the loop method to be used: symbol, present-

symbol, or external-symbol.

each, the

For purposes of readability, the loop keyword each should follow the loop

keyword being when symbol, present-symbol, or external-symbol is

used. The loop keyword the is used with symbols, present-symbols, and

external-symbols.
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present-symbol, present-symbols

These loop methods iterate over the symbols that are present but not external
in a package. The package to be iterated over is specified in the same way that

package arguments to the Common Lisp function find-package are specified.

If you do not specify the package for the iteration, the current package is used.

If you specify a package that does not exist, an error is signaled.

symbol, symbols

These loop methods iterate over symbols that are accessible from a given

package. The package to be iterated over is specified in the same way that

package arguments to the Common Lisp function find-package are specified.

If you do not specify the package for the iteration, the current package is used.
If you specify a package that does not exist, an error is signaled.

external-symbol, external-symbols

These loop methods iterate over the external symbols of a package. The pack-

age to be iterated over is specified in the same way that package arguments to
the Common Lisp function find-package are specified. If you do not specify

the package for the iteration, the current package is used. If you specify a

package that does not exist, an error is signaled.

in, of

These loop prepositions mark the package package.

Iteration stops when there are no more symbols to be referenced in the
specified package.

Example:

(loop for x being each present-symbol of "COMMON-LISP-USER"

do (print x)) ;Prints 7 lines in this example

COMMON-LISP-USER::IN

COMMON-LISP-USER::X

COMMON-LISP-USER::ALWAYS

COMMON-LISP-USER::FOO

COMMON-LISP-USER::Y

COMMON-LISP-USER::FOR

COMMON-LISP-USER::LUCID

⇒ NIL
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[Loop clause]repeat expr

The repeat construct causes iteration to terminate after a specified number
of times. The loop body is executed n times, where n is the value of the

expression expr. The expr argument is evaluated one time in the loop prologue.

If the expression evaluates to zero or to a negative number, the loop body is

not evaluated.

The clause repeat n is roughly equivalent to a clause such as

for internal-variable downfrom (- n 1) to 0

but, in some implementations, the repeat construct might be more efficient.

Examples:

(loop repeat 3 ;Prints 3 lines

do (format t "What I say three times is true~%"))

What I say three times is true

What I say three times is true

What I say three times is true

⇒ NIL

(loop repeat -15 ;Prints nothing

do (format t "What you see is what you expect~%"))

⇒ NIL

26.7. End-Test Control

The loop keywords always, never, thereis, until, and while designate

constructs that use a single test condition to determine when loop iteration

should terminate.

The constructs always, never, and thereis provide specific values to be

returned when a loop terminates. Using always, never, or thereis with

value-returning accumulation clauses can produce unpredictable results. In
all other respects these constructs behave like the while and until constructs.

The macro loop-finish can be used at any time to cause normal termina-

tion. In normal termination, finally clauses are executed and default return
values are returned.

End-test control constructs can be used anywhere within the loop body.

The termination conditions are tested in the order in which they appear.
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[Loop clause]while expr

[Loop clause]until expr

The while construct allows iteration to continue until the specified expression
expr evaluates to nil. The expression is re-evaluated at the location of the

while clause.

The until construct is equivalent to while (not expr). If the value of the

specified expression is non-nil, iteration terminates.

You can use while and until at any point in a loop. If a while or until

clause causes termination, any clauses that precede it in the source are still

evaluated.

Examples:

;;; A classic "while-loop".

(loop while (hungry-p) do (eat))

;;; UNTIL NOT is equivalent to WHILE.

(loop until (not (hungry-p)) do (eat))

;;; Collect the length and the items of STACK.

(let ((stack ’(a b c d e f)))

(loop while stack

for item UU (length stack) then (pop stack)

collect item))

⇒ (6 A B C D E F)

;;; Use WHILE to terminate a loop that otherwise wouldn’t

;;; terminate. Note that WHILE occurs after the WHEN.

(loop for i fixnum from 3

when (oddp i) collect i

while (< i 5))

⇒ (3 5)

[Loop clause]always expr

[Loop clause]never expr

[Loop clause]thereis expr

The always construct takes one form and terminates the loop if the form ever

evaluates to nil; in this case, it returns nil. Otherwise, it provides a default

return value of t.
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The never construct takes one form and terminates the loop if the form

ever evaluates to non-nil; in this case, it returns nil. Otherwise, it provides

a default return value of t.

The thereis construct takes one form and terminates the loop if the form

ever evaluates to non-nil; in this case, it returns that value.

If the while or until construct causes termination, control is passed to
the loop epilogue, where any finally clauses will be executed. Since always,

never, and thereis use the Common Lisp macro return to terminate itera-

tion, any finally clause that is specified is not evaluated.

Examples:

;;; Make sure I is always less than 11 (two ways).

;;; The FOR construct terminates these loops.

(loop for i from 0 to 10

always (< i 11))

⇒ T

(loop for i from 0 to 10

never (> i 11))

⇒ T

;;; If I exceeds 10, return I; otherwise, return NIL.

;;; The THEREIS construct terminates this loop.

(loop for i from 0

thereis (when (> i 10) i) )

⇒ 11

;;; The FINALLY clause is not evaluated in these examples.

(loop for i from 0 to 10

always (< i 9)

finally (print "you won’t see this"))

⇒ NIL

(loop never t

finally (print "you won’t see this"))

⇒ NIL

(loop thereis "Here is my value"

finally (print "you won’t see this"))

⇒ "Here is my value"
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;;; The FOR construct terminates this loop,

;;; so the FINALLY clause is evaluated.

(loop for i from 1 to 10

thereis (> i 11)

finally (print i)) ;Prints 1 line

11

⇒ NIL

(defstruct mountain height difficulty (why "because it is there"))

(setq everest (make-mountain :height ’(2.86e-13 parsecs)))

(setq chocorua (make-mountain :height ’(1059180001 microns)))

(defstruct desert area (humidity 0))

(setq sahara (make-desert :area ’(212480000 square furlongs)))

;First there is a mountain, then there is no mountain, then there is . . .

(loop for x in (list everest sahara chocorua) ; —GLS

thereis (and (mountain-p x) (mountain-height x)))

⇒ (2.86E-13 PARSECS)

;;; If you could use this code to find a counterexample to

;;; Fermat’s last theorem, it would still not return the value

;;; of the counterexample because all of the THEREIS clauses

;;; in this example return only T. Of course, this code has

;;; never been observed to terminate.

(loop for z upfrom 2

thereis

(loop for n upfrom 3 below (log z 2)

thereis

(loop for x below z

thereis

(loop for y below z

thereis (UU (+ (expt x n)

(expt y n))

(expt z n))))))

[Macro]loop-finish

The macro loop-finish terminates iteration normally and returns any accu-

mulated result. If specified, a finally clause is evaluated.
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In most cases it is not necessary to use loop-finish because other loop

control clauses terminate the loop. Use loop-finish to provide a normal exit

from a nested condition inside a loop.

You can use loop-finish inside nested Lisp code to provide a normal exit

from a loop. Since loop-finish transfers control to the loop epilogue, using
loop-finish within a finally expression can cause infinite looping.

Implementations are allowed to provide this construct as a local macro by

using macrolet.

Examples:

;;; Print a date in February, but exclude leap day.

;;; LOOP-FINISH exits from the nested condition.

(loop for date in date-list

do (case date

(29 (when (eq month ’february)

(loop-finish))

(format t "~:@(~A~) ~A" month date))))

;;; Terminate the loop, but return the accumulated count.

(loop for i in ’(1 2 3 stop-here 4 5 6)

when (symbolp i) do (loop-finish)

count i)

⇒ 3

;;; This loop works just as well as the previous example.

(loop for i in ’(1 2 3 stop-here 4 5 6)

until (symbolp i)

count i)

⇒ 3

26.8. Value Accumulation

Accumulating values during iteration and returning them from a loop is often

useful. Some of these accumulations occur so frequently that special loop

clauses have been developed to handle them.
The loop keywords append, appending, collect, collecting, nconc, and

nconcing designate clauses that accumulate values in lists and return them.

The loop keywords count, counting, maximize, maximizing, minimize,

minimizing, sum, and summing designate clauses that accumulate and return

numerical values. [There is no semantic difference between the “ing” keywords
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and their non-“ing” counterparts. They are provided purely for the sake of

stylistic diversity among users. I happen to prefer the non-“ing” forms—when

I use loop at all.—GLS]

The loop preposition into can be used to name the variable used to hold

partial accumulations. The variable is bound as if by the loop construct with
(see section 26.9). If into is used, the construct does not provide a default

return value; however, the variable is available for use in any finally clause.

You can combine value-returning accumulation clauses in a loop if all the

clauses accumulate the same type of data object. By default, the Loop Facility

returns only one value; thus, the data objects collected by multiple accumula-

tion clauses as return values must have compatible types. For example, since
both the collect and append constructs accumulate objects into a list that

is returned from a loop, you can combine them safely.

;;; Collect every name and the kids in one list by using

;;; COLLECT and APPEND.

(loop for name in ’(fred sue alice joe june)

for kids in ’((bob ken) () () (kris sunshine) ())

collect name

append kids)

⇒ (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)

[In the preceding example, note that the items accumulated by the collect

and append clauses are interleaved in the result list, according to the order in

which the clauses were executed.—GLS]

Multiple clauses that do not accumulate the same type of data object can

coexist in a loop only if each clause accumulates its values into a different

user-specified variable. Any number of values can be returned from a loop if

you use the Common Lisp function values, as the next example shows:

;;; Count and collect names and ages.

(loop for name in ’(fred sue alice joe june)

as age in ’(22 26 19 20 10)

append (list name age) into name-and-age-list

count name into name-count

sum age into total-age

finally

(return (values (round total-age name-count)

name-and-age-list)))

⇒ 19 and (FRED 22 SUE 26 ALICE 19 JOE 20 JUNE 10)
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[Loop clause]collect expr [into var]

[Loop clause]collecting expr [into var]

During each iteration, these constructs collect the value of the specified ex-

pression into a list. When iteration terminates, the list is returned.

The argument var is set to the list of collected values; if var is specified,

the loop does not return the final list automatically. If var is not specified,
it is equivalent to specifying an internal name for var and returning its value

in a finally clause. The var argument is bound as if by the construct with.

You cannot specify a data type for var ; it must be of type list.

Examples:

;;; Collect all the symbols in a list.

(loop for i in ’(bird 3 4 turtle (1 . 4) horse cat)

when (symbolp i) collect i)

⇒ (BIRD TURTLE HORSE CAT)

;;; Collect and return odd numbers.

(loop for i from 1 to 10

if (oddp i) collect i)

⇒ (1 3 5 7 9)

;;; Collect items into local variable, but don’t return them.

(loop for i in ’(a b c d) by #--’cddr

collect i into my-list

finally (print my-list)) ;Prints 1 line

(A C)

⇒ NIL

[Loop clause]append expr [into var]

[Loop clause]appending expr [into var]

[Loop clause]nconc expr [into var]

[Loop clause]nconcing expr [into var]

These constructs are similar to collect except that the values of the specified

expression must be lists.

The append keyword causes its list values to be concatenated into a single

list, as if they were arguments to the Common Lisp function append.

The nconc keyword causes its list values to be concatenated into a single

list, as if they were arguments to the Common Lisp function nconc. Note

that the nconc keyword destructively modifies its argument lists.
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The argument var is set to the list of concatenated values; if you specify

var, the loop does not return the final list automatically. The var argument

is bound as if by the construct with. You cannot specify a data type for var ;

it must be of type list.

Examples:

;;; Use APPEND to concatenate some sublists.

(loop for x in ’((a) (b) ((c)))

append x)

⇒ (A B (C))

;;; NCONC some sublists together. Note that only lists

;;; made by the call to LIST are modified.

(loop for i upfrom 0

as x in ’(a b (c))

nconc (if (evenp i) (list x) ’()))

⇒ (A (C))

[Loop clause]count expr [into var] [type-spec]

[Loop clause]counting expr [into var] [type-spec]

The count construct counts the number of times that the specified expression

has a non-nil value.
The argument var accumulates the number of occurrences; if var is speci-

fied, the loop does not return the final count automatically. The var argument

is bound as if by the construct with.

If into var is used, the optional type-spec argument specifies a data type
for var . If there is no into variable, the optional type-spec argument applies

to the internal variable that is keeping the count. In either case it is an error

to specify a non-numeric data type. The default type is implementation-

dependent, but it must be a subtype of (or integer float).

Example:

(loop for i in ’(a b nil c nil d e)

count i)

⇒ 5

[Loop clause]sum expr [into var] [type-spec]

[Loop clause]summing expr [into var] [type-spec]

The sum construct forms a cumulative sum of the values of the specified ex-

pression at each iteration.
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The argument var is used to accumulate the sum; if var is specified, the

loop does not return the final sum automatically. The var argument is bound

as if by the construct with.

If into var is used, the optional type-spec argument specifies a data type for

var . If there is no into variable, the optional type-spec argument applies to the
internal variable that is keeping the sum. In either case it is an error to specify

a non-numeric data type. The default type is implementation-dependent, but

it must be a subtype of number.

Examples:

;;; Sum the elements of a list.

(loop for i fixnum in ’(1 2 3 4 5)

sum i)

⇒ 15

;;; Sum a function of elements of a list.

(setq series

’(1.2 4.3 5.7))

⇒ (1.2 4.3 5.7)

(loop for v in series

sum (* 2.0 v))

⇒ 22.4

[Loop clause]maximize expr [into var] [type-spec]

[Loop clause]maximizing expr [into var] [type-spec]

[Loop clause]minimize expr [into var] [type-spec]

[Loop clause]minimizing expr [into var] [type-spec]

The maximize construct compares the value of the specified expression ob-

tained during the first iteration with values obtained in successive iterations.

The maximum value encountered is determined and returned. If the loop

never executes the body, the returned value is not meaningful.

The minimize construct is similar to maximize; it determines and returns

the minimum value.

The argument var accumulates the maximum or minimum value; if var is

specified, the loop does not return the maximum or minimum automatically.

The var argument is bound as if by the construct with.
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If into var is used, the optional type-spec argument specifies a data type

for var . If there is no into variable, the optional type-spec argument applies

to the internal variable that is keeping the intermediate result. In either

case it is an error to specify a non-numeric data type. The default type is

implementation-dependent, but it must be a subtype of (or integer float).

Examples:

(loop for i in ’(2 1 5 3 4)

maximize i)

⇒ 5
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(loop for i in ’(2 1 5 3 4)

minimize i)

⇒ 1

;;; In this example, FIXNUM applies to the internal

;;; variable that holds the maximum value.

(setq series ’(1.2 4.3 5.7))

⇒ (1.2 4.3 5.7)

(loop for v in series

maximize (round v) fixnum)

⇒ 6

;;; In this example, FIXNUM applies to the variable RESULT.

(loop for v float in series

minimize (round v) into result fixnum

finally (return result))

⇒ 1

26.9. Variable Initializations

A local loop variable is one that exists only when the Loop Facility is invoked.

At that time, the variables are declared and are initialized to some value.

These local variables exist until loop iteration terminates, at which point they
cease to exist. Implicitly variables are also established by iteration control

clauses and the into preposition of accumulation clauses.

The loop keyword with designates a loop clause that allows you to declare

and initialize variables that are local to a loop. The variables are initialized

one time only; they can be initialized sequentially or in parallel.
By default, the with construct initializes variables sequentially; that is, one

variable is assigned a value before the next expression is evaluated. However,

by using the loop keyword and to join several with clauses, you can force

initializations to occur in parallel; that is, all of the specified expressions are
evaluated, and the results are bound to the respective variables simultane-

ously.

Use sequential binding for making the initialization of some variables de-

pend on the values of previously bound variables. For example, suppose you

want to bind the variables a, b, and c in sequence:
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(loop with a UU 1

with b UU (+ a 2)

with c UU (+ b 3)

with d UU (+ c 4)

return (list a b c d))

⇒ (1 3 6 10)

The execution of the preceding loop is equivalent to the execution of the

following code:

(let* ((a 1)

(b (+ a 2))

(c (+ b 3))

(d (+ c 4)))

(block nil

(tagbody

next-loop (return (list a b c d))

(go next-loop)

end-loop)))

If you are not depending on the value of previously bound variables for the

initialization of other local variables, you can use parallel bindings as follows:

(loop with a UU 1

and b UU 2

and c UU 3

and d UU 4

return (list a b c d))

⇒ (1 2 3 4)

The execution of the preceding loop is equivalent to the execution of the

following code:

(let ((a 1)

(b 2)

(c 3)

(d 4))

(block nil

(tagbody

next-loop (return (list a b c))

(go next-loop)

end-loop)))
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[Loop clause]with var [type-spec] [UU expr] {and var [type-spec] [UU expr] }∗

The with construct initializes variables that are local to a loop. The variables
are initialized one time only.

If the optional type-spec argument is specified for any variable var , but

there is no related expression expr to be evaluated, var is initialized to an
appropriate default value for its data type. For example, for the data types

t, number, and float, the default values are nil, 0, and 0.0, respectively. It

is an error to specify a type-spec argument for var if the related expression

returns a value that is not of the specified type. The optional and clause forces

parallel rather than sequential initializations.

Examples:

;;; These bindings occur in sequence.

(loop with a UU 1

with b UU (+ a 2)

with c UU (+ b 3)

with d UU (+ c 4)

return (list a b c d))

⇒ (1 3 6 10)

;;; These bindings occur in parallel.

(setq a 5 b 10 c 1729)

(loop with a UU 1

and b UU (+ a 2)

and c UU (+ b 3)

and d UU (+ c 4)

return (list a b c d))

⇒ (1 7 13 1733)

;;; This example shows a shorthand way to declare

;;; local variables that are of different types.

(loop with (a b c) (float integer float)

return (format nil "~A ~A ~A" a b c))

⇒ "0.0 0 0.0"

;;; This example shows a shorthand way to declare

;;; local variables that are of the same type.

(loop with (a b c) float

return (format nil "~A ~A ~A" a b c))

⇒ "0.0 0.0 0.0"
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26.10. Conditional Execution

The loop keywords if, when, and unless designate constructs that are useful

when you want some loop clauses to operate under a specified condition.

If the specified condition is true, the succeeding loop clause is executed.

If the specified condition is not true, the succeeding clause is skipped, and
program control moves to the clause that follows the loop keyword else. If

the specified condition is not true and no else clause is specified, the entire

conditional construct is skipped. Several clauses can be connected into one

compound clause with the loop keyword and. The end of the conditional

clause can be marked with the keyword end.

[Loop clause]if expr clause {and clause}∗
[else clause {and clause}∗ ] [end]

[Loop clause]when expr clause {and clause}∗
[else clause {and clause}∗ ] [end]

[Loop clause]unless expr clause {and clause}∗
[else clause {and clause}∗ ] [end]

The constructs when and if allow conditional execution of loop clauses. These

constructs are synonyms and can be used interchangeably. [Compare this to

the macro when, which does not allow an “else” part.—GLS]

If the value of the test expression expr is non-nil, the expression clause1
is evaluated. If the test expression evaluates to nil and an else construct

is specified, the statements that follow the else are evaluated; otherwise,

control passes to the next clause.

The unless construct is equivalent to when (not expr) and if (not expr). If
the value of the test expression expr is nil, the expression clause1 is evaluated.

If the test expression evaluates to non-nil and an else construct is specified,

the statements that follow the else are evaluated; otherwise, control passes

to the next clause. [Compare this to the macro unless, which does not allow

an “else” part—or do I mean a “then” part?! Ugh. To prevent confusion, I
strongly recommend as a matter of style that else not be used with unless

loop clauses.—GLS]

The clause arguments must be either accumulation, unconditional, or con-

ditional clauses (see section 26.3.2). Clauses that follow the test expression
can be grouped by using the loop keyword and to produce a compound clause.

The loop keyword it can be used to refer to the result of the test expression

in a clause. If multiple clauses are connected with and, the it construct must

be used in the first clause in the block. Since it is a loop keyword, it may

not be used as a local variable within a loop.
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If when or if clauses are nested, each else is paired with the closest pre-

ceding when or if construct that has no associated else.

The optional loop keyword end marks the end of the clause. If this keyword

is not specified, the next loop keyword marks the end. You can use end to

distinguish the scoping of compound clauses.

;;; Group conditional clauses into a block.

(loop for i in numbers-list

when (oddp i)

do (print i)

and collect i into odd-numbers

and do (terpri)

else ;I is even

collect i into even-numbers

finally

(return (values odd-numbers even-numbers)))

;;; Collect numbers larger than 3.

(loop for i in ’(1 2 3 4 5 6)

when (and (> i 3) i)

collect it) ;it refers to (and (> i 3) i)

⇒ (4 5 6)

;;; Find a number in a list.

(loop for i in ’(1 2 3 4 5 6)

when (and (> i 3) i)

return it)

⇒ 4

;;; The preceding example is similar to the following one.

(loop for i in ’(1 2 3 4 5 6)

thereis (and (> i 3) i))

⇒ 4

;;; An example of using UNLESS with ELSE (yuk). —GLS

(loop for turtle in teenage-mutant-ninja-turtles do

(loop for x in ’(joker brainiac shredder krazy-kat)

unless (evil x)

do (eat (make-pizza :anchovies t))

else unless (and (eq x ’shredder) (attacking-p x))

do (cut turtle slack);When the evil Shredder attacks,

else (fight turtle x)));those turtle boys don’t cut no slack
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;;; Nest conditional clauses.

(loop for i in list

when (numberp i)

when (bignump i)

collect i into big-numbers

else ;Not (bignump i)

collect i into other-numbers

else ;Not (numberp i)

when (symbolp i)

collect i into symbol-list

else ;Not (symbolp i)

(error "found a funny value in list ~S, value ~S~%"

"list i))

;;; Without the END marker, the last AND would apply to the

;;; inner IF rather than the outer one.

(loop for x from 0 to 3

do (print x)

if (zerop (mod x 2))

do (princ " a")

and if (zerop (floor x 2))

do (princ " b")

end

and do (princ " c"))

26.11. Unconditional Execution

The loop construct do (or doing) takes one or more expressions and simply
evaluates them in order.

The loop construct return takes one expression and returns its value. It is

equivalent to the clause do (return value).

[Loop clause]do {expr}∗
[Loop clause]doing {expr}∗

The do construct simply evaluates the specified expressions wherever they

occur in the expanded form of loop.

The expr argument can be any non-atomic Common Lisp form. Each expr

is evaluated in every iteration.
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The constructs do, initially, and finally are the only loop keywords

that take an arbitrary number of forms and group them as if using an implicit

progn. Because every loop clause must begin with a loop keyword, you would

use the keyword do when no control action other than execution is required.

Examples:

;;; Print some numbers.

(loop for i from 1 to 5

do (print i)) ;Prints 5 lines

1

2

3

4

5

⇒ NIL

;;; Print numbers and their squares.

;;; The DO construct applies to multiple forms.

(loop for i from 1 to 4

do (print i)

(print (* i i))) ;Prints 8 lines

1

1

2

4

3

9

4

16

⇒ NIL

[Loop clause]return expr

The return construct terminates a loop and returns the value of the specified

expression as the value of the loop. This construct is similar to the Common
Lisp special form return-from and the Common Lisp macro return.

The Loop Facility supports the return construct for backward compatibil-

ity with older loop implementations. The return construct returns immedi-

ately and does not execute any finally clause that is given.

Examples:
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;;; Signal an exceptional condition.

(loop for item in ’(1 2 3 a 4 5)

when (not (numberp item))

return (cerror "enter new value"

"non-numeric value: ~s"

item)) ;Signals an error

>>Error: non-numeric value: A

;;; The previous example is equivalent to the following one.

(loop for item in ’(1 2 3 a 4 5)

when (not (numberp item))

do (return

(cerror "enter new value"

"non-numeric value: ~s"

item))) ;Signals an error

>>Error: non-numeric value: A

26.12. Miscellaneous Features

The Loop Facility provides the named construct to name a loop so that the

Common Lisp special form return-from can be used.

The loop keywords initially and finally designate loop constructs that

cause expressions to be evaluated before and after the loop body, respectively.

The code for any initially clauses is collected into one progn in the order
in which the clauses appeared in the loop. The collected code is executed once

in the loop prologue after any implicit variable initializations.

The code for any finally clauses is collected into one progn in the order

in which the clauses appeared in the loop. The collected code is executed

once in the loop epilogue before any implicit values are returned from the
accumulation clauses. Explicit returns in the loop body, however, will exit

the loop without executing the epilogue code.

26.12.1. Data Types

Many loop constructs take a type-spec argument that allows you to specify

certain data types for loop variables. While it is not necessary to specify a

data type for any variable, by doing so you ensure that the variable has a

correctly typed initial value. The type declaration is made available to the

compiler for more efficient loop expansion. In some implementations, fixnum
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and float declarations are especially useful; the compiler notices them and

emits more efficient code.

The type-spec argument has the following syntax:

type-spec ::= of-type d-type-spec
d-type-spec ::= type-specifier | (d-type-spec . d-type-spec)

A type-specifier in this syntax can be any Common Lisp type specifier. The d-

type-spec argument is used for destructuring, as described in section 26.12.2. If
the d-type-spec argument consists solely of the types fixnum, float, t, or nil,

the of-type keyword is optional. The of-type construct is optional in these

cases to provide backward compatibility; thus the following two expressions

are the same:

;;; This expression uses the old syntax for type specifiers.

(loop for i fixnum upfrom 3 ...)

;;; This expression uses the new syntax for type specifiers.

(loop for i of-type fixnum upfrom 3 ...)

26.12.2. Destructuring

Destructuring allows you to bind a set of variables to a corresponding set

of values anywhere that you can normally bind a value to a single variable.

During loop expansion, each variable in the variable list is matched with the

values in the values list. If there are more variables in the variable list than

there are values in the values list, the remaining variables are given a value
of nil. If there are more values than variables listed, the extra values are

discarded.

Suppose you want to assign values from a list to the variables a, b, and c.

You could use one for clause to bind the variable numlist to the car of the

specified expression, and then you could use another for clause to bind the
variables a, b, and c sequentially.

;;; Collect values by using FOR constructs.

(loop for numlist in ’((1 2 4.0) (5 6 8.3) (8 9 10.4))

for a integer UU (first numlist)

and for b integer UU (second numlist)

and for c float UU (third numlist)

collect (list c b a))

⇒ ((4.0 2 1) (8.3 6 5) (10.4 9 8))
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Destructuring makes this process easier by allowing the variables to be bound

in parallel in each loop iteration. You can declare data types by using a list

of type-spec arguments. If all the types are the same, you can use a shorthand

destructuring syntax, as the second example following illustrates.

;;; Destructuring simplifies the process.

(loop for (a b c) (integer integer float) in

’((1 2 4.0) (5 6 8.3) (8 9 10.4))

collect (list c b a)))

⇒ ((4.0 2 1) (8.3 6 5) (10.4 9 8))

;;; If all the types are the same, this way is even simpler.

(loop for (a b c) float in

’((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))

collect (list c b a))

⇒ ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))

If you use destructuring to declare or initialize a number of groups of vari-
ables into types, you can use the loop keyword and to simplify the process

further.

;;; Initialize and declare variables in parallel

;;; by using the AND construct.

(loop with (a b) float UU ’(1.0 2.0)

and (c d) integer UU ’(3 4)

and (e f)

return (list a b c d e f))

⇒ (1.0 2.0 3 4 NIL NIL)

A data type specifier for a destructuring pattern is a tree of type specifiers

with the same shape as the tree of variables, with the following exceptions:

. When aligning the trees, an atom in the type specifier tree that matches a

cons in the variable tree declares the same type for each variable.

. A cons in the type specifier tree that matches an atom in the variable tree

is a non-atomic type specifer.

;;; Declare X and Y to be of type VECTOR and FIXNUM, respectively.

(loop for (x y) of-type (vector fixnum) in my-list do ...)

If nil is used in a destructuring list, no variable is provided for its place.
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(loop for (a nil b) UU ’(1 2 3)

do (return (list a b)))

⇒ (1 3)

Note that nonstandard lists can specify destructuring.

(loop for (x . y) UU ’(1 . 2)

do (return y))

⇒ 2

(loop for ((a . b) (c . d))

of-type ((float . float) (integer . integer))

in ’(((1.2 . 2.4) (3 . 4)) ((3.4 . 4.6) (5 . 6)))

collect (list a b c d))

⇒ ((1.2 2.4 3 4) (3.4 4.6 5 6))

[It is worth noting that the destructuring facility of loop predates, and
differs in some details from, that of destructuring-bind, an extension that

has been provided by many implementors of Common Lisp.—GLS]

[Loop clause]initially {expr}∗
[Loop clause]finally [do | doing] {expr}∗
[Loop clause]finally return expr

The initially construct causes the specified expression to be evaluated in

the loop prologue, which precedes all loop code except for initial settings

specified by constructs with, for, or as. The finally construct causes the

specified expression to be evaluated in the loop epilogue after normal iteration
terminates.

The expr argument can be any non-atomic Common Lisp form.

Clauses such as return, always, never, and thereis can bypass the

finally clause.

The Common Lisp macro return (or the return loop construct) can be

used after finally to return values from a loop. The evaluation of the return
form inside the finally clause takes precedence over returning the accumu-

lation from clauses specified by such keywords as collect, nconc, append,

sum, count, maximize, and minimize; the accumulation values for these pre-

empted clauses are not returned by the loop if return is used.

The constructs do, initially, and finally are the only loop keywords

that take an arbitrary number of (non-atomic) forms and group them as if by

using an implicit progn.
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Examples:

;;; This example parses a simple printed string representation

;;; from BUFFER (which is itself a string) and returns the

;;; index of the closing double-quote character.

(loop initially (unless (charUU (char buffer 0) #--\")

(loop-finish))

for i fixnum from 1 below (string-length buffer)

when (charUU (char buffer i) #--\")

return i)

;;; The FINALLY clause prints the last value of I.

;;; The collected value is returned.

(loop for i from 1 to 10

when (> i 5)

collect i

finally (print i)) ;Prints 1 line

11

⇒ (6 7 8 9 10)

;;; Return both the count of collected numbers

;;; as well as the numbers themselves.

(loop for i from 1 to 10

when (> i 5)

collect i into number-list

and count i into number-count

finally (return (values number-count number-list)))

⇒ 5 and (6 7 8 9 10)

[Loop clause]named name

The named construct allows you to assign a name to a loop construct so that

you can use the Common Lisp special form return-from to exit the named
loop.

Only one name may be assigned per loop; the specified name becomes the

name of the implicit block for the loop.

If used, the named construct must be the first clause in the loop expression,

coming right after the word loop.
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Example:

;;; Just name and return.

(loop named max

for i from 1 to 10

do (print i)

do (return-from max ’done)) ;Prints 1 line

1

⇒ DONE
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Pretty Printing

BY RICHARD C. WATERS

preface: X3J13 voted in January 1989 〈139〉 to adopt a facility for user-

controlled pretty printing as a part of the forthcoming draft Common Lisp

standard. This facility is the culmination of thirteen years of design, testing,
revision, and use of this approach.

This chapter presents the bulk of the Common Lisp pretty printing speci-

fication, written by Richard C. Waters. I have edited it only very lightly to
conform to the overall style of this book.

—Guy L. Steele Jr.

27.1. Introduction

Pretty printing has traditionally been a black box process, displaying program

code using a set of fixed layout rules. Its utility can be greatly enhanced by

opening it up to user control. The facilities described in this chapter provide

general and powerful means for specifying pretty-printing behavior.

By providing direct access to the mechanisms within the pretty printer that

make dynamic decisions about layout, the macros and functions pprint-

logical-block, pprint-newline, and pprint-indent make it possible to
specify pretty printing layout rules as a part of any function that produces

output. They also make it very easy for the function to support detection of

circularity and sharing and abbreviation based on length and nesting depth.

Using the function set-pprint-dispatch, one can associate a user-defined
pretty printing function with any type of object. A small set of new format

directives allows concise implementation of user-defined pretty-printing func-

tions. Together, these facilities enable users to redefine the way code is dis-

played and allow the full power of pretty printing to be applied to complex

combinations of data structures.

808
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Implementation note: This chapter describes the interface of the XP pretty
printer. XP is described fully in [54], which also explains how to obtain a portable
implementation. XP uses a highly efficient linear-time algorithm. When properly
integrated into a Common Lisp, this algorithm supports pretty printing that is only
fractionally slower than ordinary printing.

27.2. Pretty Printing Control Variables

The function write accepts keyword arguments named :pprint-dispatch,

:miser-width, :right-margin, and :lines, corresponding to these vari-

ables.

[Variable]*print-pprint-dispatch*

When *print-pretty* is not nil, printing is controlled by the ‘pprint dis-

patch table’ stored in the variable *print-pprint-dispatch*. The initial

value of *print-pprint-dispatch* is implementation-dependent and causes

traditional pretty printing of Lisp code. The last section of this chapter ex-
plains how the contents of this table can be changed.

[Variable]*print-right-margin*

A primary goal of pretty printing is to keep the output between a pair of

margins. The left margin is set at the column where the output begins. If
this cannot be determined, the left margin is set to zero.

When *print-right-margin* is not nil, it specifies the right margin to

use when making layout decisions. When *print-right-margin* is nil (the

initial value), the right margin is set at the maximum line length that can

be displayed by the output stream without wraparound or truncation. If this
cannot be determined, the right margin is set to an implementation-dependent

value.

To allow for the possibility of variable-width fonts, *print-right-margin*

is in units of ems—the width of an “m” in the font being used to display
characters on the relevant output stream at the moment when the variables

are consulted.

[Variable]*print-miser-width*

If *print-miser-width* is not nil, the pretty printer switches to a compact

style of output (called miser style) whenever the width available for printing a
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substructure is less than or equal to *print-miser-width* ems. The initial

value of *print-miser-width* is implementation-dependent.

[Variable]*print-lines*

When given a value other than its initial value of nil, *print-lines* limits

the number of output lines produced when something is pretty printed. If an

attempt is made to go beyond *print-lines* lines, “ ..” (a space and two
periods) is printed at the end of the last line followed by all of the suffixes

(closing delimiters) that are pending to be printed.

(let ((*print-right-margin* 25) (*print-lines* 3))

(pprint ’(progn (setq a 1 b 2 c 3 d 4))))

(PROGN (SETQ A 1

B 2

C 3 ..))

(The symbol “..” is printed out to ensure that a reader error will occur if

the output is later read. A symbol different from “...” is used to indicate

that a different kind of abbreviation has occurred.)

27.3. Dynamic Control of the Arrangement of Output

The following functions and macros support precise control of what should be

done when a piece of output is too large to fit in the space available. Three

concepts underlie the way these operations work: logical blocks, conditional
newlines, and sections. Before proceeding further, it is important to define

these terms.

The first line of figure 27-1 shows a schematic piece of output. The charac-

ters in the output are represented by hyphens. The positions of conditional

newlines are indicated by digits. The beginnings and ends of logical blocks
are indicated in the figure by “<” and “>” respectively.

The output as a whole is a logical block and the outermost section. This

section is indicated by the 0’s on the second line of figure 27-1. Logical blocks

nested within the output are specified by the macro pprint-logical-block.
Conditional newline positions are specified by calls on pprint-newline. Each

conditional newline defines two sections (one before it and one after it) and

is associated with a third (the section immediately containing it).

The section after a conditional newline consists of all the output up to, but

not including, (a) the next conditional newline immediately contained in the
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Figure 27-1: Example of Logical Blocks, Conditional Newlines, and Sections

<-1---<--<--2---3->--4-->->

000000000000000000000000000

11 111111111111111111111111

22 222

333 3333

44444444444444 44444

same logical block; or if (a) is not applicable, (b) the next newline that is at a

lesser level of nesting in logical blocks; or if (b) is not applicable, (c) the end

of the output.
The section before a conditional newline consists of all the output back

to, but not including, (a) the previous conditional newline that is immedi-

ately contained in the same logical block; or if (a) is not applicable, (b) the

beginning of the immediately containing logical block. The last four lines in

figure 27-1 indicate the sections before and after the four conditional newlines.
The section immediately containing a conditional newline is the shortest

section that contains the conditional newline in question. In figure 27-1, the

first conditional newline is immediately contained in the section marked with

0’s, the second and third conditional newlines are immediately contained in

the section before the fourth conditional newline, and the fourth conditional
newline is immediately contained in the section after the first conditional

newline.

Whenever possible, the pretty printer displays the entire contents of a sec-

tion on a single line. However, if the section is too long to fit in the space

available, line breaks are inserted at conditional newline positions within the
section.

[Function]pprint-newline kind &optional stream

The stream (which defaults to *standard-output*) follows the standard con-

ventions for stream arguments to printing functions (that is, nil stands for
*standard-output* and t stands for *terminal-io*). The kind argument

specifies the style of conditional newline. It must be one of :linear, :fill,

:miser, or :mandatory. An error is signaled if any other value is supplied.

If stream is a pretty printing stream created by pprint-logical-block, a

line break is inserted in the output when the appropriate condition below is
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satisfied. Otherwise, pprint-newline has no effect. The value nil is always

returned.

If kind is :linear, it specifies a ‘linear-style’ conditional newline. A line

break is inserted if and only if the immediately containing section cannot be

printed on one line. The effect of this is that line breaks are either inserted

at every linear-style conditional newline in a logical block or at none of them.

If kind is :miser, it specifies a ‘miser-style’ conditional newline. A line

break is inserted if and only if the immediately containing section cannot be

printed on one line and miser style is in effect in the immediately containing
logical block. The effect of this is that miser-style conditional newlines act

like linear-style conditional newlines, but only when miser style is in effect.

Miser style is in effect for a logical block if and only if the starting position

of the logical block is less than or equal to *print-miser-width* from the
right margin.

If kind is :fill, it specifies a ‘fill-style’ conditional newline. A line break
is inserted if and only if either (a) the following section cannot be printed

on the end of the current line, (b) the preceding section was not printed on

a single line, or (c) the immediately containing section cannot be printed

on one line and miser style is in effect in the immediately containing logical

block. If a logical block is broken up into a number of subsections by fill-style
conditional newlines, the basic effect is that the logical block is printed with

as many subsections as possible on each line. However, if miser style is in

effect, fill-style conditional newlines act like linear-style conditional newlines.

If kind is :mandatory, it specifies a ‘mandatory-style’ conditional newline.

A line break is always inserted. This implies that none of the containing

sections can be printed on a single line and will therefore trigger the insertion

of line breaks at linear-style conditional newlines in these sections.

When a line break is inserted by any type of conditional newline, any blanks

that immediately precede the conditional newline are omitted from the output
and indentation is introduced at the beginning of the next line. By default,

the indentation causes the following line to begin in the same horizontal po-

sition as the first character in the immediately containing logical block. (The

indentation can be changed via pprint-indent.)

There are a variety of ways unconditional newlines can be introduced into

the output (for example, via terpri or by printing a string containing a
newline character). As with mandatory conditional newlines, this prevents

any of the containing sections from being printed on one line. In general, when

an unconditional newline is encountered, it is printed out without suppression

of the preceding blanks and without any indentation following it. However, if

a per-line prefix has been specified (see pprint-logical-block), that prefix
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will always be printed no matter how a newline originates.

[Macro]pprint-logical-block (stream-symbol list
[[ {:prefix | :per-line-prefix} p | :suffix s ]] )

{ form}∗

This macro causes printing to be grouped into a logical block. It returns nil.

The stream-symbol must be a symbol. If it is nil, it is treated the same as
if it were *standard-output*. If it is t, it is treated the same as if it were

*terminal-io*. The run-time value of stream-symbol must be a stream (or

nil standing for *standard-output* or t standing for *terminal-io*). The

logical block is printed into this destination stream.

The body (which consists of the forms) can contain any arbitrary Lisp

forms. Within the body, stream-symbol (or *standard-output* if stream-

symbol is nil, or *terminal-io* if stream-symbol is t) is bound to a “pretty
printing” stream that supports decisions about the arrangement of output

and then forwards the output to the destination stream. All the standard

printing functions (for example, write, princ, terpri) can be used to send

output to the pretty printing stream created by pprint-logical-block. All
and only the output sent to this pretty printing stream is treated as being in

the logical block.

pprint-logical-block and the pretty printing stream it creates have dy-

namic extent. It is undefined what happens if output is attempted outside

of this extent to the pretty printing stream created. It is unspecified what

happens if, within this extent, any output is sent directly to the underlying

destination stream (by calling write-char, for example).

The :suffix, :prefix, and :per-line-prefix arguments must all be ex-

pressions that (at run time) evaluate to strings. The :suffix argument s
(which defaults to the null string) specifies a suffix that is printed just after the

logical block. The :prefix and :per-line-prefix arguments are mutually

exclusive. If neither :prefix nor :per-line-prefix is specified, a :prefix

of the null string is assumed. The :prefix argument specifies a prefix p that

is printed before the beginning of the logical block. The :per-line-prefix

specifies a prefix p that is printed before the block and at the beginning of

each subsequent line in the block. An error is signaled if :prefix and :per-

line-prefix are both used or if a :suffix, :prefix, or :pre-line-prefix

argument does not evaluate to a string.

The list is interpreted as being a list that the body is responsible for printing.

(See pprint-exit-if-list-exhausted and pprint-pop.) If list does not (at

run time) evaluate to a list, it is printed using write. (This makes it easier to
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write printing functions that are robust in the face of malformed arguments.)

If *print-circle* (and possibly also *print-shared*) is not nil and list is

a circular (or shared) reference to a cons, then an appropriate “#--n#--” marker

is printed. (This makes it easy to write printing functions that provide full

support for circularity and sharing abbreviation.) If *print-level* is not nil
and the logical block is at a dynamic nesting depth of greater than *print-

level* in logical blocks, “#--” is printed. (This makes it easy to write printing

functions that provide full support for depth abbreviation.)

If any of the three preceding conditions occurs, the indicated output is
printed on stream-symbol and the body is skipped along with the printing of

the prefix and suffix. (If the body is not responsible for printing a list, then the

first two tests above can be turned off by supplying nil for the list argument.)

In addition to the list argument of pprint-logical-block, the arguments

of the standard printing functions such as write, print, pprint, print1, and
pprint, as well as the arguments of the standard format directives such as

~A, ~S, (and ~W) are all checked (when necessary) for circularity and shar-

ing. However, such checking is not applied to the arguments of the functions

write-line, write-string, and write-char or to the literal text output by
format. A consequence of this is that you must use one of the latter functions

if you want to print some literal text in the output that is not supposed to be

checked for circularity or sharing. (See the examples below.)

Implementation note: Detection of circularity and sharing is supported by the
pretty printer by in essence performing the requested output twice. On the first
pass, circularities and sharing are detected and the actual outputting of characters
is suppressed. On the second pass, the appropriate “#--nUU” and “#--n#--” markers are
inserted and characters are output.

A consequence of this two-pass approach to the detection of circularity and sharing
is that the body of a pprint-logical-block must not perform any side-effects on
the surrounding environment. This includes not modifying any variables that are
bound outside of its scope. Obeying this restriction is facilitated by using pprint-

pop, instead of an ordinary pop when traversing a list being printed by the body of
a pprint-logical-block.)

[Macro]pprint-exit-if-list-exhausted

pprint-exit-if-list-exhausted tests whether or not the list argument of

pprint-logical-block has been exhausted (see pprint-pop). If this list has

been reduced to nil, pprint-exit-if-list-exhausted terminates the exe-

cution of the immediately containing pprint-logical-block except for the

printing of the suffix. Otherwise pprint-exit-if-list-exhausted returns
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nil. An error message is issued if pprint-exit-if-list-exhausted is used

anywhere other than syntactically nested within a call on pprint-logical-

block. It is undefined what happens if pprint-pop is executed outside of the

dynamic extent of this pprint-logical-block.

[Macro]pprint-pop

pprint-pop pops elements one at a time off the list argument of pprint-

logical-block, taking care to obey *print-length*, *print-circle*, and

*print-shared*. An error message is issued if it is used anywhere other than
syntactically nested within a call on pprint-logical-block. It is undefined

what happens if pprint-pop is executed outside of the dynamic extent of this

call on pprint-logical-block.

Each time pprint-pop is called, it pops the next value off the list argu-

ment of pprint-logical-block and returns it. However, before doing this,

it performs three tests. If the remaining list is not a list (neither a cons nor
nil), “. ” is printed followed by the remaining list. (This makes it easier

to write printing functions that are robust in the face of malformed argu-

ments.) If *print-length* is nil and pprint-pop has already been called

*print-length* times within the immediately containing logical block, “...”

is printed. (This makes it easy to write printing functions that properly handle
*print-length*.) If *print-circle* (and possibly also *print-shared*)

is not nil, and the remaining list is a circular (or shared) reference, then “. ”

is printed followed by an appropriate “#--n#--” marker. (This catches instances

of cdr circularity and sharing in lists.)

If any of the three preceding conditions occurs, the indicated output is

printed on the pretty printing stream created by the immediately contain-
ing pprint-logical-block and the execution of the immediately containing

pprint-logical-block is terminated except for the printing of the suffix.

If pprint-logical-block is given a list argument of nil—because it is not

processing a list—pprint-pop can still be used to obtain support for *print-

length* (see the example function pprint-vector below). In this situation,

the first and third tests above are disabled and pprint-pop always returns
nil.

[Function]pprint-indent relative-to n &optional stream

pprint-indent specifies the indentation to use in a logical block. Stream

(which defaults to *standard-output*) follows the standard conventions for
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stream arguments to printing functions. The argument n specifies the inden-

tation in ems. If relative-to is :block, the indentation is set to the horizon-

tal position of the first character in the block plus n ems. If relative-to is

:current, the indentation is set to the current output position plus n ems.

The argument n can be negative; however, the total indentation cannot be

moved left of the beginning of the line or left of the end of the rightmost
per-line prefix. Changes in indentation caused by pprint-indent do not take

effect until after the next line break. In addition, in miser mode all calls

on pprint-indent are ignored, forcing the lines corresponding to the logical

block to line up under the first character in the block.

An error is signaled if a value other than :block or :current is supplied for

relative-to. If stream is a pretty printing stream created by pprint-logical-

block, pprint-indent sets the indentation in the innermost dynamically en-
closing logical block. Otherwise, pprint-indent has no effect. The value nil

is always returned.

[Function]pprint-tab kind colnum colinc &optional stream

pprint-tab specifies tabbing as performed by the standard format directive

~T. Stream (which defaults to *standard-output*) follows the standard con-

ventions for stream arguments to printing functions. The arguments colnum

and colinc correspond to the two parameters to ~T and are in terms of ems.
The kind argument specifies the style of tabbing. It must be one of :line (tab

as by ~T) :section (tab as by ~T, but measuring horizontal positions rela-

tive to the start of the dynamically enclosing section), :line-relative (tab

as by ~@T), or :section-relative (tab as by ~@T, but measuring horizontal
positions relative to the start of the dynamically enclosing section). An error

is signaled if any other value is supplied for kind. If stream is a pretty printing

stream created by pprint-logical-block, tabbing is performed. Otherwise,

pprint-tab has no effect. The value nil is always returned.

[Function]pprint-fill stream list &optional colon? atsign?

[Function]pprint-linear stream list &optional colon? atsign?
[Function]pprint-tabular stream list &optional colon? atsign?

tabsize

These three functions specify particular ways of pretty printing lists. Stream

follows the standard conventions for stream arguments to printing functions.

Each function prints parentheses around the output if and only if colon? (de-

fault t) is not nil. Each function ignores its atsign? argument and returns
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nil. (These two arguments are included in this way so that these functions

can be used via ~/.../ and as set-pprint-dispatch functions as well as

directly.) Each function handles abbreviation and the detection of circular-

ity and sharing correctly and uses write to print list when given a non-list

argument.

The function pprint-linear prints a list either all on one line or with each

element on a separate line. The function pprint-fill prints a list with as

many elements as possible on each line. The function pprint-tabular is the

same as pprint-fill except that it prints the elements so that they line up
in columns. This function takes an additional argument tabsize (default 16)

that specifies the column spacing in ems.

As an example of the interaction of logical blocks, conditional newlines, and

indentation, consider the function pprint-defun below. This function pretty
prints a list whose car is defun in the standard way assuming that the length

of the list is exactly 4.

;;; Pretty printer function for DEFUN forms.

(defun pprint-defun (list)

(pprint-logical-block (nil list :prefix "(" :suffix ")")

(write (first list))

(write-char #--\space)

(pprint-newline :miser)

(pprint-indent :current 0)

(write (second list))

(write-char #--\space)

(pprint-newline :fill)

(write (third list))

(pprint-indent :block 1)

(write-char #--\space)

(pprint-newline :linear)

(write (fourth list))))

Suppose that one evaluates the following:

(pprint-defun ’(defun prod (x y) (* x y)))

If the line width available is greater than or equal to 26, all of the output

appears on one line. If the width is reduced to 25, a line break is inserted

at the linear-style conditional newline before (* X Y), producing the output
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shown below. The (pprint-indent :block 1) causes (* X Y) to be printed

at a relative indentation of 1 in the logical block.

(DEFUN PROD (X Y)

(* X Y))

If the width is 15, a line break is also inserted at the fill-style conditional
newline before the argument list. The argument list lines up under the func-

tion name because of the call on (pprint-indent :current 0) before the

printing of the function name.

(DEFUN PROD

(X Y)

(* X Y))

If *print-miser-width*were greater than or equal to 14, the output would

have been entirely in miser mode. All indentation changes are ignored in miser

mode and line breaks are inserted at miser-style conditional newlines. The
result would have been as follows:

(DEFUN

PROD

(X Y)

(* X Y))

As an example of the use of a per-line prefix, consider that evaluating the

expression

(pprint-logical-block (nil nil :per-line-prefix ";;; ")

(pprint-defun ’(defun prod (x y) (* x y))))

produces the output

;;; (DEFUN PROD

;;; (X Y)

;;; (* X Y))

with a line width of 20 and nil as the value of the printer control variable

*print-miser-width*.

(If *print-miser-width* were not nil the output

;;; (DEFUN

;;; PROD

;;; (X Y)

;;; (* X Y))
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might appear instead.)

As a more complex (and realistic) example, consider the function pprint-

let below. This specifies how to pretty print a let in the standard style. It
is more complex than pprint-defun because it has to deal with nested struc-

ture. Also, unlike pprint-defun, it contains complete code to print readably

any possible list that begins with the symbol let. The outermost pprint-

logical-block handles the printing of the input list as a whole and speci-

fies that parentheses should be printed in the output. The second pprint-

logical-block handles the list of binding pairs. Each pair in the list is itself

printed by the innermost pprint-logical-block. (A loop is used instead of

merely decomposing the pair into two elements so that readable output will

be produced no matter whether the list corresponding to the pair has one
element, two elements, or (being malformed) has more than two elements.)

A space and a fill-style conditional newline are placed after each pair except

the last. The loop at the end of the topmost pprint-logical-block prints

out the forms in the body of the let separated by spaces and linear-style

conditional newlines.
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;;; Pretty printer function for LET forms,

;;; carefully coded to handle malformed binding pairs.

(defun pprint-let (list)

(pprint-logical-block (nil list :prefix "(" :suffix ")")

(write (pprint-pop))

(pprint-exit-if-list-exhausted)

(write-char #--\space)

(pprint-logical-block

(nil (pprint-pop) :prefix "(" :suffix ")")

(pprint-exit-if-list-exhausted)

(loop (pprint-logical-block

(nil (pprint-pop) :prefix "(" :suffix ")")

(pprint-exit-if-list-exhausted)

(loop (write (pprint-pop))

(pprint-exit-if-list-exhausted)

(write-char #--\space)

(pprint-newline :linear)))

(pprint-exit-if-list-exhausted)

(write-char #--\space)

(pprint-newline :fill)))

(pprint-indent :block 1)

(loop (pprint-exit-if-list-exhausted)

(write-char #--\space)

(pprint-newline :linear)

(write (pprint-pop)))))

Suppose that the following is evaluated with *print-level* having the

value 4 and *print-circle* having the value t.

(pprint-let ’#--1UU(let (x (*print-length* (f (g 3)))

(z . 2) (k (car y)))

(setq x (sqrt z)) #--1#--))

If the line length is greater than or equal to 77, the output produced appears

on one line. However, if the line length is 76, line breaks are inserted at the
linear-style conditional newlines separating the forms in the body and the

output below is produced. Note that the degenerate binding pair X is printed

readably even though it fails to be a list; a depth abbreviation marker is

printed in place of (G 3); the binding pair (Z . 2) is printed readably even

though it is not a proper list; and appropriate circularity markers are printed.
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#--1UU(LET (X (*PRINT-LENGTH* (F #--)) (Z . 2) (K (CAR Y)))

(SETQ X (SQRT Z))

#--1#--)

If the line length is reduced to 35, a line break is inserted at one of the
fill-style conditional newlines separating the binding pairs.

#--1UU(LET (X (*PRINT-PRETTY* (F #--))

(Z . 2) (K (CAR Y)))

(SETQ X (SQRT Z))

#--1#--)

Suppose that the line length is further reduced to 22 and *print-length*

is set to 3. In this situation, line breaks are inserted after both the first and

second binding pairs. In addition, the second binding pair is itself broken

across two lines. Clause (b) of the description of fill-style conditional newlines

prevents the binding pair (Z . 2) from being printed at the end of the third
line. Note that the length abbreviation hides the circularity from view and

therefore the printing of circularity markers disappears.

(LET (X

(*PRINT-LENGTH*

(F #--))

(Z . 2) ...)

(SETQ X (SQRT Z))

...)

The function pprint-tabular could be defined as follows:

(defun pprint-tabular (s list &optional (c? t) a? (size 16))

(declare (ignore a?))

(pprint-logical-block

(s list :prefix (if c? "(" "") :suffix (if c? ")" ""))

(pprint-exit-if-list-exhausted)

(loop (write (pprint-pop) :stream s)

(pprint-exit-if-list-exhausted)

(write-char #--\space s)

(pprint-tab :section-relative 0 size s)

(pprint-newline :fill s))))

Evaluating the following with a line length of 25 produces the output shown.
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(princ "Roads ")

(pprint-tabular nil ’(elm main maple center) nil nil 8)

Roads ELM MAIN

MAPLE CENTER

The function below prints a vector using #--(...) notation.

(defun pprint-vector (v)

(pprint-logical-block (nil nil :prefix "#--(" :suffix ")")

(let ((end (length v)) (i 0))

(when (plusp end)

(loop (pprint-pop)

(write (aref v i))

(if (UU (incf i) end) (return nil))

(write-char #--\space)

(pprint-newline :fill))))))

Evaluating the following with a line length of 15 produces the output shown.

(pprint-vector ’#--(12 34 567 8 9012 34 567 89 0 1 23))

#--(12 34 567 8

9012 34 567

89 0 1 23)

27.4. Format Directive Interface

The primary interface to operations for dynamically determining the arrange-

ment of output is provided through the functions above. However, an addi-

tional interface is provided via a set of format directives because, as shown
by the examples in this section and the next, format strings are typically a

much more compact way to specify pretty printing. In addition, without such

an interface, one would have to abandon the use of format when interacting

with the pretty printer.

~W

Write. An arg, any Lisp object, is printed obeying every printer control vari-

able (as by write). In addition, ~W interacts correctly with depth abbreviation

by not resetting the depth counter to zero. ~W does not accept parameters. If
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given the colon modifier, ~W binds *print-pretty* to t. If given the atsign

modifier, ~W binds *print-level* and *print-length* to nil.

~W provides automatic support for circularity detection. If *print-circle*

(and possibly also *print-shared*) is not nil and ~W is applied to an argu-

ment that is a circular (or shared) reference, an appropriate “#--n#--” marker is
inserted in the output instead of printing the argument.

~_

Conditional newline. Without any modifiers, ~_ is equivalent to (pprint-

newline :linear). The directive ~@_ is equivalent to (pprint-newline

:miser). The directive ~:_ is equivalent to (pprint-newline :fill). The

directive ~:@_ is equivalent to (pprint-newline :mandatory).

~<str~:>

Logical block. If ~:> is used to terminate a ~<... directive, the directive

is equivalent to a call on pprint-logical-block. The format argument
corresponding to the ~<...~:> directive is treated in the same way as the list

argument to pprint-logical-block, thereby providing automatic support

for non-list arguments and the detection of circularity, sharing, and depth

abbreviation. The portion of the format control string nested within the

~<...~:> specifies the :prefix (or :per-line-prefix), :suffix, and body
of the pprint-logical-block.

The format string portion enclosed by ~<...~:> can be divided into seg-

ments ~<prefix~;body~;suffix~:> by ~; directives. If the first section is ter-

minated by ~@;, it specifies a per-line prefix rather than a simple prefix. The
prefix and suffix cannot contain format directives. An error is signaled if ei-

ther the prefix or suffix fails to be a constant string or if the enclosed portion

is divided into more than three segments.

If the enclosed portion is divided into only two segments, the suffix defaults

to the null string. If the enclosed portion consists of only a single segment,
both the prefix and the suffix default to the null string. If the colon modifier

is used (that is, ~:<...~:>), the prefix and suffix default to "(" and ")",

respectively, instead of the null string.

The body segment can be any arbitrary format control string. This format
control string is applied to the elements of the list corresponding to the

~<...~:> directive as a whole. Elements are extracted from this list using

pprint-pop, thereby providing automatic support for malformed lists and the

detection of circularity, sharing, and length abbreviation. Within the body

segment, ~̂ acts like pprint-exit-if-list-exhausted.
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~<...~:> supports a feature not supported by pprint-logical-block.

If ~:@> is used to terminate the directive (that is, ~<...~:@>), then a fill-

style conditional newline is automatically inserted after each group of blanks

immediately contained in the body (except for blanks after a ~<newline>

directive). This makes it easy to achieve the equivalent of paragraph filling.
If the atsign modifier is used with ~<...~:>, the entire remaining argu-

ment list is passed to the directive as its argument. All of the remaining

arguments are always consumed by ~@<...~:>, even if they are not all used

by the format string nested in the directive. Other than the difference in its
argument, ~@<...~:> is exactly the same as ~<...~:>, except that circularity

(and sharing) detection is not applied if the ~@<...~:> is at top level in a

format string. This ensures that circularity detection is applied only to data

lists and not to format argument lists.

To a considerable extent, the basic form of the directive ~<...~> is incom-
patible with the dynamic control of the arrangement of output by ~W, ~_,

~<...~:>, ~I, and ~:T. As a result, an error is signaled if any of these direc-

tives is nested within ~<...~>. Beyond this, an error is also signaled if the

~<...~:;...~> form of ~<...~> is used in the same format string with ~W,

~_, ~<...~:>, ~I, or ~:T.

~I

Indent. ~nI is equivalent to (pprint-indent :block n). ~:nI is equivalent
to (pprint-indent :current n). In both cases, n defaults to zero if it is

omitted.

~:T

Tabulate. If the colon modifier is used with the ~T directive, the tabbing
computation is done relative to the column where the section immediately

containing the directive begins, rather than with respect to column zero.

~n,m:T is equivalent to (pprint-tab :section n m). ~n,m:@T is equiva-

lent to (pprint-tab :section-relative n m). The numerical parameters
are both interpreted as being in units of ems and both default to 1.

~/name/

Call function. User-defined functions can be called from within a format

string by using the directive~/name/. The colon modifier, the atsign modifier,

and arbitrarily many parameters can be specified with the ~/name/ directive.

The name can be any string that does not contain “/”. All of the characters

in name are treated as if they were upper case. If name contains a “:” or

“::”, then everything up to but not including the first “:” or “::” is taken
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to be a string that names a package. Everything after the first “:” or “::” (if

any) is taken to be a string that names a symbol. The function corresponding

to a ~/name/ directive is obtained by looking up the symbol that has the

indicated name in the indicated package. If name does not contain a “:” or

“::”, then the whole name string is looked up in the user package.

When a ~/name/ directive is encountered, the indicated function is called

with four or more arguments. The first four arguments are the output stream,

the format argument corresponding to the directive, the value t if the colon

modifier was used (nil otherwise), and the value t if the atsign modifier was
used (nil otherwise). The remaining arguments consist of any parameters

specified with the directive. The function should print the argument appro-

priately. Any values returned by the function are ignored.

The three functions pprint-linear, pprint-fill, and pprint-tabular

are designed so that they can be called by ~/.../ (that is, ~/pprint-linear/,

~/pprint-fill/, and ~/pprint-tabular/. In particular they take colon and

atsign arguments.

As examples of the convenience of specifying pretty printing with format

strings, consider the functions pprint-defun and pprint-let used as ex-

amples in the last section. They can be more compactly defined as follows.

The function pprint-vector cannot be defined using format, because the
data structure it traverses is not a list. The function pprint-tabular is in-

convenient to define using format, because of the need to pass its tabsize

argument through to a ~:T directive nested within an iteration over a list.

(defun pprint-defun (list)

(format t "~:<~W ~@_~:I~W ~:_~W~1I ~_~W~:>" list))

(defun pprint-let (list)

(format t "~:<~W~̂ ~:<~@{~:<~@{~W~̂ ~_~}~:>~̂ ~:_~}~:>~1I~
~@{~̂ ~_~W~}~:>"

list))

27.5. Compiling Format Control Strings

The control strings used by format are essentially programs that perform

printing. The macro formatter provides the efficiency of using a compiled

function for printing without losing the visual compactness of format strings.
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[Macro]formatter control-string

The control-string must be a literal string. An error is signaled if control-

string is not a valid format control string. The macro formatter expands into

an expression of the form (function (lambda (stream &rest args) ...))

that does the printing specified by control-string. The lambda created accepts

an output stream as its first argument and zero or more data values as its

remaining arguments. The value returned by the lambda is the tail (if any)

of the data values that are not printed out by control-string. (For example, if
the control-string is "~A~A", the cddr (if any) of the data values is returned.)

The form (formatter "~%~2@{~S, ~}") is equivalent to the following:

#--’(lambda (stream &rest args)

(terpri stream)

(dotimes (n 2)

(if (null args) (return nil))

(prin1 (pop args) stream)

(write-string ", " stream))

args)

In support of the above mechanism, format is extended so that it accepts

functions as its second argument as well as strings. When a function is pro-
vided, it must be a function of the form created by formatter. The function

is called with the appropriate output stream as its first argument and the

data arguments to format as its remaining arguments. The function should

perform whatever output is necessary and return the unused tail of the argu-
ments (if any). The directives ~? and ~{~} with no body are also extended

so that they accept functions as well as control strings. Every other stan-

dard function that takes a format string as an argument (for example, error

and warn) is also extended so that it can accept functions of the form above

instead.

27.6. Pretty Printing Dispatch Tables

When *print-pretty* is not nil, the pprint dispatch table in the variable

*print-pprint-dispatch* controls how objects are printed. The informa-
tion in this table takes precedence over all other mechanisms for specifying

how to print objects. In particular, it overrides user-defined print-object

methods and print functions for structures. However, if there is no specifi-

cation for how to pretty print a particular kind of object, it is then printed

using the standard mechanisms as if *print-pretty* were nil.
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A pprint dispatch table is a mapping from keys to pairs of values. The keys

are type specifiers. The values are functions and numerical priorities. Basic

insertion and retrieval is done based on the keys with the equality of keys

being tested by equal. The function to use when pretty printing an object is

chosen by finding the highest priority function in *print-pprint-dispatch*

that is associated with a type specifier that matches the object.

[Function]copy-pprint-dispatch &optional table

A copy is made of table, which defaults to the current pprint dispatch table.

If table is nil, a copy is returned of the initial value of *print-pprint-

dispatch*.

[Function]pprint-dispatch object &optional table

This retrieves the highest priority function from a pprint table that is asso-

ciated with a type specifier in the table that matches object. The function is

chosen by finding all the type specifiers in table that match the object and
selecting the highest priority function associated with any of these type spec-

ifiers. If there is more than one highest priority function, an arbitrary choice

is made. If no type specifiers match the object, a function is returned that

prints object with *print-pretty* bound to nil.

As a second return value, pprint-dispatch returns a flag that is t if a

matching type specifier was found in table and nil if not.

Table (which defaults to *print-pprint-dispatch*) must be a pprint dis-

patch table. Table can be nil, in which case retrieval is done in the initial
value of *print-pprint-dispatch*.

When *print-pretty* is t, (write object :stream s) is equivalent to

(funcall (pprint-dispatch object) s object).

[Function]set-pprint-dispatch type function &optional priority table

This puts an entry into a pprint dispatch table and returns nil. The type

must be a valid type specifier and is the key of the entry. The first action
of set-pprint-dispatch is to remove any pre-existing entry associated with

type. This guarantees that there will never be two entries associated with the

same type specifier in a given pprint dispatch table. Equality of type specifiers

is tested by equal.

Two values are associated with each type specifier in a pprint dispatch

table: a function and a priority. The function must accept two arguments:
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the stream to send output to and the object to be printed. The function

should pretty print the object on the stream. The function can assume that

object satisfies type. The function should obey *print-readably*. Any

values returned by the function are ignored.

The priority (which defaults to 0) must be a non-complex number. This
number is used as a priority to resolve conflicts when an object matches more

than one entry. An error is signaled if priority fails to be a non-complex

number.

The table (which defaults to the value of *print-pprint-dispatch*) must
be a pprint dispatch table. The specified entry is placed in this table.

It is permissible for function to be nil. In this situation, there will be no

type entry in table after set-pprint-dispatch is evaluated.

To facilitate the use of pprint dispatch tables for controlling the pretty

printing of Lisp code, the type-specifier argument of the function set-pprint-

dispatch is allowed to contain the form (cons car-type cdr-type). This form

indicates that the corresponding object must be a cons whose car satisfies the

type specifier car-type and whose cdr satisfies the type specifier cdr-type. The

cdr-type can be omitted, in which case it defaults to t.

The initial value of *print-pprint-dispatch* is implementation-

dependent. However, the initial entries all use a special class of priorities

that are less than every priority that can be specified using set-pprint-

dispatch. This guarantees that pretty printing functions specified by users

will override everything in the initial value of *print-pprint-dispatch*.

Consider the following examples. The first form restores *print-pprint-

dispatch* to its initial value. The next two forms then specify a special way
of pretty printing ratios. Note that the more specific type specifier has to be

associated with a higher priority.

(setq *print-pprint-dispatch*

(copy-pprint-dispatch nil))

(defun div-print (s r colon? atsign?)

(declare (ignore colon? atsign?))

(format s "(/ ~D ~D)" (numerator (abs r)) (denominator r)))

(set-pprint-dispatch ’ratio (formatter "#--.~/div-print/"))
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(set-pprint-dispatch ’(and ratio (satisfies minusp))

(formatter "#--.(- ~/div-print/)")

5)

(pprint ’(1/3 -2/3)) prints: (#--.(/ 1 3) #--.(- (/ 2 3)))

The following two forms illustrate the specification of pretty printing func-
tions for particular types of Lisp code. The first form illustrates how to specify

the traditional method for printing quoted objects using “’” syntax. Note the

care taken to ensure that data lists that happen to begin with quote will be

printed readably. The second form specifies that lists beginning with the
symbol my-let should print the same way that lists beginning with let print

when the initial pprint dispatch table is in effect.

(set-pprint-dispatch ’(cons (member quote))

#--’(lambda (s list)

(if (and (consp (cdr list)) (null (cddr list)))

(funcall (formatter "’~W") s (cadr list))

(pprint-fill s list)))))

(set-pprint-dispatch ’(cons (member my-let))

(pprint-dispatch ’(let) nil))

The next example specifies a default method for printing lists that do not
correspond to function calls. Note that, as shown in the definition of pprint-

tabular above, pprint-linear, pprint-fill, and pprint-tabular are de-

fined with optional colon and atsign arguments so that they can be used as

pprint dispatch functions as well as ~/.../ functions.

(set-pprint-dispatch

’(cons (not (and symbol (satisfies fboundp))))

#--’pprint-fill

-5)

With a line length of 9, (pprint ’(0 b c d e f g h i j k)) prints:

(0 b c d

e f g h

i j k)

This final example shows how to define a pretty printing function for a user

defined data structure.
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(defstruct family mom kids)

(set-pprint-dispatch ’family

#--’(lambda (s f)

(format s "~@<#--<~;~W and ~2I~_~/pprint-fill/~;>~:>"

(family-mom f) (family-kids f))))

The pretty printing function for the structure family specifies how to adjust
the layout of the output so that it can fit aesthetically into a variety of line

widths. In addition, it obeys the printer control variables *print-level*,

*print-length*, *print-lines*, *print-circle*, *print-shared*, and

*print-escape*, and can tolerate several different kinds of malformity in the
data structure. The output below shows what is printed out with a right

margin of 25, *print-pretty* t, *print-escape* nil, and a malformed

kids list.

(write (list ’principal-family

(make-family :mom "Lucy"

:kids ’("Mark" "Bob" . "Dan")))

:right-margin 25 :pretty T :escape nil :miser-width nil)

(PRINCIPAL-FAMILY

#--<Lucy and

Mark Bob . Dan>)

Note that a pretty printing function for a structure is different from the

structure’s print function. While print functions are permanently associated
with a structure, pretty printing functions are stored in pprint dispatch tables

and can be rapidly changed to reflect different printing needs. If there is no

pretty printing function for a structure in the current print dispatch table,

the print function (if any) is used instead.



28

Common Lisp Object System

BY DANIEL G. BOBROW, LINDA G. DEMICHIEL, RICHARD P. GABRIEL,
SONYA E. KEENE, GREGOR KICZALES, AND DAVID A. MOON

preface: X3J13 voted in June 1988 〈12〉 to adopt the first two chapters

(of three) of the Common Lisp Object System specification as a part of the

forthcoming draft Common Lisp standard.

This chapter presents the bulk of the first two chapters of the Common

Lisp Object System specification; it is substantially identical to these two

specification chapters as previously published elsewhere [5, 6, 7]. I have edited
the material only very lightly to conform to the overall style of this book and

to save a substantial number of pages by using a typographically condensed

presentation. I have inserted a small number of bracketed remarks, identified

by the initials GLS. The chapter divisions of the original specification have
become section divisions in this chapter; references to the three chapters of the

original specification now refer to the three “parts” of the specification. (See

the Acknowledgments to this second edition for acknowledgments to others

who contributed to the Common Lisp Object System specification.) This

is not the last word on CLOS; X3J13 may well refine this material further.
Keene has written a good tutorial introduction to CLOS [26].

—Guy L. Steele Jr.

28.1. Programmer Interface Concepts

The Common Lisp Object System (CLOS) is an object-oriented extension to
Common Lisp. It is based on generic functions, multiple inheritance, declar-

ative method combination, and a meta-object protocol.

The first two parts of this specification describe the standard Programmer

Interface for the Common Lisp Object System. The first part, Programmer

Interface Concepts, contains a description of the concepts of the Common Lisp

Object System, and the second part, Functions in the Programmer Interface,

contains a description of the functions and macros in the Common Lisp Object

831
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System Programmer Interface. The third part, The Common Lisp Object

System Meta-Object Protocol, explains how the Common Lisp Object System

can be customized. [The third part has not yet been approved by X3J13 for

inclusion in the forthcoming Common Lisp standard and is not included in

this book.—GLS]

The fundamental objects of the Common Lisp Object System are classes,
instances, generic functions, and methods.

A class object determines the structure and behavior of a set of other

objects, which are called its instances. Every Common Lisp object is an

instance of a class. The class of an object determines the set of operations

that can be performed on the object.

A generic function is a function whose behavior depends on the classes or
identities of the arguments supplied to it. A generic function object contains

a set of methods, a lambda-list, a method combination type, and other in-

formation. The methods define the class-specific behavior and operations of

the generic function; a method is said to specialize a generic function. When
invoked, a generic function executes a subset of its methods based on the

classes of its arguments.

A generic function can be used in the same ways as an ordinary function in

Common Lisp; in particular, a generic function can be used as an argument

to funcall and apply and can be given a global or a local name.

A method is an object that contains a method function, a sequence of
parameter specializers that specify when the given method is applicable, and

a sequence of qualifiers that is used by the method combination facility to

distinguish among methods. Each required formal parameter of each method

has an associated parameter specializer, and the method will be invoked only

on arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the or-
der in which they are run, and the values that are returned by the generic func-

tion. The Common Lisp Object System offers a default method combination

type and provides a facility for declaring new types of method combination.

28.1.1. Error Terminology

The terminology used in this chapter to describe erroneous situations dif-

fers from the terminology used in the first edition. The new terminology

involves situations; a situation is the evaluation of an expression in some spe-

cific context. For example, a situation might be the invocation of a function

on arguments that fail to satisfy some specified constraints.
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In the specification of the Common Lisp Object System, the behavior of

programs in all situations is described, and the options available to the im-

plementor are defined. No implementation is allowed to extend the syntax

or semantics of the Object System except as explicitly defined in the Object

System specification. In particular, no implementation is allowed to extend
the syntax of the Object System in such a way that ambiguity between the

specified syntax of the Object System and those extensions is possible.

“When situation S occurs, an error is signaled.”

This terminology has the following meaning:

. If this situation occurs, an error will be signaled in the interpreter and in

code compiled under all compiler safety optimization levels.

. Valid programs may rely on the fact that an error will be signaled in the
interpreter and in code compiled under all compiler safety optimization

levels.

. Every implementation is required to detect such an error in the interpreter

and in code compiled under all compiler safety optimization levels.

“When situation S occurs, an error should be signaled.”

This terminology has the following meaning:

. If this situation occurs, an error will be signaled at least in the interpreter

and in code compiled under the safest compiler safety optimization level.

. Valid programs may not rely on the fact that an error will be signaled.

. Every implementation is required to detect such an error at least in the in-
terpreter and in code compiled under the safest compiler safety optimization

level.

. When an error is not signaled, the results are undefined (see below).

“When situation S occurs, the results are undefined.”

This terminology has the following meaning:

. If this situation occurs, the results are unpredictable. The results may range

from harmless to fatal.

. Implementations are allowed to detect this situation and signal an error,

but no implementation is required to detect the situation.
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. No valid program may depend on the effects of this situation, and all valid

programs are required to treat the effects of this situation as unpredictable.

“When situation S occurs, the results are unspecified.”

This terminology has the following meaning:

. The effects of this situation are not specified in the Object System, but the

effects are harmless.

. Implementations are allowed to specify the effects of this situation.

. No portable program can depend on the effects of this situation, and all

portable programs are required to treat the situation as unpredictable but

harmless.

“The Common Lisp Object System may be extended to cover situation S.”

The meaning of this terminology is that an implementation is free to treat

situation S in one of three ways:

. When situation S occurs, an error is signaled at least in the interpreter and

in code compiled under the safest compiler safety optimization level.

. When situation S occurs, the results are undefined.

. When situation S occurs, the results are defined and specified.

In addition, this terminology has the following meaning:

. No portable program can depend on the effects of this situation, and all

portable programs are required to treat the situation as undefined.

“Implementations are free to extend the syntax S.”

This terminology has the following meaning:

. Implementations are allowed to define unambiguous extensions to syntax S.

. No portable program can depend on this extension, and all portable pro-
grams are required to treat the syntax as meaningless.

The Common Lisp Object System specification may disallow certain exten-

sions while allowing others.
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28.1.2. Classes

A class is an object that determines the structure and behavior of a set of

other objects, which are called its instances.

A class can inherit structure and behavior from other classes. A class whose

definition refers to other classes for the purpose of inheriting from them is said

to be a subclass of each of those classes. The classes that are designated for
purposes of inheritance are said to be superclasses of the inheriting class.

A class can have a name. The function class-name takes a class object

and returns its name. The name of an anonymous class is nil. A symbol

can name a class. The function find-class takes a symbol and returns the

class that the symbol names. A class has a proper name if the name is a
symbol and if the name of the class names that class. That is, a class C has

the proper name S if S = (class-name C) and C = (find-class S). Notice

that it is possible for (find-class S1) = (find-class S2) and S1 6= S2. If

C = (find-class S), we say that C is the class named S.

A class C1 is a direct superclass of a class C2 if C2 explicitly designates

C1 as a superclass in its definition. In this case, C2 is a direct subclass of

C1. A class Cn is a superclass of a class C1 if there exists a series of classes

C2, . . . , Cn−1 such that Ci+1 is a direct superclass of Ci for 1 ≤ i < n. In this

case, C1 is a subclass of Cn. A class is considered neither a superclass nor a
subclass of itself. That is, if C1 is a superclass of C2, then C1 6= C2. The set

of classes consisting of some given class C along with all of its superclasses is

called “C and its superclasses.”

Each class has a class precedence list, which is a total ordering on the set of

the given class and its superclasses. The total ordering is expressed as a list
ordered from most specific to least specific. The class precedence list is used

in several ways. In general, more specific classes can shadow, or override,

features that would otherwise be inherited from less specific classes. The

method selection and combination process uses the class precedence list to
order methods from most specific to least specific.

When a class is defined, the order in which its direct superclasses are men-

tioned in the defining form is important. Each class has a local precedence

order , which is a list consisting of the class followed by its direct superclasses

in the order mentioned in the defining form.

A class precedence list is always consistent with the local precedence order of

each class in the list. The classes in each local precedence order appear within

the class precedence list in the same order. If the local precedence orders are

inconsistent with each other, no class precedence list can be constructed, and

an error is signaled. The class precedence list and its computation is discussed
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in section 28.1.5.

Classes are organized into a directed acyclic graph. There are two distin-

guished classes, named t and standard-object. The class named t has no
superclasses. It is a superclass of every class except itself. The class named

standard-object is an instance of the class standard-class and is a super-

class of every class that is an instance of standard-class except itself.

There is a mapping from the Common Lisp Object System class space into

the Common Lisp type space. Many of the standard Common Lisp types have

a corresponding class that has the same name as the type. Some Common

Lisp types do not have a corresponding class. The integration of the type and
class systems is discussed in section 28.1.4.

Classes are represented by objects that are themselves instances of classes.

The class of the class of an object is termed the metaclass of that object. When
no misinterpretation is possible, the term metaclass will be used to refer to a

class that has instances that are themselves classes. The metaclass determines

the form of inheritance used by the classes that are its instances and the

representation of the instances of those classes. The Common Lisp Object

System provides a default metaclass, standard-class, that is appropriate for
most programs. The meta-object protocol provides mechanisms for defining

and using new metaclasses.

Except where otherwise specified, all classes mentioned in this chapter are
instances of the class standard-class, all generic functions are instances of

the class standard-generic-function, and all methods are instances of the

class standard-method.

28.1.2.1. Defining Classes

The macro defclass is used to define a new named class. The definition of

a class includes the following:

. The name of the new class. For newly defined classes this is a proper name.

. The list of the direct superclasses of the new class.

. A set of slot specifiers. Each slot specifier includes the name of the slot and

zero or more slot options. A slot option pertains only to a single slot. If a
class definition contains two slot specifiers with the same name, an error is

signaled.

. A set of class options. Each class option pertains to the class as a whole.
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The slot options and class options of the defclass form provide mechanisms

for the following:

. Supplying a default initial value form for a given slot.

. Requesting that methods for generic functions be automatically generated

for reading or writing slots.

. Controlling whether a given slot is shared by instances of the class or

whether each instance of the class has its own slot.

. Supplying a set of initialization arguments and initialization argument de-

faults to be used in instance creation.

. Indicating that the metaclass is to be other than the default.

. Indicating the expected type for the value stored in the slot.

. Indicating the documentation string for the slot.

28.1.2.2. Creating Instances of Classes

The generic function make-instance creates and returns a new instance of

a class. The Object System provides several mechanisms for specifying how

a new instance is to be initialized. For example, it is possible to specify the

initial values for slots in newly created instances either by giving arguments
to make-instance or by providing default initial values.

Further initialization activities can be performed by methods written for

generic functions that are part of the initialization protocol. The complete

initialization protocol is described in section 28.1.9.

28.1.2.3. Slots

An object that has standard-class as its metaclass has zero or more named

slots. The slots of an object are determined by the class of the object. Each
slot can hold one value. The name of a slot is a symbol that is syntactically

valid for use as a variable name.

When a slot does not have a value, the slot is said to be unbound. When

an unbound slot is read, the generic function slot-unbound is invoked. The

system-supplied primary method for slot-unbound signals an error.

The default initial value form for a slot is defined by the :initform slot

option. When the :initform form is used to supply a value, it is evaluated
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in the lexical environment in which the defclass form was evaluated. The

:initform along with the lexical environment in which the defclass form

was evaluated is called a captured :initform. See section 28.1.9.

A local slot is defined to be a slot that is visible to exactly one instance,
namely the one in which the slot is allocated. A shared slot is defined to

be a slot that is visible to more than one instance of a given class and its

subclasses.

A class is said to define a slot with a given name when the defclass form
for that class contains a slot specifier with that name. Defining a local slot

does not immediately create a slot; it causes a slot to be created each time an

instance of the class is created. Defining a shared slot immediately creates a

slot.

The :allocation slot option to defclass controls the kind of slot that is
defined. If the value of the :allocation slot option is :instance, a local slot

is created. If the value of :allocation is :class, a shared slot is created.

A slot is said to be accessible in an instance of a class if the slot is defined

by the class of the instance or is inherited from a superclass of that class.
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At most one slot of a given name can be accessible in an instance. A shared

slot defined by a class is accessible in all instances of that class. A detailed

explanation of the inheritance of slots is given in section 28.1.3.2.

28.1.2.4. Accessing Slots

Slots can be accessed in two ways: by use of the primitive function slot-value

and by use of generic functions generated by the defclass form.

The function slot-value can be used with any slot name specified in the

defclass form to access a specific slot accessible in an instance of the given

class.

The macro defclass provides syntax for generating methods to read and

write slots. If a reader is requested, a method is automatically generated for
reading the value of the slot, but no method for storing a value into it is

generated. If a writer is requested, a method is automatically generated for

storing a value into the slot, but no method for reading its value is generated.

If an accessor is requested, a method for reading the value of the slot and a
method for storing a value into the slot are automatically generated. Reader

and writer methods are implemented using slot-value.

When a reader or writer is specified for a slot, the name of the generic

function to which the generated method belongs is directly specified. If the

name specified for the writer option is the symbol name, the name of the
generic function for writing the slot is the symbol name, and the generic

function takes two arguments: the new value and the instance, in that order.

If the name specified for the accessor option is the symbol name, the name of

the generic function for reading the slot is the symbol name, and the name of

the generic function for writing the slot is the list (setf name).

A generic function created or modified by supplying reader, writer, or ac-
cessor slot options can be treated exactly as an ordinary generic function.

Note that slot-value can be used to read or write the value of a slot

whether or not reader or writer methods exist for that slot. When slot-

value is used, no reader or writer methods are invoked.

The macro with-slots can be used to establish a lexical environment in
which specified slots are lexically available as if they were variables. The

macro with-slots invokes the function slot-value to access the specified

slots.

The macro with-accessors can be used to establish a lexical environment

in which specified slots are lexically available through their accessors as if they

were variables. The macro with-accessors invokes the appropriate accessors
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to access the specified slots. Any accessors specified by with-accessorsmust

already have been defined before they are used.
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28.1.3. Inheritance

A class can inherit methods, slots, and some defclass options from its su-

perclasses. The following sections describe the inheritance of methods, the

inheritance of slots and slot options, and the inheritance of class options.

28.1.3.1. Inheritance of Methods

A subclass inherits methods in the sense that any method applicable to all

instances of a class is also applicable to all instances of any subclass of that
class.

The inheritance of methods acts the same way regardless of whether the

method was created by using one of the method-defining forms or by using one

of the defclass options that causes methods to be generated automatically.

The inheritance of methods is described in detail in section 28.1.7.

28.1.3.2. Inheritance of Slots and Slot Options

The set of names of all slots accessible in an instance of a class C is the union

of the sets of names of slots defined by C and its superclasses. The structure

of an instance is the set of names of local slots in that instance.

In the simplest case, only one class among C and its superclasses defines a

slot with a given slot name. If a slot is defined by a superclass of C, the slot

is said to be inherited. The characteristics of the slot are determined by the

slot specifier of the defining class. Consider the defining class for a slot S. If
the value of the :allocation slot option is :instance, then S is a local slot

and each instance of C has its own slot named S that stores its own value. If

the value of the :allocation slot option is :class, then S is a shared slot,

the class that defined S stores the value, and all instances of C can access that
single slot. If the :allocation slot option is omitted, :instance is used.

In general, more than one class among C and its superclasses can define

a slot with a given name. In such cases, only one slot with the given name

is accessible in an instance of C, and the characteristics of that slot are a
combination of the several slot specifiers, computed as follows:

. All the slot specifiers for a given slot name are ordered from most specific

to least specific, according to the order in C ’s class precedence list of the

classes that define them. All references to the specificity of slot specifiers

immediately following refer to this ordering.
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. The allocation of a slot is controlled by the most specific slot specifier. If

the most specific slot specifier does not contain an :allocation slot option,

:instance is used. Less specific slot specifiers do not affect the allocation.

. The default initial value form for a slot is the value of the :initform slot

option in the most specific slot specifier that contains one. If no slot specifier

contains an :initform slot option, the slot has no default initial value form.

. The contents of a slot will always be of type (and T1 . . . Tn) where

T1, . . . , Tn are the values of the :type slot options contained in all of the

slot specifiers. If no slot specifier contains the :type slot option, the con-

tents of the slot will always be of type t. The result of attempting to store
in a slot a value that does not satisfy the type of the slot is undefined.

. The set of initialization arguments that initialize a given slot is the union
of the initialization arguments declared in the :initarg slot options in all

the slot specifiers.

. The documentation string for a slot is the value of the :documentation slot
option in the most specific slot specifier that contains one. If no slot speci-

fier contains a :documentation slot option, the slot has no documentation

string.

A consequence of the allocation rule is that a shared slot can be shad-

owed. For example, if a class C1 defines a slot named S whose value for the

:allocation slot option is :class, that slot is accessible in instances of C1

and all of its subclasses. However, if C2 is a subclass of C1 and also defines

a slot named S, C1’s slot is not shared by instances of C2 and its subclasses.
When a class C1 defines a shared slot, any subclass C2 of C1 will share this

single slot unless the defclass form for C2 specifies a slot of the same name

or there is a superclass of C2 that precedes C1 in the class precedence list of

C2 that defines a slot of the same name.

A consequence of the type rule is that the value of a slot satisfies the type

constraint of each slot specifier that contributes to that slot. Because the

result of attempting to store in a slot a value that does not satisfy the type

constraint for the slot is undefined, the value in a slot might fail to satisfy its

type constraint.

The :reader, :writer, and :accessor slot options create methods rather

than define the characteristics of a slot. Reader and writer methods are in-

herited in the sense described in section 28.1.3.1.

Methods that access slots use only the name of the slot and the type of the

slot’s value. Suppose a superclass provides a method that expects to access a
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shared slot of a given name, and a subclass defines a local slot with the same

name. If the method provided by the superclass is used on an instance of the

subclass, the method accesses the local slot.

28.1.3.3. Inheritance of Class Options

The :default-initargs class option is inherited. The set of defaulted initial-

ization arguments for a class is the union of the sets of initialization arguments

specified in the :default-initargs class options of the class and its super-

classes. When more than one default initial value form is supplied for a given
initialization argument, the default initial value form that is used is the one

supplied by the class that is most specific according to the class precedence

list.

If a given :default-initargs class option specifies an initialization argu-

ment of the same name more than once, an error is signaled.

28.1.3.4. Examples

(defclass C1 ()

((S1 :initform 5.4 :type number)

(S2 :allocation :class)))

(defclass C2 (C1)

((S1 :initform 5 :type integer)

(S2 :allocation :instance)

(S3 :accessor C2-S3)))

Instances of the class C1 have a local slot named S1, whose default initial

value is 5.4 and whose value should always be a number. The class C1 also

has a shared slot named S2.

There is a local slot named S1 in instances of C2. The default initial value
of S1 is 5. The value of S1 will be of type (and integer number). There

are also local slots named S2 and S3 in instances of C2. The class C2 has a

method for C2-S3 for reading the value of slot S3; there is also a method for

(setf C2-S3) that writes the value of S3.

28.1.4. Integrating Types and Classes

The Common Lisp Object System maps the space of classes into the Common

Lisp type space. Every class that has a proper name has a corresponding type

with the same name.
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The proper name of every class is a valid type specifier. In addition, every

class object is a valid type specifier. Thus the expression (typep object class)

evaluates to true if the class of object is class itself or a subclass of class.

The evaluation of the expression (subtypep class1 class2) returns the values

t and t if class1 is a subclass of class2 or if they are the same class; otherwise
it returns the values nil and t. If I is an instance of some class C named

S and C is an instance of standard-class, the evaluation of the expression

(type-of I) will return S if S is the proper name of C ; if S is not the proper

name of C, the expression (type-of I) will return C.

Because the names of classes and class objects are type specifiers, they may

be used in the special form the and in type declarations.

Many but not all of the predefined Common Lisp type specifiers have a

corresponding class with the same proper name as the type. These type spec-
ifiers are listed in table 28-1. For example, the type array has a corresponding

class named array. No type specifier that is a list, such as (vector double-

float 100), has a corresponding class. The form deftype does not create

any classes.

Each class that corresponds to a predefined Common Lisp type specifier can
be implemented in one of three ways, at the discretion of each implementation.

It can be a standard class (of the kind defined by defclass), a structure class

(defined by defstruct), or a built-in class (implemented in a special, non-

extensible way).

A built-in class is one whose instances have restricted capabilities or special

representations. Attempting to use defclass to define subclasses of a built-

in class signals an error. Calling make-instance to create an instance of a

built-in class signals an error. Calling slot-value on an instance of a built-in

class signals an error. Redefining a built-in class or using change-class to
change the class of an instance to or from a built-in class signals an error.

However, built-in classes can be used as parameter specializers in methods.

It is possible to determine whether a class is a built-in class by checking

the metaclass. A standard class is an instance of standard-class, a built-in
class is an instance of built-in-class, and a structure class is an instance

of structure-class.

Each structure type created by defstruct without using the :type option

has a corresponding class. This class is an instance of structure-class.
The :include option of defstruct creates a direct subclass of the class that

corresponds to the included structure.

The purpose of specifying that many of the standard Common Lisp type

specifiers have a corresponding class is to enable users to write methods that

discriminate on these types. Method selection requires that a class precedence
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list can be determined for each class.

The hierarchical relationships among the Common Lisp type specifiers are

mirrored by relationships among the classes corresponding to those types. The

existing type hierarchy is used for determining the class precedence list for

each class that corresponds to a predefined Common Lisp type. In some cases,
the first edition did not specify a local precedence order for two supertypes

of a given type specifier. For example, null is a subtype of both symbol and

list, but the first edition did not specify whether symbol is more specific or

less specific than list. The CLOS specification defines those relationships
for all such classes.

Table 28-1 lists the set of classes required by the Object System that cor-

respond to predefined Common Lisp type specifiers. The superclasses of each

such class are presented in order from most specific to most general, thereby

defining the class precedence list for the class. The local precedence order for
each class that corresponds to a Common Lisp type specifier can be derived

from this table.

Individual implementations may be extended to define other type specifiers

to have a corresponding class. Individual implementations can be extended
to add other subclass relationships and to add other elements to the class

precedence lists in the above table as long as they do not violate the type re-

lationships and disjointness requirements specified in section 2.15. A standard

class defined with no direct superclasses is guaranteed to be disjoint from all

of the classes in the table, except for the class named t.
[At this point the original CLOS report specified that certain Common Lisp

types were to appear in table 28-1 if and only if X3J13 voted to make them

disjoint from cons, symbol, array, number, and character. X3J13 voted to

do so in June 1988 〈41〉. I have added these types and their class precedence
lists to the table; the new types are indicated by asterisks.—GLS]

28.1.5. Determining the Class Precedence List

The defclass form for a class provides a total ordering on that class and its

direct superclasses. This ordering is called the local precedence order. It is an
ordered list of the class and its direct superclasses. The class precedence list

for a class C is a total ordering on C and its superclasses that is consistent

with the local precedence orders for C and its superclasses.

A class precedes its direct superclasses, and a direct superclass precedes all
other direct superclasses specified to its right in the superclasses list of the

defclass form. For every class C, define

RC = {(C ,C1), (C1,C2), . . . , (Cn−1,Cn)}
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Table 28-1: Class Precedence Lists for Predefined Types

Predefined Common Lisp Type Class Precedence List for Corresponding Class

array (array t)

bit-vector (bit-vector vector array sequence t)

character (character t)

complex (complex number t)

cons (cons list sequence t)

float (float number t)

function * (function t)

hash-table * (hash-table t)

integer (integer rational number t)

list (list sequence t)

null (null symbol list sequence t)

number (number t)

package * (package t)

pathname * (pathname t)

random-state * (random-state t)

ratio (ratio rational number t)

rational (rational number t)

readtable * (readtable t)

sequence (sequence t)

stream * (stream t)

string (string vector array sequence t)

symbol (symbol t)

t (t)

vector (vector array sequence t)

[An asterisk indicates a type added to this table as a consequence of a portion of the
CLOS specification that was conditional on X3J13 voting to make that type disjoint
from certain other built-in types 〈41〉.—GLS]

where C1, . . . ,Cn are the direct superclasses of C in the order in which they

are mentioned in the defclass form. These ordered pairs generate the total
ordering on the class C and its direct superclasses.

Let SC be the set of C and its superclasses. Let R be

R =
⋃

c ∈ SC

Rc

The set R may or may not generate a partial ordering, depending on whether

the Rc, c ∈ SC, are consistent; it is assumed that they are consistent and that
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R generates a partial ordering. When the Rc are not consistent, it is said that

R is inconsistent.

To compute the class precedence list for C, topologically sort the elements of

SC with respect to the partial ordering generated by R. When the topological

sort must select a class from a set of two or more classes, none of which

are preceded by other classes with respect to R, the class selected is chosen

deterministically, as described below. If R is inconsistent, an error is signaled.
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28.1.5.1. Topological Sorting

Topological sorting proceeds by finding a class C in SC such that no other

class precedes that element according to the elements in R. The class C is

placed first in the result. Remove C from SC, and remove all pairs of the

form (C ,D), D ∈ SC, from R. Repeat the process, adding classes with no
predecessors to the end of the result. Stop when no element can be found

that has no predecessor.

If SC is not empty and the process has stopped, the set R is inconsistent. If

every class in the finite set of classes is preceded by another, then R contains

a loop. That is, there is a chain of classes C1, . . . , Cn such that Ci precedes

Ci+1, 1 ≤ i < n, and Cn precedes C1.

Sometimes there are several classes from SC with no predecessors. In this

case select the one that has a direct subclass rightmost in the class precedence

list computed so far. If there is no such candidate class, R does not generate
a partial ordering—the Rc, c ∈ SC, are inconsistent.

In more precise terms, let {N1, . . . ,Nm}, m ≥ 2, be the classes from SC

with no predecessors. Let (C1 . . .Cn), n ≥ 1, be the class precedence list
constructed so far. C1 is the most specific class, and Cn is the least specific.

Let 1 ≤ j ≤ n be the largest number such that there exists an i where

1 ≤ i ≤ m and Ni is a direct superclass of Cj; Ni is placed next.

The effect of this rule for selecting from a set of classes with no predecessors

is that classes in a simple superclass chain are adjacent in the class precedence

list and that classes in each relatively separated subgraph are adjacent in the
class precedence list. For example, let T1 and T2 be subgraphs whose only

element in common is the class J. Suppose that no superclass of J appears in

either T1 or T2. Let C1 be the bottom of T1; and let C2 be the bottom of T2.

Suppose C is a class whose direct superclasses are C1 and C2 in that order;

then the class precedence list for C will start with C and will be followed by
all classes in T1 except J. All the classes of T2 will be next. The class J and

its superclasses will appear last.

28.1.5.2. Examples

This example determines a class precedence list for the class pie. The follow-

ing classes are defined:

(defclass pie (apple cinnamon) ())

(defclass apple (fruit) ())

(defclass cinnamon (spice) ())
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(defclass fruit (food) ())

(defclass spice (food) ())

(defclass food () ())

The set

S = {pie, apple, cinnamon, fruit, spice, food, standard-object, t}. The

set R = {(pie, apple), (apple, cinnamon), (cinnamon, standard-object),
(apple, fruit), (fruit, standard-object), (cinnamon, spice), (spice,

standard-object), (fruit, food), (food, standard-object), (spice, food),
(standard-object, t)}.

[The original CLOS specification [5, 6] contained a minor error in this
example: the pairs (cinnamon, standard-object),

(fruit, standard-object), and (spice, standard-object) were

inadvertently omitted from R in the preceding paragraph. It is important to

understand that defclass implicitly appends the class standard-object to
the list of superclasses when the metaclass is standard-class (the normal

situation), in order to insure that standard-object will be a superclass of

every instance of standard-class except standard-object itself (see

section 28.1.2). Rc is then generated from this augmented list of

superclasses; this is where the extra pairs come from. I have corrected the
example by adding these pairs as appropriate throughout the example. The

final result, the class precedence list for pie, is unchanged.—GLS]

The class pie is not preceded by anything, so it comes first; the result so

far is (pie). Remove pie from S and pairs mentioning pie from R to get

S = {apple, cinnamon, fruit, spice, food, standard-object, t} and

R = {(apple, cinnamon), (cinnamon, standard-object), (apple, fruit),
(fruit, standard-object), (cinnamon, spice), (spice, standard-object),

(fruit, food), (food, standard-object), (spice, food), (standard-object,

t)}.
The class apple is not preceded by anything, so it is next; the result is

(pie apple). Removing apple and the relevant pairs results in

S = {cinnamon, fruit, spice, food, standard-object, t} and

R = {(cinnamon, standard-object), (fruit, standard-object), (cinnamon,
spice), (spice, standard-object), (fruit, food), (food, standard-object),

(spice, food), (standard-object, t)}.
The classes cinnamon and fruit are not preceded by anything, so the one

with a direct subclass rightmost in the class precedence list computed so far

goes next. The class apple is a direct subclass of fruit, and the class pie is

a direct subclass of cinnamon. Because apple appears to the right of pie in

the precedence list, fruit goes next, and the result so far is (pie apple
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fruit). S = {cinnamon, spice, food, standard-object, t};
R = {(cinnamon, standard-object), (cinnamon, spice), (spice, standard-
object), (food, standard-object), (spice, food), (standard-object, t)}.

The class cinnamon is next, giving the result so far as (pie apple fruit

cinnamon). At this point S = {spice, food, standard-object, t};
R = {(spice, standard-object), (food, standard-object), (spice, food),
(standard-object, t)}.

The classes spice, food, standard-object, and t are then added in that

order, and the final class precedence list for pie is

(pie apple fruit cinnamon spice food standard-object t)

It is possible to write a set of class definitions that cannot be ordered. For

example:

(defclass new-class (fruit apple) ())

(defclass apple (fruit) ())

The class fruit must precede apple because the local ordering of super-

classes must be preserved. The class apple must precede fruit because a
class always precedes its own superclasses. When this situation occurs, an

error is signaled when the system tries to compute the class precedence list.

The following might appear to be a conflicting set of definitions:

(defclass pie (apple cinnamon) ())

(defclass pastry (cinnamon apple) ())

(defclass apple () ())

(defclass cinnamon () ())

The class precedence list for pie is

(pie apple cinnamon standard-object t)

The class precedence list for pastry is

(pastry cinnamon apple standard-object t)

It is not a problem for apple to precede cinnamon in the ordering of the

superclasses of pie but not in the ordering for pastry. However, it is not

possible to build a new class that has both pie and pastry as superclasses.
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28.1.6. Generic Functions and Methods

A generic function is a function whose behavior depends on the classes or

identities of the arguments supplied to it. The methods define the class-

specific behavior and operations of the generic function. The following sections

describe generic functions and methods.

28.1.6.1. Introduction to Generic Functions

A generic function object contains a set of methods, a lambda-list, a method

combination type, and other information.
Like an ordinary Lisp function, a generic function takes arguments, per-

forms a series of operations, and perhaps returns useful values. An ordinary

function has a single body of code that is always executed when the function

is called. A generic function has a set of bodies of code of which a subset is

selected for execution. The selected bodies of code and the manner of their
combination are determined by the classes or identities of one or more of the

arguments to the generic function and by its method combination type.

Ordinary functions and generic functions are called with identical function-

call syntax.

Generic functions are true functions that can be passed as arguments, re-
turned as values, used as the first argument to funcall and apply, and oth-

erwise used in all the ways an ordinary function may be used.

A name can be given to an ordinary function in one of two ways: a global

name can be given to a function using the defun construct; a local name can

be given using the flet or labels special forms. A generic function can be
given a global name using the defmethod or defgeneric construct. A generic

function can be given a local name using the generic-flet, generic-labels,

or with-added-methods special forms. The name of a generic function, like

the name of an ordinary function, can be either a symbol or a two-element
list whose first element is setf and whose second element is a symbol. This

is true for both local and global names.

The generic-flet special form creates new local generic functions using

the set of methods specified by the method definitions in the generic-flet

form. The scoping of generic function names within a generic-flet form is
the same as for flet.

The generic-labels special form creates a set of new mutually recursive

local generic functions using the set of methods specified by the method defi-

nitions in the generic-labels form. The scoping of generic function names

within a generic-labels form is the same as for labels.
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The with-added-methods special form creates new local generic functions

by adding the set of methods specified by the method definitions with a given

name in the with-added-methods form to copies of the methods of the lexi-

cally visible generic function of the same name. If there is a lexically visible

ordinary function of the same name as one of the specified generic functions,
that function becomes the method function of the default method for the new

generic function of that name.

The generic-functionmacro creates an anonymous generic function with

the set of methods specified by the method definitions that appear in the
generic-function form.

When a defgeneric form is evaluated, one of three actions is taken:

. If a generic function of the given name already exists, the existing generic
function object is modified. Methods specified by the current defgeneric

form are added, and any methods in the existing generic function that were

defined by a previous defgeneric form are removed. Methods added by

the current defgeneric form might replace methods defined by defmethod

or defclass. No other methods in the generic function are affected or

replaced.

. If the given name names a non-generic function, a macro, or a special form,

an error is signaled.

. Otherwise a generic function is created with the methods specified by the

method definitions in the defgeneric form.

Some forms specify the options of a generic function, such as the type of
method combination it uses or its argument precedence order. They will be

referred to as “forms that specify generic function options.” These forms

are defgeneric, generic-function, generic-flet, generic-labels, and

with-added-methods.

Some forms define methods for a generic function. They will be referred

to as “method-defining forms.” These forms are defgeneric, defmethod,

generic-function, generic-flet, generic-labels, with-added-methods,

and defclass. Note that all the method-defining forms except defclass and
defmethod are also forms that specify generic function options.

28.1.6.2. Introduction to Methods

A method object contains a method function, a sequence of parameter spe-

cializers that specify when the given method is applicable, a lambda-list, and
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a sequence of qualifiers that are used by the method combination facility to

distinguish among methods.

A method object is not a function and cannot be invoked as a function.

Various mechanisms in the Object System take a method object and invoke
its method function, as is the case when a generic function is invoked. When

this occurs it is said that the method is invoked or called.

A method-defining form contains the code that is to be run when the argu-
ments to the generic function cause the method that it defines to be invoked.

When a method-defining form is evaluated, a method object is created and

one of four actions is taken:

. If a generic function of the given name already exists and if a method object
already exists that agrees with the new one on parameter specializers and

qualifiers, the new method object replaces the old one. For a definition of

one method agreeing with another on parameter specializers and qualifiers,

see section 28.1.6.3.

. If a generic function of the given name already exists and if there is no
method object that agrees with the new one on parameter specializers and

qualifiers, the existing generic function object is modified to contain the

new method object.

. If the given name names a non-generic function, a macro, or a special form,

an error is signaled.

. Otherwise a generic function is created with the methods specified by the

method-defining form.

If the lambda-list of a new method is not congruent with the lambda-

list of the generic function, an error is signaled. If a method-defining form
that cannot specify generic function options creates a new generic function,

a lambda-list for that generic function is derived from the lambda-lists of the

methods in the method-defining form in such a way as to be congruent with

them. For a discussion of congruence, see section 28.1.6.4.

Each method has a specialized lambda-list, which determines when that

method can be applied. A specialized lambda-list is like an ordinary lambda-

list except that a specialized parameter may occur instead of the name of

a required parameter. A specialized parameter is a list (variable-name
parameter-specializer-name), where parameter-specializer-name is either a

name that names a class or a list (eql form). A parameter specializer name

denotes a parameter specializer as follows:

. A name that names a class denotes that class.
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. The list (eql form) denotes the type specifier (eql object), where object

is the result of evaluating form. The form form is evaluated in the lexical

environment in which the method-defining form is evaluated. Note that

form is evaluated only once, at the time the method is defined, not each

time the generic function is called.

Parameter specializer names are used in macros intended as the user-level
interface (defmethod), while parameter specializers are used in the functional

interface.

[It is very important to understand clearly the distinction made in the

preceding paragraph. A parameter specializer name has the form of a type
specifier but is semantically quite different from a type specifier: a parameter

specializer name of the form (eql form) is not a type specifier, for it contains

a form to be evaluated. Type specifiers never contain forms to be evaluated.

All parameter specializers (as opposed to parameter specializer names) are

valid type specifiers, but not all type specifiers are valid parameter specializers.
Macros such as defmethod take parameter specializer names and treat them as

specifications for constructing certain type specifiers (parameter specializers)

that may then be used with such functions as find-method.—GLS]

Only required parameters may be specialized, and there must be a parame-

ter specializer for each required parameter. For notational simplicity, if some
required parameter in a specialized lambda-list in a method-defining form is

simply a variable name, its parameter specializer defaults to the class named

t.

Given a generic function and a set of arguments, an applicable method is

a method for that generic function whose parameter specializers are satisfied
by their corresponding arguments. The following definition specifies what

it means for a method to be applicable and for an argument to satisfy a

parameter specializer.

Let 〈A1, . . . ,An〉 be the required arguments to a generic function in order.
Let 〈P1, . . . ,Pn〉 be the parameter specializers corresponding to the required

parameters of the method M in order. The method M is applicable when each

Ai satisfies Pi. If Pi is a class, and if Ai is an instance of a class C, then it is

said that Ai satisfies Pi when C = Pi or when C is a subclass of Pi. If Pi is of

the form (eql object), then it is said that Ai satisfies Pi when the function
eql applied to Ai and object is true.

Because a parameter specializer is a type specifier, the function typep can

be used during method selection to determine whether an argument satisfies

a parameter specializer. In general a parameter specializer cannot be a type

specifier list, such as (vector single-float). The only parameter special-
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izer that can be a list is (eql object). This requires that Common Lisp define

the type specifier eql as if the following were evaluated:

(deftype eql (object) ‘(member ,object))

[See section 4.3.—GLS]

A method all of whose parameter specializers are the class named t is

called a default method; it is always applicable but may be shadowed by a

more specific method.
Methods can have qualifiers, which give the method combination procedure

a way to distinguish among methods. A method that has one or more qual-

ifiers is called a qualified method. A method with no qualifiers is called an

unqualified method. A qualifier is any object other than a list, that is, any
non-nil atom. The qualifiers defined by standard method combination and

by the built-in method combination types are symbols.

In this specification, the terms primary method and auxiliary method are

used to partition methods within a method combination type according to

their intended use. In standard method combination, primary methods are
unqualified methods, and auxiliary methods are methods with a single quali-

fier that is one of :around, :before, or :after. When a method combination

type is defined using the short form of define-method-combination, primary

methods are methods qualified with the name of the type of method combi-
nation, and auxiliary methods have the qualifier :around. Thus the terms

primary method and auxiliary method have only a relative definition within a

given method combination type.

28.1.6.3. Agreement on Parameter Specializers and Qual-
ifiers

Two methods are said to agree with each other on parameter specializers and
qualifiers if the following conditions hold:

. Both methods have the same number of required parameters. Suppose the

parameter specializers of the two methods are P1,1 . . . P1,n and P2,1 . . . P2,n.

. For each 1 ≤ i ≤ n, P1,i agrees with P2,i. The parameter specializer P1,i

agrees with P2,i if P1,i and P2,i are the same class or if P1,i = (eql object1),

P2,i = (eql object2), and (eql object1 object2). Otherwise P1,i and P2,i

do not agree.

. The lists of qualifiers of both methods contain the same non-nil atoms in

the same order. That is, the lists are equal.
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28.1.6.4. Congruent Lambda-Lists for All Methods of a
Generic Function

These rules define the congruence of a set of lambda-lists, including the

lambda-list of each method for a given generic function and the lambda-list
specified for the generic function itself, if given.

. Each lambda-list must have the same number of required parameters.

. Each lambda-list must have the same number of optional parameters. Each

method can supply its own default for an optional parameter.

. If any lambda-list mentions &rest or &key, each lambda-list must mention

one or both of them.

. If the generic function lambda-list mentions &key, each method must accept

all of the keyword names mentioned after &key, either by accepting them
explicitly, by specifying &allow-other-keys, or by specifying &rest but

not &key. Each method can accept additional keyword arguments of its

own. The checking of the validity of keyword names is done in the generic

function, not in each method. A method is invoked as if the keyword

argument pair whose keyword is :allow-other-keys and whose value is t
were supplied, though no such argument pair will be passed.

. The use of &allow-other-keys need not be consistent across lambda-lists.

If &allow-other-keys is mentioned in the lambda-list of any applicable

method or of the generic function, any keyword arguments may be men-

tioned in the call to the generic function.

. The use of &aux need not be consistent across methods.

If a method-defining form that cannot specify generic function options cre-
ates a generic function, and if the lambda-list for the method mentions key-

word arguments, the lambda-list of the generic function will mention &key

(but no keyword arguments).

28.1.6.5. Keyword Arguments in Generic Functions and
Methods

When a generic function or any of its methods mentions &key in a lambda-list,

the specific set of keyword arguments accepted by the generic function varies

according to the applicable methods. The set of keyword arguments accepted
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by the generic function for a particular call is the union of the keyword argu-

ments accepted by all applicable methods and the keyword arguments men-

tioned after &key in the generic function definition, if any. A method that

has &rest but not &key does not affect the set of acceptable keyword argu-

ments. If the lambda-list of any applicable method or of the generic function
definition contains &allow-other-keys, all keyword arguments are accepted

by the generic function.

The lambda-list congruence rules require that each method accept all of the
keyword arguments mentioned after &key in the generic function definition, by

accepting them explicitly, by specifying &allow-other-keys, or by specifying

&rest but not &key. Each method can accept additional keyword arguments

of its own, in addition to the keyword arguments mentioned in the generic

function definition.



858 COMMON LISP

If a generic function is passed a keyword argument that no applicable

method accepts, an error is signaled.

For example, suppose there are two methods defined for width as follows:

(defmethod width ((c character-class) &key font) ...)

(defmethod width ((p picture-class) &key pixel-size) ...)

Assume that there are no other methods and no generic function definition for

width. The evaluation of the following form will signal an error because the

keyword argument :pixel-size is not accepted by the applicable method.

(width (make-instance ’character-class :char #--\Q)

:font ’baskerville :pixel-size 10)

The evaluation of the following form will signal an error.

(width (make-instance ’picture-class :glyph (glyph #--\Q))

:font ’baskerville :pixel-size 10)

The evaluation of the following form will not signal an error if the class

named character-picture-class is a subclass of both picture-class and

character-class.

(width (make-instance ’character-picture-class :char #--\Q)

:font ’baskerville :pixel-size 10)

28.1.7. Method Selection and Combination

When a generic function is called with particular arguments, it must deter-

mine the code to execute. This code is called the effective method for those
arguments. The effective method is a combination of the applicable methods

in the generic function. A combination of methods is a Lisp expression that

contains calls to some or all of the methods. If a generic function is called and

no methods apply, the generic function no-applicable-method is invoked.
When the effective method has been determined, it is invoked with the

same arguments that were passed to the generic function. Whatever values it

returns are returned as the values of the generic function.

28.1.7.1. Determining the Effective Method

The effective method for a set of arguments is determined by the following

three-step procedure:
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1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most specific

method first.

3. Apply method combination to the sorted list of applicable methods, pro-

ducing the effective method.

Selecting the Applicable Methods. This step is described in sec-
tion 28.1.6.2.

Sorting the Applicable Methods by Precedence Order. To compare

the precedence of two methods, their parameter specializers are examined in

order. The default examination order is from left to right, but an alterna-
tive order may be specified by the :argument-precedence-order option to

defgeneric or to any of the other forms that specify generic function options.

The corresponding parameter specializers from each method are compared.

When a pair of parameter specializers are equal, the next pair are compared
for equality. If all corresponding parameter specializers are equal, the two

methods must have different qualifiers; in this case, either method can be

selected to precede the other.

If some corresponding parameter specializers are not equal, the first pair of

parameter specializers that are not equal determines the precedence. If both

parameter specializers are classes, the more specific of the two methods is the

method whose parameter specializer appears earlier in the class precedence

list of the corresponding argument. Because of the way in which the set of
applicable methods is chosen, the parameter specializers are guaranteed to be

present in the class precedence list of the class of the argument.

If just one parameter specializer is (eql object), the method with that pa-

rameter specializer precedes the other method. If both parameter specializers
are eql forms, the specializers must be the same (otherwise the two methods

would not both have been applicable to this argument).

The resulting list of applicable methods has the most specific method first
and the least specific method last.

Applying Method Combination to the Sorted List of Applicable

Methods. In the simple case—if standard method combination is used and

all applicable methods are primary methods—the effective method is the most
specific method. That method can call the next most specific method by using

the function call-next-method. The method that call-next-method will

call is referred to as the next method. The predicate next-method-p tests

whether a next method exists. If call-next-method is called and there is no

next most specific method, the generic function no-next-method is invoked.
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In general, the effective method is some combination of the applicable meth-

ods. It is defined by a Lisp form that contains calls to some or all of the appli-

cable methods, returns the value or values that will be returned as the value

or values of the generic function, and optionally makes some of the methods

accessible by means of call-next-method. This Lisp form is the body of the
effective method; it is augmented with an appropriate lambda-list to make it

a function.

The role of each method in the effective method is determined by its method
qualifiers and the specificity of the method. A qualifier serves to mark a

method, and the meaning of a qualifier is determined by the way that these

marks are used by this step of the procedure. If an applicable method has

an unrecognized qualifier, this step signals an error and does not include that

method in the effective method.

When standard method combination is used together with qualified meth-

ods, the effective method is produced as described in section 28.1.7.2.

Another type of method combination can be specified by using the :method-

combination option of defgeneric or of any of the other forms that specify

generic function options. In this way this step of the procedure can be cus-

tomized.

New types of method combination can be defined by using the define-

method-combination macro.

The meta-object level also offers a mechanism for defining new types of
method combination. The generic function compute-effective-method re-

ceives as arguments the generic function, the method combination object,

and the sorted list of applicable methods. It returns the Lisp form that de-

fines the effective method. A method for compute-effective-method can be

defined directly by using defmethod or indirectly by using define-method-

combination. A method combination object is an object that encapsulates the

method combination type and options specified by the :method-combination

option to forms that specify generic function options.

Implementation note: In the simplest implementation, the generic function would
compute the effective method each time it was called. In practice, this will be too
inefficient for some implementations. Instead, these implementations might employ
a variety of optimizations of the three-step procedure. Some illustrative examples
of such optimizations are the following:

. Use a hash table keyed by the class of the arguments to store the effective method.

. Compile the effective method and save the resulting compiled function in a table.
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. Recognize the Lisp form as an instance of a pattern of control structure and
substitute a closure that implements that structure.

. Examine the parameter specializers of all methods for the generic function and
enumerate all possible effective methods. Combine the effective methods, together
with code to select from among them, into a single function and compile that
function. Call that function whenever the generic function is called.

28.1.7.2. Standard Method Combination

Standard method combination is supported by the class standard-generic-

function. It is used if no other type of method combination is specified or if

the built-in method combination type standard is specified.

Primary methods define the main action of the effective method, while
auxiliary methods modify that action in one of three ways. A primary method

has no method qualifiers.

An auxiliary method is a method whose method qualifier is :before,

:after, or :around. Standard method combination allows no more than one

qualifier per method; if a method definition specifies more than one qualifier
per method, an error is signaled.

. A :before method has the keyword :before as its only qualifier. A

:beforemethod specifies code that is to be run before any primary method.

. An :after method has the keyword :after as its only qualifier. An :after

method specifies code that is to be run after primary methods.

. An :around method has the keyword :around as its only qualifier. An
:around method specifies code that is to be run instead of other applicable

methods but that is able to cause some of them to be run.

The semantics of standard method combination are as follows:

. If there are any :around methods, the most specific :around method is

called. It supplies the value or values of the generic function.

. Inside the body of an :around method, call-next-method can be used to
call the next method. When the next method returns, the :around method

can execute more code, perhaps based on the returned value or values. The

generic function no-next-method is invoked if call-next-method is used

and there is no applicable method to call. The function next-method-p

may be used to determine whether a next method exists.
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. If an :around method invokes call-next-method, the next most specific

:around method is called, if one is applicable. If there are no :around

methods or if call-next-method is called by the least specific :around

method, the other methods are called as follows:

– All the :before methods are called, in most-specific-first order. Their

values are ignored. An error is signaled if call-next-method is used in

a :before method.

– The most specific primary method is called. Inside the body of a pri-

mary method, call-next-method may be used to call the next most

specific primary method. When that method returns, the previous pri-
mary method can execute more code, perhaps based on the returned

value or values. The generic function no-next-method is invoked if call-

next-method is used and there are no more applicable primary methods.

The function next-method-p may be used to determine whether a next
method exists. If call-next-method is not used, only the most specific

primary method is called.

– All the :after methods are called in most-specific-last order. Their

values are ignored. An error is signaled if call-next-method is used in

an :after method.

. If no :around methods were invoked, the most specific primary method

supplies the value or values returned by the generic function. The value or

values returned by the invocation of call-next-method in the least specific

:around method are those returned by the most specific primary method.

In standard method combination, if there is an applicable method but no

applicable primary method, an error is signaled.

The :before methods are run in most-specific-first order and the :after

methods are run in least-specific-first order. The design rationale for this

difference can be illustrated with an example. Suppose class C1 modifies
the behavior of its superclass, C2, by adding :before and :after methods.

Whether the behavior of the class C2 is defined directly by methods on C2 or is

inherited from its superclasses does not affect the relative order of invocation

of methods on instances of the class C1. Class C1’s :before method runs
before all of class C2’s methods. Class C1’s :after method runs after all of

class C2’s methods.

By contrast, all :around methods run before any other methods run. Thus

a less specific :around method runs before a more specific primary method.
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If only primary methods are used and if call-next-method is not used, only

the most specific method is invoked; that is, more specific methods shadow

more general ones.

28.1.7.3. Declarative Method Combination

The macro define-method-combination defines new forms of method com-

bination. It provides a mechanism for customizing the production of the

effective method. The default procedure for producing an effective method

is described in section 28.1.7.1. There are two forms of define-method-

combination. The short form is a simple facility; the long form is more

powerful and more verbose. The long form resembles defmacro in that the

body is an expression that computes a Lisp form; it provides mechanisms for

implementing arbitrary control structures within method combination and for
arbitrary processing of method qualifiers. The syntax and use of both forms

of define-method-combination are explained in section 28.2.

28.1.7.4. Built-in Method Combination Types

The Common Lisp Object System provides a set of built-in method combina-

tion types. To specify that a generic function is to use one of these method

combination types, the name of the method combination type is given as

the argument to the :method-combination option to defgeneric or to the

:method-combination option to any of the other forms that specify generic
function options.

The names of the built-in method combination types are +, and, append,
list, max, min, nconc, or, progn, and standard.

The semantics of the standard built-in method combination type were

described in section 28.1.7.2. The other built-in method combination types
are called simple built-in method combination types.

The simple built-in method combination types act as though they were
defined by the short form of define-method-combination. They recognize

two roles for methods:

. An :around method has the keyword symbol :around as its sole qualifier.

The meaning of :around methods is the same as in standard method com-

bination. Use of the functions call-next-method and next-method-p is

supported in :around methods.
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. A primary method has the name of the method combination type as its sole

qualifier. For example, the built-in method combination type and recognizes

methods whose sole qualifier is and; these are primary methods. Use of

the functions call-next-method and next-method-p is not supported in

primary methods.

The semantics of the simple built-in method combination types are as follows:

. If there are any :around methods, the most specific :around method is

called. It supplies the value or values of the generic function.

. Inside the body of an :around method, the function call-next-method can

be used to call the next method. The generic function no-next-method is

invoked if call-next-method is used and there is no applicable method to
call. The function next-method-p may be used to determine whether a

next method exists. When the next method returns, the :around method

can execute more code, perhaps based on the returned value or values.

. If an :around method invokes call-next-method, the next most specific

:around method is called, if one is applicable. If there are no :around

methods or if call-next-method is called by the least specific :around

method, a Lisp form derived from the name of the built-in method combi-

nation type and from the list of applicable primary methods is evaluated to

produce the value of the generic function. Suppose the name of the method

combination type is operator and the call to the generic function is of the
form

(generic-function a1 ... an)

Let M1, . . . ,Mk be the applicable primary methods in order; then the de-

rived Lisp form is

(operator 〈M1 a1 . . . an〉 ... 〈Mk a1 . . . an〉)

If the expression 〈Mi a1 . . . an〉 is evaluated, the method Mi will be applied

to the arguments a1 . . . an. For example, if operator is or, the expression

〈Mi a1 . . . an〉 is evaluated only if 〈Mj a1 . . . an〉, 1 ≤ j < i , returned nil.

The default order for the primary methods is :most-specific-first.
However, the order can be reversed by supplying :most-specific-last

as the second argument to the :method-combination option.

The simple built-in method combination types require exactly one qualifier

per method. An error is signaled if there are applicable methods with no

qualifiers or with qualifiers that are not supported by the method combination
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type. An error is signaled if there are applicable :around methods and no

applicable primary methods.

28.1.8. Meta-objects

The implementation of the Object System manipulates classes, methods, and

generic functions. The meta-object protocol specifies a set of generic functions
defined by methods on classes; the behavior of those generic functions defines

the behavior of the Object System. The instances of the classes on which

those methods are defined are called meta-objects. Programming at the meta-

object protocol level involves defining new classes of meta-objects along with

methods specialized on these classes.
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28.1.8.1. Metaclasses

The metaclass of an object is the class of its class. The metaclass determines
the representation of instances of its instances and the forms of inheritance

used by its instances for slot descriptions and method inheritance. The meta-

class mechanism can be used to provide particular forms of optimization or to

tailor the Common Lisp Object System for particular uses. The protocol for

defining metaclasses is discussed in the third part of the CLOS specification,
The Common Lisp Object System Meta-Object Protocol. [The third part has

not yet been approved by X3J13 for inclusion in the forthcoming Common

Lisp standard and is not included in this book.—GLS]

28.1.8.2. Standard Metaclasses

The Common Lisp Object System provides a number of predefined meta-

classes. These include the classes standard-class, built-in-class, and
structure-class:

. The class standard-class is the default class of classes defined by

defclass.

. The class built-in-class is the class whose instances are classes that have
special implementations with restricted capabilities. Any class that corre-

sponds to a standard Common Lisp type might be an instance of built-

in-class. The predefined Common Lisp type specifiers that are required

to have corresponding classes are listed in table 28-1. It is implementation-
dependent whether each of these classes is implemented as a built-in class.

. All classes defined by means of defstruct are instances of structure-

class.

28.1.8.3. Standard Meta-objects

The Object System supplies a standard set of meta-objects, called standard
meta-objects. These include the class standard-object and instances of

the classes standard-method, standard-generic-function, and method-

combination.

. The class standard-method is the default class of methods that are defined

by the forms defmethod, defgeneric, generic-function, generic-flet,

generic-labels, and with-added-methods.
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. The class standard-generic-function is the default class of generic func-

tions defined by the forms defmethod, defgeneric, generic-function,

generic-flet, generic-labels, with-added-methods, and defclass.

. The class named standard-object is an instance of the class standard-

class and is a superclass of every class that is an instance of standard-
class except itself.

. Every method combination object is an instance of a subclass of the class

method-combination.

28.1.9. Object Creation and Initialization

The generic function make-instance creates and returns a new instance of a

class. The first argument is a class or the name of a class, and the remaining

arguments form an initialization argument list.
The initialization of a new instance consists of several distinct steps, includ-

ing the following: combining the explicitly supplied initialization arguments

with default values for the unsupplied initialization arguments, checking the

validity of the initialization arguments, allocating storage for the instance,
filling slots with values, and executing user-supplied methods that perform

additional initialization. Each step of make-instance is implemented by a

generic function to provide a mechanism for customizing that step. In ad-

dition, make-instance is itself a generic function and thus also can be cus-

tomized.
The Object System specifies system-supplied primary methods for each step

and thus specifies a well-defined standard behavior for the entire initialization

process. The standard behavior provides four simple mechanisms for control-

ling initialization:

. Declaring a symbol to be an initialization argument for a slot. An initializa-
tion argument is declared by using the :initarg slot option to defclass.

This provides a mechanism for supplying a value for a slot in a call to

make-instance.

. Supplying a default value form for an initialization argument. Default

value forms for initialization arguments are defined by using the :default-
initargs class option to defclass. If an initialization argument is not

explicitly provided as an argument to make-instance, the default value

form is evaluated in the lexical environment of the defclass form that

defined it, and the resulting value is used as the value of the initialization

argument.
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. Supplying a default initial value form for a slot. A default initial value form

for a slot is defined by using the :initform slot option to defclass. If no

initialization argument associated with that slot is given as an argument to

make-instance or is defaulted by :default-initargs, this default initial

value form is evaluated in the lexical environment of the defclass form
that defined it, and the resulting value is stored in the slot. The :initform

form for a local slot may be used when creating an instance, when updating

an instance to conform to a redefined class, or when updating an instance

to conform to the definition of a different class. The :initform form for a
shared slot may be used when defining or re-defining the class.

. Defining methods for initialize-instance and shared-initialize.
The slot-filling behavior described above is implemented by a system-

supplied primary method for initialize-instancewhich invokes shared-

initialize. The generic function shared-initialize implements the

parts of initialization shared by these four situations: when making an
instance, when re-initializing an instance, when updating an instance to

conform to a redefined class, and when updating an instance to conform to

the definition of a different class. The system-supplied primary method for

shared-initialize directly implements the slot-filling behavior described

above, and initialize-instance simply invokes shared-initialize.

28.1.9.1. Initialization Arguments

An initialization argument controls object creation and initialization. It is
often convenient to use keyword symbols to name initialization arguments,

but the name of an initialization argument can be any symbol, including nil.

An initialization argument can be used in two ways: to fill a slot with a value

or to provide an argument for an initialization method. A single initialization

argument can be used for both purposes.

An initialization argument list is a list of alternating initialization argument
names and values. Its structure is identical to a property list and also to the

portion of an argument list processed for &key parameters. As in those lists,

if an initialization argument name appears more than once in an initialization

argument list, the leftmost occurrence supplies the value and the remaining
occurrences are ignored. The arguments to make-instance (after the first

argument) form an initialization argument list. Error checking of initialization

argument names is disabled if the keyword argument pair whose keyword is

:allow-other-keys and whose value is non-nil appears in the initialization

argument list.



COMMON LISP OBJECT SYSTEM 869

An initialization argument can be associated with a slot. If the initialization

argument has a value in the initialization argument list, the value is stored

into the slot of the newly created object, overriding any :initform form

associated with the slot. A single initialization argument can initialize more

than one slot. An initialization argument that initializes a shared slot stores
its value into the shared slot, replacing any previous value.

An initialization argument can be associated with a method. When

an object is created and a particular initialization argument is sup-

plied, the generic functions initialize-instance, shared-initialize, and
allocate-instance are called with that initialization argument’s name and

value as a keyword argument pair. If a value for the initialization argument

is not supplied in the initialization argument list, the method’s lambda-list

supplies a default value.

Initialization arguments are used in four situations: when making an in-
stance, when re-initializing an instance, when updating an instance to con-

form to a redefined class, and when updating an instance to conform to the

definition of a different class.

Because initialization arguments are used to control the creation and ini-
tialization of an instance of some particular class, we say that an initialization

argument is “an initialization argument for” that class.

28.1.9.2. Declaring the Validity of Initialization Argu-
ments

Initialization arguments are checked for validity in each of the four situa-

tions that use them. An initialization argument may be valid in one situa-

tion and not another. For example, the system-supplied primary method for

make-instance defined for the class standard-class checks the validity of
its initialization arguments and signals an error if an initialization argument

is supplied that is not declared valid in that situation.

There are two means of declaring initialization arguments valid.

. Initialization arguments that fill slots are declared valid by the :initarg

slot option to defclass. The :initarg slot option is inherited from su-

perclasses. Thus the set of valid initialization arguments that fill slots for
a class is the union of the initialization arguments that fill slots declared

valid by that class and its superclasses. Initialization arguments that fill

slots are valid in all four contexts.

. Initialization arguments that supply arguments to methods are declared

valid by defining those methods. The keyword name of each keyword pa-
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rameter specified in the method’s lambda-list becomes an initialization ar-

gument for all classes for which the method is applicable. Thus method

inheritance controls the set of valid initialization arguments that supply

arguments to methods. The generic functions for which method definitions

serve to declare initialization arguments valid are as follows:

– Making an instance of a class: allocate-instance, initialize-

instance, and shared-initialize. Initialization arguments declared

valid by these methods are valid when making an instance of a class.

– Re-initializing an instance: the functions reinitialize-instance and

shared-initialize. Initialization arguments declared valid by these

methods are valid when re-initializing an instance.

– Updating an instance to conform to a redefined class: update-instance-

for-redefined-class and shared-initialize. Initialization argu-
ments declared valid by these methods are valid when updating an in-

stance to conform to a redefined class.

– Updating an instance to conform to the definition of a different class:
update-instance-for-different-class and shared-initialize. Ini-

tialization arguments declared valid by these methods are valid when

updating an instance to conform to the definition of a different class.

The set of valid initialization arguments for a class is the set of valid initial-

ization arguments that either fill slots or supply arguments to methods, along

with the predefined initialization argument :allow-other-keys. The default

value for :allow-other-keys is nil. The meaning of :allow-other-keys is

the same here as when it is passed to an ordinary function.

28.1.9.3. Defaulting of Initialization Arguments

A default value form can be supplied for an initialization argument by using
the :default-initargs class option. If an initialization argument is declared

valid by some particular class, its default value form might be specified by a

different class. In this case :default-initargs is used to supply a default

value for an inherited initialization argument.

The :default-initargs option is used only to provide default values for

initialization arguments; it does not declare a symbol as a valid initialization

argument name. Furthermore, the :default-initargs option is used only to

provide default values for initialization arguments when making an instance.
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The argument to the :default-initargs class option is a list of alternating

initialization argument names and forms. Each form is the default value

form for the corresponding initialization argument. The default value form

of an initialization argument is used and evaluated only if that initialization

argument does not appear in the arguments to make-instance and is not
defaulted by a more specific class. The default value form is evaluated in the

lexical environment of the defclass form that supplied it; the result is used

as the initialization argument’s value.

The initialization arguments supplied to make-instance are combined with
defaulted initialization arguments to produce a defaulted initialization ar-

gument list. A defaulted initialization argument list is a list of alternating

initialization argument names and values in which unsupplied initialization

arguments are defaulted and in which the explicitly supplied initialization ar-

guments appear earlier in the list than the defaulted initialization arguments.
Defaulted initialization arguments are ordered according to the order in the

class precedence list of the classes that supplied the default values.

There is a distinction between the purposes of the :default-initargs

and the :initform options with respect to the initialization of slots. The
:default-initargs class option provides a mechanism for the user to give

a default value form for an initialization argument without knowing whether

the initialization argument initializes a slot or is passed to a method. If that

initialization argument is not explicitly supplied in a call to make-instance,

the default value form is used, just as if it had been supplied in the call. In
contrast, the :initform slot option provides a mechanism for the user to give

a default initial value form for a slot. An :initform form is used to initialize

a slot only if no initialization argument associated with that slot is given as

an argument to make-instance or is defaulted by :default-initargs.
The order of evaluation of default value forms for initialization arguments

and the order of evaluation of :initform forms are undefined. If the or-

der of evaluation matters, use initialize-instance or shared-initialize

methods.

28.1.9.4. Rules for Initialization Arguments

The :initarg slot option may be specified more than once for a given slot.

The following rules specify when initialization arguments may be multiply

defined:

. A given initialization argument can be used to initialize more than one

slot if the same initialization argument name appears in more than one

:initarg slot option.
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. A given initialization argument name can appear in the lambda-list of more

than one initialization method.

. A given initialization argument name can appear both in an :initarg slot

option and in the lambda-list of an initialization method.

If two or more initialization arguments that initialize the same slot are
given in the arguments to make-instance, the leftmost of these initialization

arguments in the initialization argument list supplies the value, even if the

initialization arguments have different names.

If two or more different initialization arguments that initialize the same slot

have default values and none is given explicitly in the arguments to make-

instance, the initialization argument that appears in a :default-initargs

class option in the most specific of the classes supplies the value. If a single

:default-initargs class option specifies two or more initialization argu-
ments that initialize the same slot and none is given explicitly in the argu-

ments to make-instance, the leftmost argument in the :default-initargs

class option supplies the value, and the values of the remaining default value

forms are ignored.

Initialization arguments given explicitly in the arguments to make-

instance appear to the left of defaulted initialization arguments. Suppose

that the classes C1 and C2 supply the values of defaulted initialization argu-
ments for different slots, and suppose that C1 is more specific than C2; then

the defaulted initialization argument whose value is supplied by C1 is to the

left of the defaulted initialization argument whose value is supplied by C2 in

the defaulted initialization argument list. If a single :default-initargs class

option supplies the values of initialization arguments for two different slots,
the initialization argument whose value is specified farther to the left in the

default-initargs class option appears farther to the left in the defaulted

initialization argument list.

If a slot has both an :initform form and an :initarg slot option, and

the initialization argument is defaulted using :default-initargs or is sup-

plied to make-instance, the captured :initform form is neither used nor

evaluated.

The following is an example of the preceding rules:

(defclass q () ((x :initarg a)))

(defclass r (q) ((x :initarg b))

(:default-initargs a 1 b 2))
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Defaulted Initialization Contents

Form Argument List of Slot

(make-instance ’r) (a 1 b 2) 1

(make-instance ’r ’a 3) (a 3 b 2) 3

(make-instance ’r ’b 4) (b 4 a 1) 4

(make-instance ’r ’a 1 ’a 2) (a 1 a 2 b 2) 1

28.1.9.5. Shared-Initialize

The generic function shared-initialize is used to fill the slots of an in-
stance using initialization arguments and :initform forms when an instance

is created, when an instance is re-initialized, when an instance is updated to

conform to a redefined class, and when an instance is updated to conform to

a different class. It uses standard method combination. It takes the following
arguments: the instance to be initialized, a specification of a set of names of

slots accessible in that instance, and any number of initialization arguments.

The arguments after the first two must form an initialization argument list.

The second argument to shared-initialize may be one of the following:

. It can be a list of slot names, which specifies the set of those slot names.

. It can be nil, which specifies the empty set of slot names.

. It can be the symbol t, which specifies the set of all of the slots.

There is a system-supplied primary method for shared-initialize whose
first parameter specializer is the class standard-object. This method be-

haves as follows on each slot, whether shared or local:

. If an initialization argument in the initialization argument list specifies a

value for that slot, that value is stored into the slot, even if a value has

already been stored in the slot before the method is run. The affected slots
are independent of which slots are indicated by the second argument to

shared-initialize.

. Any slots indicated by the second argument that are still unbound at this

point are initialized according to their :initform forms. For any such

slot that has an :initform form, that form is evaluated in the lexical
environment of its defining defclass form and the result is stored into

the slot. For example, if a :before method stores a value in the slot, the

:initform form will not be used to supply a value for the slot. If the second

argument specifies a name that does not correspond to any slots accessible

in the instance, the results are unspecified.
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. The rules mentioned in section 28.1.9.4 are obeyed.

The generic function shared-initialize is called by the system-

supplied primary methods for the generic functions initialize-instance,

reinitialize-instance, update-instance-for-different-class, and
update-instance-for-redefined-class. Thus methods can be written for

shared-initialize to specify actions that should be taken in all of these

contexts.

28.1.9.6. Initialize-Instance

The generic function initialize-instance is called by make-instance to

initialize a newly created instance. It uses standard method combination.

Methods for initialize-instance can be defined in order to perform any

initialization that cannot be achieved with the simple slot-filling mechanisms.
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During initialization, initialize-instance is invoked after the following

actions have been taken:

. The defaulted initialization argument list has been computed by combin-
ing the supplied initialization argument list with any default initialization

arguments for the class.

. The validity of the defaulted initialization argument list has been checked.

If any of the initialization arguments has not been declared valid, an error

is signaled.

. A new instance whose slots are unbound has been created.

The generic function initialize-instance is called with the new instance
and the defaulted initialization arguments. There is a system-supplied pri-

mary method for initialize-instance whose parameter specializer is the

class standard-object. This method calls the generic function shared-

initialize to fill in the slots according to the initialization arguments and

the :initform forms for the slots; the generic function shared-initialize

is called with the following arguments: the instance, t, and the defaulted

initialization arguments.

Note that initialize-instance provides the defaulted initialization argu-
ment list in its call to shared-initialize, so the first step performed by the

system-supplied primary method for shared-initialize takes into account

both the initialization arguments provided in the call to make-instance and

the defaulted initialization argument list.

Methods for initialize-instance can be defined to specify actions to be

taken when an instance is initialized. If only :aftermethods for initialize-

instance are defined, they will be run after the system-supplied primary
method for initialization and therefore they will not interfere with the default

behavior of initialize-instance.

The Object System provides two functions that are useful in the bodies
of initialize-instance methods. The function slot-boundp returns a

boolean value that indicates whether a specified slot has a value; this pro-

vides a mechanism for writing :after methods for initialize-instance

that initialize slots only if they have not already been initialized. The func-

tion slot-makunbound causes the slot to have no value.
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28.1.9.7. Definitions of Make-Instance and Initialize-
Instance

The generic function make-instance behaves as if it were defined as follows,

except that certain optimizations are permitted:
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(defmethod make-instance ((class standard-class) &rest initargs)

(setq initargs (default-initargs class initargs))

...

(let ((instance (apply #--’allocate-instance class initargs)))

(apply #--’initialize-instance instance initargs)

instance))

(defmethod make-instance ((class-name symbol) &rest initargs)

(apply #--’make-instance (find-class class-name) initargs))

The elided code in the definition of make-instance checks the sup-
plied initialization arguments to determine whether an initialization ar-

gument was supplied that neither filled a slot nor supplied an argu-

ment to an applicable method. This check could be implemented us-

ing the generic functions class-prototype, compute-applicable-methods,

function-keywords, and class-slot-initargs. See the third part of the
Common Lisp Object System specification for a description of this initializa-

tion argument check. [The third part has not yet been approved by X3J13

for inclusion in the forthcoming Common Lisp standard and is not included

in this book.—GLS]

The generic function initialize-instance behaves as if it were defined

as follows, except that certain optimizations are permitted:

(defmethod initialize-instance

((instance standard-object) &rest initargs)

(apply #--’shared-initialize instance t initargs)))

These procedures can be customized at either the Programmer Interface

level, the meta-object level, or both.

Customizing at the Programmer Interface level includes using the

:initform, :initarg, and :default-initargs options to defclass,
as well as defining methods for make-instance and initialize-

instance. It is also possible to define methods for shared-initialize,

which would be invoked by the generic functions reinitialize-

instance, update-instance-for-redefined-class, update-instance-

for-different-class, and initialize-instance. The meta-object level

supports additional customization by allowing methods to be defined on make-

instance, default-initargs, and allocate-instance. Parts 2 and 3 of the

Common Lisp Object System specification document each of these generic

functions and the system-supplied primary methods. [The third part has not
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yet been approved by X3J13 for inclusion in the forthcoming Common Lisp

standard and is not included in this book.—GLS]

Implementations are permitted to make certain optimizations to

initialize-instance and shared-initialize. The description of shared-

initialize in section 28.2 mentions the possible optimizations.

Because of optimization, the check for valid initialization arguments might

not be implemented using the generic functions class-prototype, compute-
applicable-methods, function-keywords, and class-slot-initargs. In

addition, methods for the generic function default-initargsand the system-

supplied primary methods for allocate-instance, initialize-instance,

and shared-initialize might not be called on every call to make-instance

or might not receive exactly the arguments that would be expected.

28.1.10. Redefining Classes

A class that is an instance of standard-class can be redefined if the new class

will also be an instance of standard-class. Redefining a class modifies the

existing class object to reflect the new class definition; it does not create a new
class object for the class. Any method object created by a :reader, :writer,

or :accessor option specified by the old defclass form is removed from the

corresponding generic function. Methods specified by the new defclass form

are added.

When the class C is redefined, changes are propagated to its instances and
to instances of any of its subclasses. Updating such an instance occurs at an

implementation-dependent time, but no later than the next time a slot of that

instance is read or written. Updating an instance does not change its identity

as defined by the eq function. The updating process may change the slots

of that particular instance, but it does not create a new instance. Whether
updating an instance consumes storage is implementation-dependent.

Note that redefining a class may cause slots to be added or deleted. If

a class is redefined in a way that changes the set of local slots accessible

in instances, the instances will be updated. It is implementation-dependent

whether instances are updated if a class is redefined in a way that does not
change the set of local slots accessible in instances.

The value of a slot that is specified as shared both in the old class and in

the new class is retained. If such a shared slot was unbound in the old class,

it will be unbound in the new class. Slots that were local in the old class and

that are shared in the new class are initialized. Newly added shared slots are

initialized.
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Each newly added shared slot is set to the result of evaluating the captured

:initform form for the slot that was specified in the defclass form for the

new class. If there is no :initform form, the slot is unbound.

If a class is redefined in such a way that the set of local slots accessible in an

instance of the class is changed, a two-step process of updating the instances
of the class takes place. The process may be explicitly started by invoking

the generic function make-instances-obsolete. This two-step process can

happen in other circumstances in some implementations. For example, in

some implementations this two-step process will be triggered if the order of

slots in storage is changed.

The first step modifies the structure of the instance by adding new local
slots and discarding local slots that are not defined in the new version of the

class. The second step initializes the newly added local slots and performs

any other user-defined actions. These steps are further specified in the next

two sections.

28.1.10.1. Modifying the Structure of Instances

The first step modifies the structure of instances of the redefined class to con-
form to its new class definition. Local slots specified by the new class defini-

tion that are not specified as either local or shared by the old class are added,

and slots not specified as either local or shared by the new class definition

that are specified as local by the old class are discarded. The names of these

added and discarded slots are passed as arguments to update-instance-for-

redefined-class as described in the next section.

The values of local slots specified by both the new and old classes are

retained. If such a local slot was unbound, it remains unbound.

The value of a slot that is specified as shared in the old class and as local

in the new class is retained. If such a shared slot was unbound, the local slot
will be unbound.

28.1.10.2. Initializing Newly Added Local Slots

The second step initializes the newly added local slots and performs any

other user-defined actions. This step is implemented by the generic function

update-instance-for-redefined-class, which is called after completion of

the first step of modifying the structure of the instance.

The generic function update-instance-for-redefined-class takes four

required arguments: the instance being updated after it has undergone the
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first step, a list of the names of local slots that were added, a list of the

names of local slots that were discarded, and a property list containing the

slot names and values of slots that were discarded and had values. Included

among the discarded slots are slots that were local in the old class and that

are shared in the new class.

The generic function update-instance-for-redefined-class also takes

any number of initialization arguments. When it is called by the system to
update an instance whose class has been redefined, no initialization arguments

are provided.

There is a system-supplied primary method for the generic function update-

instance-for-redefined-classwhose parameter specializer for its instance

argument is the class standard-object. First this method checks the validity

of initialization arguments and signals an error if an initialization argument

is supplied that is not declared valid (see section 28.1.9.2.) Then it calls
the generic function shared-initialize with the following arguments: the

instance, the list of names of the newly added slots, and the initialization

arguments it received.

28.1.10.3. Customizing Class Redefinition

Methods for update-instance-for-redefined-class may be defined to

specify actions to be taken when an instance is updated. If only :after meth-

ods for update-instance-for-redefined-class are defined, they will be run

after the system-supplied primary method for initialization and therefore will
not interfere with the default behavior of update-instance-for-redefined-

class. Because no initialization arguments are passed to update-instance-

for-redefined-class when it is called by the system, the :initform forms

for slots that are filled by :before methods for update-instance-for-

redefined-class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redef-

inition (see section 28.1.9.5).

28.1.10.4. Extensions

There are two allowed extensions to class redefinition:

. The Object System may be extended to permit the new class to be an

instance of a metaclass other than the metaclass of the old class.
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. The Object System may be extended to support an updating process when

either the old or the new class is an instance of a class other than standard-

class that is not a built-in class.

28.1.11. Changing the Class of an Instance

The function change-class can be used to change the class of an instance
from its current class, Cfrom, to a different class, Cto; it changes the structure

of the instance to conform to the definition of the class Cto.

Note that changing the class of an instance may cause slots to be added or

deleted.

When change-class is invoked on an instance, a two-step updating process
takes place. The first step modifies the structure of the instance by adding

new local slots and discarding local slots that are not specified in the new

version of the instance. The second step initializes the newly added local

slots and performs any other user-defined actions. These steps are further
described in the following two sections.

28.1.11.1. Modifying the Structure of an Instance

In order to make an instance conform to the class Cto, local slots specified by

the class Cto that are not specified by the class Cfrom are added, and local

slots not specified by the class Cto that are specified by the class Cfrom are
discarded.

The values of local slots specified by both the class Cto and the class Cfrom

are retained. If such a local slot was unbound, it remains unbound.

The values of slots specified as shared in the class Cfrom and as local in the
class Cto are retained.

This first step of the update does not affect the values of any shared slots.

28.1.11.2. Initializing Newly Added Local Slots

The second step of the update initializes the newly added slots and per-

forms any other user-defined actions. This step is implemented by the
generic function update-instance-for-different-class. The generic func-

tion update-instance-for-different-class is invoked by change-class

after the first step of the update has been completed.

The generic function update-instance-for-different-class is invoked

on two arguments computed by change-class. The first argument passed is
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a copy of the instance being updated and is an instance of the class Cfrom;

this copy has dynamic extent within the generic function change-class. The

second argument is the instance as updated so far by change-class and is

an instance of the class Cto.

The generic function update-instance-for-different-class also takes
any number of initialization arguments. When it is called by change-class,

no initialization arguments are provided.

There is a system-supplied primary method for the generic function update-

instance-for-different-class that has two parameter specializers, each of

which is the class standard-object. First this method checks the validity
of initialization arguments and signals an error if an initialization argument

is supplied that is not declared valid (see section 28.1.9.2). Then it calls

the generic function shared-initialize with the following arguments: the

instance, a list of names of the newly added slots, and the initialization argu-
ments it received.

28.1.11.3. Customizing the Change of Class of an Instance

Methods for update-instance-for-different-class may be defined to

specify actions to be taken when an instance is updated. If only :after

methods for update-instance-for-different-class are defined, they will
be run after the system-supplied primary method for initialization and will

not interfere with the default behavior of update-instance-for-different-

class. Because no initialization arguments are passed to update-instance-

for-different-class when it is called by change-class, the :initform

forms for slots that are filled by :before methods for update-instance-

for-different-class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redef-

inition (see section 28.1.9.5).

28.1.12. Reinitializing an Instance

The generic function reinitialize-instance may be used to change the
values of slots according to initialization arguments.

The process of reinitialization changes the values of some slots and performs

any user-defined actions.

Reinitialization does not modify the structure of an instance to add or delete

slots, and it does not use any :initform forms to initialize slots.
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The generic function reinitialize-instance may be called directly. It

takes one required argument, the instance. It also takes any number of initial-

ization arguments to be used by methods for reinitialize-instance or for

shared-initialize. The arguments after the required instance must form

an initialization argument list.

There is a system-supplied primary method for reinitialize-instance

whose parameter specializer is the class standard-object. First this method

checks the validity of initialization arguments and signals an error if an initial-

ization argument is supplied that is not declared valid (see section 28.1.9.2).

Then it calls the generic function shared-initialize with the following ar-

guments: the instance, nil, and the initialization arguments it received.
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28.1.12.1. Customizing Reinitialization

Methods for the generic function reinitialize-instance may be defined

to specify actions to be taken when an instance is updated. If only :after

methods for reinitialize-instance are defined, they will be run after the

system-supplied primary method for initialization and therefore will not in-

terfere with the default behavior of reinitialize-instance.

Methods for shared-initialize may be defined to customize class redef-

inition (see section 28.1.9.5).

28.2. Functions in the Programmer Interface

This section describes the functions, macros, special forms, and generic func-
tions provided by the Common Lisp Object System Programmer Interface.

The Programmer Interface comprises the functions and macros that are suf-

ficient for writing most object-oriented programs.

This section is reference material that requires an understanding of the basic
concepts of the Common Lisp Object System. The functions are arranged in

alphabetical order for convenient reference.

The description of each function, macro, special form, and generic function

includes its purpose, its syntax, the semantics of its arguments and returned

values, and often an example and cross-references to related functions.

The syntax description for a function, macro, or special form describes its

parameters. The description of a generic function includes descriptions of

the methods that are defined on that generic function by the Common Lisp

Object System. A method signature is used to describe the parameters and
parameter specializers for each method.

The following is an example of the format for the syntax description of a

generic function with the method signature for one primary method:

[Generic function]f x y &optional z &key :k

[Primary method ]f (x class) (y t) &optional z &key :k

This description indicates that the generic function f has two required param-
eters, x and y. In addition, there is an optional parameter z and a keyword

parameter :k.

The method signature indicates that this method on the generic function f

has two required parameters, x, which must be an instance of the class class,

and y, which can be any object. In addition, there is an optional parameter z
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and a keyword parameter :k. The signature also indicates that this method

on f is a primary method and has no qualifiers.

The syntax description for a generic function describes the lambda-list of

the generic function itself, while the method signatures describe the lambda-
lists of the defined methods.

The generic functions described in this book are all standard generic func-

tions. They all use standard method combination.

Any implementation of the Common Lisp Object System is allowed to pro-
vide additional methods on the generic functions described here.

It is useful to categorize the functions and macros according to their role

in this standard:

. Tools used for simple object-oriented programming

These tools allow for defining new classes, methods, and generic functions

and for making instances. Some tools used within method bodies are also

listed here. Some of the macros listed here have a corresponding function

that performs the same task at a lower level of abstraction.

call-next-method initialize-instance

change-class make-instance

defclass next-method-p

defgeneric slot-boundp

defmethod slot-value

generic-flet with-accessors

generic-function with-added-methods

generic-labels with-slots

. Functions underlying the commonly used macros

add-method reinitialize-instance

class-name remove-method

compute-applicable-methods shared-initialize

ensure-generic-function slot-exists-p

find-class slot-makunbound

find-method slot-missing

function-keywords slot-unbound

make-instances-obsolete update-instance-for-different-class

no-applicable-method update-instance-for-redefined-class

no-next-method

. Tools for declarative method combination
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call-method method-combination-error

define-method-combination method-qualifiers

invalid-method-error

. General Common Lisp support tools

class-of print-object

documentation symbol-macrolet

[Note that describe appeared in this list in the original CLOS proposal [5,
7], but X3J13 voted in March 1989 〈63〉 not to make describe a generic

function after all (see describe-object).—GLS]

[At this point the original CLOS report contained a description of the [[ ]]

and ↓ notation; that description is omitted here. I have adopted the notation

for use throughout this book. It is described in section 1.2.5.—GLS]

[Generic function]add-method generic-function method

[Primary method ]add-method

(generic-function standard-generic-function) (method method)

The generic function add-method adds a method to a generic function. It

destructively modifies the generic function and returns the modified generic

function as its result.

The generic-function argument is a generic function object.
The method argument is a method object. The lambda-list of the method

function must be congruent with the lambda-list of the generic function, or

an error is signaled.

The modified generic function is returned. The result of add-method is eq
to the generic-function argument.

If the given method agrees with an existing method of the generic function

on parameter specializers and qualifiers, the existing method is replaced. See

section 28.1.6.3 for a definition of agreement in this context.

If the method object is a method object of another generic function, an
error is signaled.

See section 28.1.6.3 as well as defmethod, defgeneric, find-method, and

remove-method.

[Macro]call-method method next-method-list

The macro call-method is used in method combination. This macro hides the

implementation-dependent details of how methods are called. It can be used
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only within an effective method form, for the name call-method is defined

only within the lexical scope of such a form.

The macro call-method invokes the specified method, supplying it with ar-

guments and with definitions for call-next-method and for next-method-p.

The arguments are the arguments that were supplied to the effective method

form containing the invocation of call-method. The definitions of call-

next-method and next-method-p rely on the list of method objects given as
the second argument to call-method.

The call-next-method function available to the method that is the first

subform will call the first method in the list that is the second subform. The

call-next-method function available in that method, in turn, will call the

second method in the list that is the second subform, and so on, until the list

of next methods is exhausted.

The method argument is a method object; the next-method-list argument
is a list of method objects.

A list whose first element is the symbol make-method and whose second
element is a Lisp form can be used instead of a method object as the first

subform of call-method or as an element of the second subform of call-

method. Such a list specifies a method object whose method function has a

body that is the given form.

The result of call-method is the value or values returned by the method

invocation.

See call-next-method, define-method-combination, and next-method-

p.

[Function]call-next-method &rest args

The function call-next-method can be used within the body of a method
defined by a method-defining form to call the next method.

The function call-next-method returns the value or values returned by
the method it calls. If there is no next method, the generic function no-

next-method is called.

The type of method combination used determines which methods can invoke

call-next-method. The standard method combination type allows call-

next-method to be used within primary methods and :around methods.

The standard method combination type defines the next method according

to the following rules:

. If call-next-method is used in an :around method, the next method is

the next most specific :around method, if one is applicable.
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. If there are no :around methods at all or if call-next-method is called by

the least specific :around method, other methods are called as follows:

– All the :before methods are called, in most-specific-first order. The
function call-next-method cannot be used in :before methods.

– The most specific primary method is called. Inside the body of a primary
method, call-next-methodmay be used to pass control to the next most

specific primary method. The generic function no-next-method is called

if call-next-method is used and there are no more primary methods.

– All the :after methods are called in most-specific-last order. The func-

tion call-next-method cannot be used in :after methods.

For further discussion of the use of call-next-method, see sections 28.1.7.2

and 28.1.7.4.

When call-next-method is called with no arguments, it passes the cur-

rent method’s original arguments to the next method. Neither argument

defaulting, nor using setq, nor rebinding variables with the same names as

parameters of the method affects the values call-next-method passes to the

method it calls.

When call-next-method is called with arguments, the next method is

called with those arguments. When providing arguments to call-next-

method, the following rule must be satisfied or an error is signaled: The
ordered set of methods applicable for a changed set of arguments for call-

next-method must be the same as the ordered set of applicable methods for

the original arguments to the generic function. Optimizations of the error

checking are possible, but they must not change the semantics of call-next-
method.

If call-next-method is called with arguments but omits optional argu-

ments, the next method called defaults those arguments.

The function call-next-method returns the value or values returned by

the method it calls.

Further computation is possible after call-next-method returns.

The definition of the function call-next-method has lexical scope (for it is

defined only within the body of a method defined by a method-defining form)

and indefinite extent.

For generic functions using a type of method combination defined by the

short form of define-method-combination, call-next-method can be used

in :around methods only.
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The function next-method-p can be used to test whether or not there is a

next method.

If call-next-method is used in methods that do not support it, an error

is signaled.

See sections 28.1.7, 28.1.7.2, and 28.1.7.4 as well as the functions define-

method-combination, next-method-p, and no-next-method.

[Generic function]change-class instance new-class

[Primary method ]change-class (instance standard-object)

(new-class standard-class)

[Primary method ]change-class (instance t) (new-class symbol)

The generic function change-class changes the class of an instance to a new

class. It destructively modifies and returns the instance.

If in the old class there is any slot of the same name as a local slot in the
new class, the value of that slot is retained. This means that if the slot has

a value, the value returned by slot-value after change-class is invoked is

eql to the value returned by slot-value before change-class is invoked.

Similarly, if the slot was unbound, it remains unbound. The other slots are
initialized as described in section 28.1.11.

The instance argument is a Lisp object.

The new-class argument is a class object or a symbol that names a class.

If the second of the preceding methods is selected, that method invokes

change-class on instance and (find-class new-class).

The modified instance is returned. The result of change-class is eq to the

instance argument.

Examples:

(defclass position () ())

(defclass x-y-position (position)

((x :initform 0 :initarg :x)

(y :initform 0 :initarg :y)))

(defclass rho-theta-position (position)

((rho :initform 0)

(theta :initform 0)))
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(defmethod update-instance-for-different-class :before

((old x-y-position)

(new rho-theta-position)

&key)

;; Copy the position information from old to new to make new

;; be a rho-theta-position at the same position as old.

(let ((x (slot-value old ’x))

(y (slot-value old ’y)))

(setf (slot-value new ’rho) (sqrt (+ (* x x) (* y y)))

(slot-value new ’theta) (atan y x))))

;;; At this point an instance of the class x-y-position can be

;;; changed to be an instance of the class rho-theta-position

;;; using change-class:

(setq p1 (make-instance ’x-y-position :x 2 :y 0))

(change-class p1 ’rho-theta-position)

;;; The result is that the instance bound to p1 is now

;;; an instance of the class rho-theta-position.

;;; The update-instance-for-different-class method

;;; performed the initialization of the rho and theta

;;; slots based on the values of the x and y slots,

;;; which were maintained by the old instance.

After completing all other actions, change-class invokes the generic
function update-instance-for-different-class. The generic function

update-instance-for-different-class can be used to assign values to

slots in the transformed instance.

The generic function change-class has several semantic difficulties. First,

it performs a destructive operation that can be invoked within a method on
an instance that was used to select that method. When multiple methods

are involved because methods are being combined, the methods currently

executing or about to be executed may no longer be applicable. Second, some

implementations might use compiler optimizations of slot access, and when
the class of an instance is changed the assumptions the compiler made might

be violated. This implies that a programmer must not use change-class

inside a method if any methods for that generic function access any slots, or

the results are undefined.

See section 28.1.11 as well as update-instance-for-different-class.
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[Generic function]class-name class

[Primary method ]class-name (class class)

The generic function class-name takes a class object and returns its name.
The class argument is a class object. The new-value argument is any object.

The name of the given class is returned.

The name of an anonymous class is nil.

If S is a symbol such that S =(class-name C) and C = (find-class S),
then S is the proper name of C (see section 28.1.2).

See also section 28.1.2 and find-class.

[Generic function](setf class-name) new-value class

[Primary method ](setf class-name) new-value (class class)

The generic function (setf class-name) takes a class object and sets its

name. The class argument is a class object. The new-value argument is any

object.

[Function]class-of object

The function class-of returns the class of which the given object is an in-
stance. The argument to class-of may be any Common Lisp object. The

function class-of returns the class of which the argument is an instance.

[Function]compute-applicable-methods generic-function

function-arguments

Given a generic function and a set of arguments, the function compute-

applicable-methods returns the set of methods that are applicable for those

arguments.

The methods are sorted according to precedence order. See section 28.1.7.

The generic-function argument must be a generic function object. The

function-arguments argument is a list of the arguments to that generic func-

tion. The result is a list of the applicable methods in order of precedence. See

section 28.1.7.

[Macro]defclass class-name ( {superclass-name}∗ )
( {slot-specifier}∗ ) [[ ↓class-option ]]
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class-name ::= symbol

superclass-name ::= symbol

slot-specifier ::= slot-name | (slot-name [[↓slot-option ]])

slot-name ::= symbol

slot-option ::= {:reader reader-function-name}∗
| {:writer writer-function-name}∗
| {:accessor reader-function-name}∗
| {:allocation allocation-type}
| {:initarg initarg-name}∗
| {:initform form}
| {:type type-specifier}
| {:documentation string}
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reader-function-name ::= symbol

writer-function-name ::= function-name/

function-name ::= {symbol | (setf symbol)}
initarg-name ::= symbol

allocation-type ::= :instance | :class
class-option ::= (:default-initargs initarg-list)

| (:documentation string)

| (:metaclass class-name)

initarg-list ::= {initarg-name default-initial-value-form}∗

The macro defclass defines a new named class. It returns the new class

object as its result.

The syntax of defclass provides options for specifying initialization ar-

guments for slots, for specifying default initialization values for slots, and for

requesting that methods on specified generic functions be automatically gener-

ated for reading and writing the values of slots. No reader or writer functions
are defined by default; their generation must be explicitly requested.

Defining a new class also causes a type of the same name to be defined.

The predicate (typep object class-name) returns true if the class of the given

object is class-name itself or a subclass of the class class-name. A class object
can be used as a type specifier. Thus (typep object class) returns true if the

class of the object is class itself or a subclass of class.

The class-name argument is a non-nil symbol. It becomes the proper

name of the new class. If a class with the same proper name already exists
and that class is an instance of standard-class, and if the defclass form

for the definition of the new class specifies a class of class standard-class,

the definition of the existing class is replaced.

Each superclass-name argument is a non-nil symbol that specifies a direct
superclass of the new class. The new class will inherit slots and methods from

each of its direct superclasses, from their direct superclasses, and so on. See

section 28.1.3 for a discussion of how slots and methods are inherited.

Each slot-specifier argument is the name of the slot or a list consisting of
the slot name followed by zero or more slot options. The slot-name argument

is a symbol that is syntactically valid for use as a variable name. If there are

any duplicate slot names, an error is signaled.

The following slot options are available:

. The :reader slot option specifies that an unqualified method is to be de-

fined on the generic function named reader-function-name to read the value

of the given slot. The reader-function-name argument is a non-nil symbol.

The :reader slot option may be specified more than once for a given slot.
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. The :writer slot option specifies that an unqualified method is to be de-

fined on the generic function named writer-function-name to write the value

of the slot. The writer-function-name argument is a function-name. The

:writer slot option may be specified more than once for a given slot.

. The :accessor slot option specifies that an unqualified method is to be

defined on the generic function named reader-function-name to read the
value of the given slot and that an unqualified method is to be defined on

the generic function named (setf reader-function-name) to be used with

setf to modify the value of the slot. The reader-function-name argument

is a non-nil symbol. The :accessor slot option may be specified more
than once for a given slot.

. The :allocation slot option is used to specify where storage is to be allo-

cated for the given slot. Storage for a slot may be located in each instance

or in the class object itself, for example. The value of the allocation-type

argument can be either the keyword :instance or the keyword :class.
The :allocation slot option may be specified at most once for a given

slot. If the :allocation slot option is not specified, the effect is the same

as specifying :allocation :instance.

– If allocation-type is :instance, a local slot of the given name is allocated

in each instance of the class.

– If allocation-type is :class, a shared slot of the given name is allocated.
The value of the slot is shared by all instances of the class. If a class C1

defines such a shared slot, any subclass C2 of C1 will share this single

slot unless the defclass form for C2 specifies a slot of the same name or

there is a superclass of C2 that precedes C1 in the class precedence list

of C2 and that defines a slot of the same name.

. The :initform slot option is used to provide a default initial value form to
be used in the initialization of the slot. The :initform slot option may be

specified at most once for a given slot. This form is evaluated every time

it is used to initialize the slot. The lexical environment in which this form

is evaluated is the lexical environment in which the defclass form was
evaluated. Note that the lexical environment refers both to variables and

to functions. For local slots, the dynamic environment is the dynamic envi-

ronment in which make-instance was called; for shared slots, the dynamic

environment is the dynamic environment in which the defclass form was

evaluated. See section 28.1.9.
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No implementation is permitted to extend the syntax of defclass to allow

(slot-name form) as an abbreviation for (slot-name :initform form).

. The :initarg slot option declares an initialization argument named initarg-
name and specifies that this initialization argument initializes the given

slot. If the initialization argument has a value in the call to initialize-

instance, the value will be stored into the given slot, and the slot’s

:initform slot option, if any, is not evaluated. If none of the initializa-
tion arguments specified for a given slot has a value, the slot is initialized

according to the :initform slot option, if specified. The :initarg slot

option can be specified more than once for a given slot. The initarg-name

argument can be any symbol.

. The :type slot option specifies that the contents of the slot will always

be of the specified data type. It effectively declares the result type of the

reader generic function when applied to an object of this class. The result
of attempting to store in a slot a value that does not satisfy the type of the

slot is undefined. The :type slot option may be specified at most once for

a given slot. The :type slot option is further discussed in section 28.1.3.2.

. The :documentation slot option provides a documentation string for the

slot.

Each class option is an option that refers to the class as a whole or to all

class slots. The following class options are available:

. The :default-initargs class option is followed by a list of alternating

initialization argument names and default initial value forms. If any of these

initialization arguments does not appear in the initialization argument list

supplied to make-instance, the corresponding default initial value form is
evaluated, and the initialization argument name and the form’s value are

added to the end of the initialization argument list before the instance is

created (see section 28.1.9). The default initial value form is evaluated each

time it is used. The lexical environment in which this form is evaluated is

the lexical environment in which the defclass form was evaluated. The
dynamic environment is the dynamic environment in which make-instance

was called. If an initialization argument name appears more than once in

a :default-initargs class option, an error is signaled. The :default-

initargs class option may be specified at most once.

. The :documentation class option causes a documentation string to be at-

tached to the class name. The documentation type for this string is type.

The form (documentation class-name ’type) may be used to retrieve the
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documentation string. The :documentation class option may be specified

at most once.

. The :metaclass class option is used to specify that instances of the class

being defined are to have a different metaclass than the default provided
by the system (the class standard-class). The class-name argument is

the name of the desired metaclass. The :metaclass class option may be

specified at most once.

The new class object is returned as the result.

If a class with the same proper name already exists and that class is an

instance of standard-class, and if the defclass form for the definition of

the new class specifies a class of class standard-class, the existing class is

redefined, and instances of it (and its subclasses) are updated to the new
definition at the time that they are next accessed (see section 28.1.10).

Note the following rules of defclass for standard classes:

. It is not required that the superclasses of a class be defined before the

defclass form for that class is evaluated.

. All the superclasses of a class must be defined before an instance of the

class can be made.

. A class must be defined before it can be used as a parameter specializer in
a defmethod form.

The Object System may be extended to cover situations where these rules

are not obeyed.

Some slot options are inherited by a class from its superclasses, and some
can be shadowed or altered by providing a local slot description. No class

options except :default-initargs are inherited. For a detailed description

of how slots and slot options are inherited, see section 28.1.3.2.

The options to defclass can be extended. An implementation must signal
an error if it observes a class option or a slot option that is not implemented

locally.

It is valid to specify more than one reader, writer, accessor, or initialization

argument for a slot. No other slot option may appear more than once in a
single slot description, or an error is signaled.

If no reader, writer, or accessor is specified for a slot, the slot can be accessed

only by the function slot-value.

See sections 28.1.2, 28.1.3, 28.1.10, 28.1.5, 28.1.9 as well as slot-value,

make-instance, and initialize-instance.
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[Macro]defgeneric function-name lambda-list

[[ ↓option | {method-description}∗ ]]

function-name ::= {symbol | (setf symbol)}
lambda-list ::= ( {var}∗

[&optional {var | (var)}∗ ]

[&rest var ]
[&key {keyword-parameter}∗ [&allow-other-keys] ] )

keyword-parameter ::= var | ( {var | (keyword var)} )
option ::= (:argument-precedence-order {parameter-name}+ )

| (declare {declaration}+ )

| (:documentation string)
| (:method-combination symbol {arg}∗ )
| (:generic-function-class class-name)

| (:method-class class-name)

method-description ::= (:method {method-qualifier}∗
specialized-lambda-list

[[ {declaration}∗ | documentation ]]

{ form}∗ )
method-qualifier ::= non-nil-atom

specialized-lambda-list ::=

( {var | (var parameter-specializer-name)}∗
[&optional {var | (var [initform [supplied-p-parameter ] ] )}∗ ]

[&rest var ]

[&key {specialized-keyword-parameter}∗ [&allow-other-keys] ]
[&aux {var | (var [initform] )}∗ ] )

specialized-keyword-parameter ::=
var | ( {var | (keyword var)} [initform [supplied-p-parameter ] ] )

parameter-specializer-name ::= symbol | (eql eql-specializer-form)

The macro defgeneric is used to define a generic function or to specify
options and declarations that pertain to a generic function as a whole.

If (fboundp function-name) is nil, a new generic function is created. If

(fdefinition function-specifier) is a generic function, that generic function

is modified. If function-name/ names a non-generic function, a macro, or a

special form, an error is signaled.

[X3J13 voted in March 1989 〈89〉 to use fdefinition in the previous

paragraph, as shown, rather than symbol-function, as it appeared in the
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original report on CLOS [5, 7]. The vote also changed all occurrences of

function-specifier in the original report to function-name; this change is re-

flected here.—GLS]

Each method-description defines a method on the generic function. The

lambda-list of each method must be congruent with the lambda-list specified

by the lambda-list option. If this condition does not hold, an error is signaled.

See section 28.1.6.4 for a definition of congruence in this context.

The macro defgeneric returns the generic function object as its result.

The function-name argument is a non-nil symbol or a list of the form (setf

symbol).
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The lambda-list argument is an ordinary function lambda-list with the fol-

lowing exceptions:

. The use of &aux is not allowed.

. Optional and keyword arguments may not have default initial value forms
nor use supplied-p parameters. The generic function passes to the method

all the argument values passed to it, and only those; default values are not

supported. Note that optional and keyword arguments in method defini-

tions, however, can have default initial value forms and can use supplied-p

parameters.

The following options are provided. A given option may occur only once,
or an error is signaled.

. The :argument-precedence-order option is used to specify the order in

which the required arguments in a call to the generic function are tested

for specificity when selecting a particular method. Each required argument,

as specified in the lambda-list argument, must be included exactly once as
a parameter-name so that the full and unambiguous precedence order is

supplied. If this condition is not met, an error is signaled.

. The declare option is used to specify declarations that pertain to the
generic function. The following standard Common Lisp declaration is al-

lowed:

– An optimize declaration specifies whether method selection should be
optimized for speed or space, but it has no effect on methods. To control

how a method is optimized, an optimize declaration must be placed

directly in the defmethod form or method description. The optimization

qualities speed and space are the only qualities this standard requires,
but an implementation can extend the Common Lisp Object System to

recognize other qualities. A simple implementation that has only one

method selection technique and ignores the optimize declaration is valid.

The special, ftype, function, inline, notinline, and declaration dec-

larations are not permitted. Individual implementations can extend the

declare option to support additional declarations. If an implementation

notices a declaration that it does not support and that has not been pro-

claimed as a non-standard declaration name in a declaration proclama-
tion, it should issue a warning.

. The :documentation argument associates a documentation string with the

generic function. The documentation type for this string is function.
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The form (documentation function-name/ ’function) may be used to

retrieve this string.

. The :generic-function-class option may be used to specify that the

generic function is to have a different class than the default provided by

the system (the class standard-generic-function). The class-name ar-

gument is the name of a class that can be the class of a generic function.
If function-name specifies an existing generic function that has a different

value for the :generic-function-class argument and the new generic

function class is compatible with the old, change-class is called to change

the class of the generic function; otherwise an error is signaled.

. The :method-class option is used to specify that all methods on this

generic function are to have a different class from the default provided
by the system (the class standard-method). The class-name argument is

the name of a class that is capable of being the class of a method.

. The :method-combination option is followed by a symbol that names a

type of method combination. The arguments (if any) that follow that

symbol depend on the type of method combination. Note that the stan-

dard method combination type does not support any arguments. However,
all types of method combination defined by the short form of define-

method-combination accept an optional argument named order , default-

ing to :most-specific-first, where a value of :most-specific-last

reverses the order of the primary methods without affecting the order of
the auxiliary methods.

The method-description arguments define methods that will be associated

with the generic function. The method-qualifier and specialized-lambda-list

arguments in a method description are the same as for defmethod.

The form arguments specify the method body. The body of the method is
enclosed in an implicit block. If function-name is a symbol, this block bears

the same name as the generic function. If function-name is a list of the form

(setf symbol), the name of the block is symbol.

The generic function object is returned as the result.

The effect of the defgeneric macro is as if the following three steps were

performed: first, methods defined by previous defgeneric forms are removed;

second, ensure-generic-function is called; and finally, methods specified by

the current defgeneric form are added to the generic function.

If no method descriptions are specified and a generic function of the same

name does not already exist, a generic function with no methods is created.
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The lambda-list argument of defgeneric specifies the shape of lambda-

lists for the methods on this generic function. All methods on the resulting

generic function must have lambda-lists that are congruent with this shape. If

a defgeneric form is evaluated and some methods for that generic function

have lambda-lists that are not congruent with that given in the defgeneric

form, an error is signaled. For further details on method congruence, see

section 28.1.6.4.

Implementations can extend defgeneric to include other options. It is

required that an implementation signal an error if it observes an option that
is not implemented locally.

See section 28.1.6.4 as well as defmethod, ensure-generic-function, and

generic-function.

[Macro]define-method-combination name [[ ↓short-form-option ]]

[Macro]define-method-combination name lambda-list

( {method-group-specifier}∗ )
[(:arguments . lambda-list)]
[(:generic-function generic-fn-symbol)]

[[ {declaration}∗ | doc-string ]]

{ form}∗

short-form-option ::= :documentation string

| :identity-with-one-argument boolean
| :operator operator

method-group-specifier ::= (variable { {qualifier-pattern}+ | predicate}
[[ ↓long-form-option ]] )

long-form-option ::= :description format-string

| :order order
| :required boolean

The macro define-method-combination is used to define new types of
method combination.

There are two forms of define-method-combination. The short form is a

simple facility for the cases that are expected to be most commonly needed.

The long form is more powerful but more verbose. It resembles defmacro in
that the body is an expression, usually using backquote, that computes a Lisp

form. Thus arbitrary control structures can be implemented. The long form

also allows arbitrary processing of method qualifiers.

In both the short and long forms, name is a symbol. By convention, non-

keyword, non-nil symbols are usually used.
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The short-form syntax of define-method-combination is recognized when

the second subform is a non-nil symbol or is not present. When the short

form is used, name is defined as a type of method combination that produces

a Lisp form (operator method-call method-call . . . ). The operator is a symbol

that can be the name of a function, macro, or special form. The operator can
be specified by a keyword option; it defaults to name.

Keyword options for the short form are the following:

. The :documentation option is used to document the method-combination

type.

. The :identity-with-one-argument option enables an optimization when

boolean is true (the default is false). If there is exactly one applicable

method and it is a primary method, that method serves as the effective

method and operator is not called. This optimization avoids the need to
create a new effective method and avoids the overhead of a function call.

This option is designed to be used with operators such as progn, and, +,

and max.

. The :operator option specifies the name of the operator. The operator

argument is a symbol that can be the name of a function, macro, or special
form. By convention, name and operator are often the same symbol. This

is the default, but it is not required.

None of the subforms is evaluated.

These types of method combination require exactly one qualifier per
method. An error is signaled if there are applicable methods with no qualifiers

or with qualifiers that are not supported by the method combination type.

A method combination procedure defined in this way recognizes two roles

for methods. A method whose one qualifier is the symbol naming this type of
method combination is defined to be a primary method. At least one primary

method must be applicable or an error is signaled. A method with :around as

its one qualifier is an auxiliary method that behaves the same as an :around

method in standard method combination. The function call-next-method

can be used only in :around methods; it cannot be used in primary methods

defined by the short form of the define-method-combination macro.

A method combination procedure defined in this way accepts an optional

argument named order, which defaults to :most-specific-first. A value
of :most-specific-last reverses the order of the primary methods without

affecting the order of the auxiliary methods.

The short form automatically includes error checking and support for

:around methods.
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For a discussion of built-in method combination types, see section 28.1.7.4.

The long-form syntax of define-method-combination is recognized when

the second subform is a list.

The lambda-list argument is an ordinary lambda-list. It receives any ar-

guments provided after the name of the method combination type in the

:method-combination option to defgeneric.

A list of method group specifiers follows. Each specifier selects a subset

of the applicable methods to play a particular role, either by matching their
qualifiers against some patterns or by testing their qualifiers with a predicate.

These method group specifiers define all method qualifiers that can be used

with this type of method combination. If an applicable method does not fall

into any method group, the system signals the error that the method is invalid
for the kind of method combination in use.

Each method group specifier names a variable. During the execution of the

forms in the body of define-method-combination, this variable is bound to

a list of the methods in the method group. The methods in this list occur in
most-specific-first order.

A qualifier pattern is a list or the symbol *. A method matches a quali-

fier pattern if the method’s list of qualifiers is equal to the qualifier pattern

(except that the symbol * in a qualifier pattern matches anything). Thus a

qualifier pattern can be one of the following: the empty list (), which matches
unqualified methods; the symbol *, which matches all methods; a true list,

which matches methods with the same number of qualifiers as the length of

the list when each qualifier matches the corresponding list element; or a dot-

ted list that ends in the symbol * (the * matches any number of additional
qualifiers).

Each applicable method is tested against the qualifier patterns and predi-

cates in left-to-right order. As soon as a qualifier pattern matches or a predi-

cate returns true, the method becomes a member of the corresponding method

group and no further tests are made. Thus if a method could be a member of
more than one method group, it joins only the first such group. If a method

group has more than one qualifier pattern, a method need only satisfy one of

the qualifier patterns to be a member of the group.

The name of a predicate function can appear instead of qualifier patterns
in a method group specifier. The predicate is called for each method that has

not been assigned to an earlier method group; it is called with one argument,

the method’s qualifier list. The predicate should return true if the method is

to be a member of the method group. A predicate can be distinguished from

a qualifier pattern because it is a symbol other than nil or *.
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If there is an applicable method whose qualifiers are not valid for the method

combination type, the function invalid-method-error is called.

Method group specifiers can have keyword options following the qualifier
patterns or predicate. Keyword options can be distinguished from additional

qualifier patterns because they are neither lists nor the symbol *. The keyword

options are:

. The :description option is used to provide a description of the role of
methods in the method group. Programming environment tools use (apply

#--’format stream format-string (method-qualifiers method)) to print

this description, which is expected to be concise. This keyword option al-

lows the description of a method qualifier to be defined in the same module
that defines the meaning of the method qualifier. In most cases, format-

string will not contain any format directives, but they are available for

generality. If :description is not specified, a default description is gener-

ated based on the variable name and the qualifier patterns and on whether

this method group includes the unqualified methods. The argument format-
string is not evaluated.

. The :order option specifies the order of methods. The order argument is a

form that evaluates to :most-specific-first or :most-specific-last.
If it evaluates to any other value, an error is signaled. This keyword option

is a convenience and does not add any expressive power. If :order is not

specified, it defaults to :most-specific-first.

. The :required option specifies whether at least one method in this method

group is required. If the boolean argument is non-nil and the method

group is empty (that is, no applicable methods match the qualifier patterns

or satisfy the predicate), an error is signaled. This keyword option is a
convenience and does not add any expressive power. If :required is not

specified, it defaults to nil. The boolean argument is not evaluated.

The use of method group specifiers provides a convenient syntax to select

methods, to divide them among the possible roles, and to perform the nec-

essary error checking. It is possible to perform further filtering of methods

in the body forms by using normal list-processing operations and the func-
tions method-qualifiers and invalid-method-error. It is permissible to

use setq on the variables named in the method group specifiers and to bind

additional variables. It is also possible to bypass the method group speci-

fier mechanism and do everything in the body forms. This is accomplished by

writing a single method group with * as its only qualifier pattern; the variable
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is then bound to a list of all of the applicable methods, in most-specific-first

order.

The body forms compute and return the Lisp form that specifies how the

methods are combined, that is, the effective method. The effective method

uses the macro call-method. The definition of this macro has lexical scope

and is available only in an effective method form. Given a method object in

one of the lists produced by the method group specifiers and a list of next
methods, the macro call-method will invoke the method so that call-next-

method will have available the next methods.

When an effective method has no effect other than to call a single method,

some implementations employ an optimization that uses the single method di-

rectly as the effective method, thus avoiding the need to create a new effective

method. This optimization is active when the effective method form consists
entirely of an invocation of the call-method macro whose first subform is

a method object and whose second subform is nil. Each define-method-

combination body is responsible for stripping off redundant invocations of

progn, and, multiple-value-prog1, and the like, if this optimization is de-

sired.

The list (:arguments . lambda-list) can appear before any declaration or

documentation string. This form is useful when the method combination type
performs some specific behavior as part of the combined method and that be-

havior needs access to the arguments to the generic function. Each parameter

variable defined by lambda-list is bound to a form that can be inserted into the

effective method. When this form is evaluated during execution of the effec-
tive method, its value is the corresponding argument to the generic function.

If lambda-list is not congruent to the generic function’s lambda-list, additional

ignored parameters are automatically inserted until it is congruent. Thus it is

permissible for lambda-list to receive fewer arguments than the number that

the generic function expects.

Erroneous conditions detected by the body should be reported with method-

combination-error or invalid-method-error; these functions add any nec-
essary contextual information to the error message and will signal the appro-

priate error.

The body forms are evaluated inside the bindings created by the lambda-

list and method group specifiers. Declarations at the head of the body are

positioned directly inside bindings created by the lambda-list and outside the

bindings of the method group variables. Thus method group variables cannot

be declared.

Within the body forms , generic-function-symbol is bound to the generic

function object.
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If a doc-string argument is present, it provides the documentation for the

method combination type.

The functions method-combination-error and invalid-method-error

can be called from the body forms or from functions called by the body forms .

The actions of these two functions can depend on implementation-dependent

dynamic variables automatically bound before the generic function compute-

effective-method is called.

Note that two methods with identical specializers, but with different qual-

ifiers, are not ordered by the algorithm described in step 2 of the method

selection and combination process described in section 28.1.7. Normally the
two methods play different roles in the effective method because they have

different qualifiers, and no matter how they are ordered in the result of step 2

the effective method is the same. If the two methods play the same role and

their order matters, an error is signaled. This happens as part of the qualifier

pattern matching in define-method-combination.
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The value returned by the define-method-combination macro is the new

method combination object.

Most examples of the long form of define-method-combination also il-
lustrate the use of the related functions that are provided as part of the

declarative method combination facility.

;;; Examples of the short form of define-method-combination

(define-method-combination and :identity-with-one-argument t)

(defmethod func and ((x class1) y)

...)

;;; The equivalent of this example in the long form is:

(define-method-combination and

(&optional (order ’:most-specific-first))

((around (:around))

(primary (and) :order order :required t))

(let ((form (if (rest primary)

‘(and ,@(mapcar #--’(lambda (method)

‘(call-method ,method ()))

primary))

‘(call-method ,(first primary) ()))))

(if around

‘(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

;;; Examples of the long form of define-method-combination

;;; The default method-combination technique

(define-method-combination standard ()

((around (:around))

(before (:before))

(primary () :required t)

(after (:after)))
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(flet ((call-methods (methods)

(mapcar #--’(lambda (method)

‘(call-method ,method ()))

methods)))

(let ((form (if (or before after (rest primary))

‘(multiple-value-prog1

(progn ,@(call-methods before)

(call-method ,(first primary)

,(rest primary)))

,@(call-methods (reverse after)))

‘(call-method ,(first primary) ()))))

(if around

‘(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form))))

;;; A simple way to try several methods until one returns non-nil

(define-method-combination or ()

((methods (or)))

‘(or ,@(mapcar #--’(lambda (method)

‘(call-method ,method ()))

methods)))

;;; A more complete version of the preceding

(define-method-combination or

(&optional (order ’:most-specific-first))

((around (:around))

(primary (or)))

;; Process the order argument

(case order

(:most-specific-first)

(:most-specific-last (setq primary (reverse primary)))

(otherwise (method-combination-error

"~S is an invalid order.~@

:most-specific-first and :most-specific-last ~

are the possible values."

order)))
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;; Must have a primary method

(unless primary

(method-combination-error "A primary method is required."))

;; Construct the form that calls the primary methods

(let ((form (if (rest primary)

‘(or ,@(mapcar #--’(lambda (method)

‘(call-method ,method ()))

primary))

‘(call-method ,(first primary) ()))))

;; Wrap the around methods around that form

(if around

‘(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

;;; The same thing, using the :order and :required keyword options

(define-method-combination or

(&optional (order ’:most-specific-first))

((around (:around))

(primary (or) :order order :required t))

(let ((form (if (rest primary)

‘(or ,@(mapcar #--’(lambda (method)

‘(call-method ,method ()))

primary))

‘(call-method ,(first primary) ()))))

(if around

‘(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

;;; This short-form call is behaviorally identical to the preceding.

(define-method-combination or :identity-with-one-argument t)

;;; Order methods by positive integer qualifiers; note that :around

;;; methods are disallowed here in order to keep the example small.

(define-method-combination example-method-combination ()

((methods positive-integer-qualifier-p))
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‘(progn ,@(mapcar #--’(lambda (method)

‘(call-method ,method ()))

(stable-sort methods #--’<

:key #--’(lambda (method)

(first (method-qualifiers

method)))))))

(defun positive-integer-qualifier-p (method-qualifiers)

(and (UU (length method-qualifiers) 1)

(typep (first method-qualifiers) ’(integer 0 *))))

;;; Example of the use of :arguments

(define-method-combination progn-with-lock ()

((methods ()))

(:arguments object)

‘(unwind-protect

(progn (lock (object-lock ,object))

,@(mapcar #--’(lambda (method)

‘(call-method ,method ()))

methods))

(unlock (object-lock ,object))))

The :method-combination option of defgeneric is used to specify that

a generic function should use a particular method combination type. The

argument to the :method-combination option is the name of a method com-

bination type.

See sections 28.1.7 and 28.1.7.4 as well as call-method, method-

qualifiers, method-combination-error, invalid-method-error, and

defgeneric.

[Macro]defmethod function-name {method-qualifier}∗
specialized-lambda-list

[[ {declaration}∗ | doc-string ]] { form}∗

function-name ::= {symbol | (setf symbol)}
method-qualifier ::= non-nil-atom

parameter-specializer-name ::= symbol | (eql eql-specializer-form)

The macro defmethod defines a method on a generic function.
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If (fboundp function-name) is nil, a generic function is created with de-

fault values for the argument precedence order (each argument is more specific

than the arguments to its right in the argument list), for the generic func-

tion class (the class standard-generic-function), for the method class (the

class standard-method), and for the method combination type (the standard
method combination type). The lambda-list of the generic function is con-

gruent with the lambda-list of the method being defined; if the defmethod

form mentions keyword arguments, the lambda-list of the generic function

will mention &key (but no keyword arguments). If function-name names a
non-generic function, a macro, or a special form, an error is signaled.

If a generic function is currently named by function-name, where function-

name is a symbol or a list of the form (setf symbol), the lambda-list of the

method must be congruent with the lambda-list of the generic function. If

this condition does not hold, an error is signaled. See section 28.1.6.4 for a
definition of congruence in this context.

The function-name argument is a non-nil symbol or a list of the form (setf

symbol). It names the generic function on which the method is defined.

Each method-qualifier argument is an object that is used by method com-
bination to identify the given method. A method qualifier is a non-nil atom.

The method combination type may further restrict what a method qualifier

may be. The standard method combination type allows for unqualified meth-

ods or methods whose sole qualifier is the keyword :before, the keyword
:after, or the keyword :around.

A specialized-lambda-list is like an ordinary function lambda-list except that

the name of a required parameter can be replaced by a specialized parameter, a

list of the form (variable-name parameter-specializer-name). Only required

parameters may be specialized. A parameter specializer name is a symbol that
names a class or (eql eql-specializer-form). The parameter specializer name

(eql eql-specializer-form) indicates that the corresponding argument must

be eql to the object that is the value of eql-specializer-form for the method

to be applicable. If no parameter specializer name is specified for a given
required parameter, the parameter specializer defaults to the class named t.

See section 28.1.6.2.

The form arguments specify the method body. The body of the method is

enclosed in an implicit block. If function-name is a symbol, this block bears
the same name as the generic function. If function-name is a list of the form

(setf symbol), the name of the block is symbol.

The result of defmethod is the method object.

The class of the method object that is created is that given by the method

class option of the generic function on which the method is defined.
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If the generic function already has a method that agrees with the method

being defined on parameter specializers and qualifiers, defmethod replaces the

existing method with the one now being defined. See section 28.1.6.3 for a

definition of agreement in this context.

The parameter specializers are derived from the parameter specializer
names as described in section 28.1.6.2.

The expansion of the defmethod macro refers to each specialized parame-

ter (see the ignore declaration specifier), including parameters that have an

explicit parameter specializer name of t. This means that a compiler warning

does not occur if the body of the method does not refer to a specialized pa-
rameter. Note that a parameter that specializes on t is not synonymous with

an unspecialized parameter in this context.

See sections 28.1.6.2, 28.1.6.4, and 28.1.6.3.

[At this point the original CLOS report [5, 7] contained a specification for

describe as a generic function. This specification is omitted here because

X3J13 voted in March 1989 〈63〉 not to make describe a generic function

after all (see describe-object).—GLS]

[Generic function]documentation x &optional doc-type

[Primary method ]documentation

(method standard-method) &optional doc-type

[Primary method ]documentation

(generic-function standard-generic-function)

&optional doc-type

[Primary method ]documentation (class standard-class) &optional

doc-type

[Primary method ]documentation

(method-combination method-combination) &optional

doc-type
[Primary method ]documentation

(slot-description standard-slot-description)

&optional doc-type

[Primary method ]documentation (symbol symbol) &optional doc-type

[Primary method ]documentation (list list) &optional doc-type

The ordinary function documentation (see section 25.2) is replaced by a

generic function. The generic function documentation returns the docu-

mentation string associated with the given object if it is available; otherwise

documentation returns nil.
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The first argument of documentation is a symbol, a function-name list of

the form (setf symbol), a method object, a class object, a generic function

object, a method combination object, or a slot description object. Whether a

second argument should be supplied depends on the type of the first argument.

. If the first argument is a method object, a class object, a generic func-

tion object, a method combination object, or a slot description object, the
second argument must not be supplied, or an error is signaled.

. If the first argument is a symbol or a list of the form (setf symbol), the

second argument must be supplied.

– The forms

(documentation symbol ’function)

and

(documentation ’(setf symbol) ’function)

return the documentation string of the function, generic function, special
form, or macro named by the symbol or list.

– The form (documentation symbol ’variable) returns the documenta-
tion string of the special variable or constant named by the symbol.

– The form (documentation symbol ’structure) returns the documen-

tation string of the defstruct structure named by the symbol.

– The form (documentation symbol ’type) returns the documentation

string of the class object named by the symbol, if there is such a class.

If there is no such class, it returns the documentation string of the type

specifier named by the symbol.

– The form (documentation symbol ’setf) returns the documentation
string of the defsetf or define-setf-method definition associated with

the symbol.

– The form (documentation symbol ’method-combination) returns the

documentation string of the method combination type named by the

symbol.

An implementation may extend the set of symbols that are acceptable as

the second argument. If a symbol is not recognized as an acceptable argument

by the implementation, an error must be signaled.
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The documentation string associated with the given object is returned un-

less none is available, in which case documentation returns nil.

[Generic function](setf documentation) new-value x &optional

doc-type
[Primary method ](setf documentation) new-value

(method standard-method) &optional doc-type

[Primary method ](setf documentation) new-value

(generic-function standard-generic-function) &optional doc-type

[Primary method ](setf documentation) new-value
(class standard-class) &optional doc-type

[Primary method ](setf documentation) new-value

(method-combination method-combination) &optional doc-type

[Primary method ](setf documentation) new-value
(slot-description standard-slot-description) &optional doc-type

[Primary method ](setf documentation) new-value

(symbol symbol) &optional doc-type

[Primary method ](setf documentation) new-value

(list list) &optional doc-type

The generic function (setf documentation) is used to update the documen-

tation.

The first argument of (setf documentation) is the new documentation.

The second argument of documentation is a symbol, a function-name list of

the form (setf symbol), a method object, a class object, a generic function

object, a method combination object, or a slot description object. Whether

a third argument should be supplied depends on the type of the second argu-
ment. See documentation.

[Function]ensure-generic-function function-name &key

:lambda-list :argument-precedence-order :declare

:documentation :generic-function-class :method-combination

:method-class :environment

function-name ::= {symbol | (setf symbol)}

The function ensure-generic-function is used to define a globally named

generic function with no methods or to specify or modify options and decla-

rations that pertain to a globally named generic function as a whole.
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If (fboundp function-name) is nil, a new generic function is created. If

(fdefinition function-name) is a non-generic function, a macro, or a spe-

cial form, an error is signaled.

[X3J13 voted in March 1989 〈89〉 to use fdefinition in the previous
paragraph, as shown, rather than symbol-function, as it appeared in the

original report on CLOS [5, 7]. The vote also changed all occurrences of

function-specifier in the original report to function-name; this change is re-

flected here.—GLS]

If function-name specifies a generic function that has a different value

for any of the following arguments, the generic function is modified to have

the new value: :argument-precedence-order, :declare, :documentation,

:method-combination.

If function-name specifies a generic function that has a different value for

the :lambda-list argument, and the new value is congruent with the lambda-

lists of all existing methods or there are no methods, the value is changed;

otherwise an error is signaled.

If function-name specifies a generic function that has a different value for

the :generic-function-classargument and if the new generic function class

is compatible with the old, change-class is called to change the class of the

generic function; otherwise an error is signaled.

If function-name specifies a generic function that has a different :method-

class value, the value is changed but any existing methods are not changed.

The function-name argument is a symbol or a list of the form (setf sym-

bol).

The keyword arguments correspond to the option arguments of defgeneric,

except that the :method-class and :generic-function-class arguments

can be class objects as well as names.

The :environment argument is the same as the &environment argument

to macro expansion functions. It is typically used to distinguish between

compile-time and run-time environments.

The :method-combination argument is a method combination object.

The generic function object is returned. See defgeneric.

[Function]find-class symbol &optional errorp environment

The function find-class returns the class object named by the given symbol

in the given environment.

The first argument to find-class is a symbol.



916 COMMON LISP

If there is no such class and the errorp argument is not supplied or is non-

nil, find-class signals an error. If there is no such class and the errorp

argument is nil, find-class returns nil. The default value of errorp is t.

The optional environment argument is the same as the &environment argu-
ment to macro expansion functions. It is typically used to distinguish between

compile-time and run-time environments.

The result of find-class is the class object named by the given symbol.

The class associated with a particular symbol can be changed by using setf

with find-class. The results are undefined if the user attempts to change the

class associated with a symbol that is defined as a type specifier in chapter 4.

See section 28.1.4.

[Generic function]find-method generic-function method-qualifiers

specializers &optional errorp

[Primary method ]find-method

(generic-function standard-generic-function) method-qualifiers

specializers &optional errorp

The generic function find-method takes a generic function and returns the

method object that agrees on method qualifiers and parameter specializers
with the method-qualifiers and specializers arguments of find-method. See

section 28.1.6.3 for a definition of agreement in this context.

The generic-function argument is a generic function.

The method-qualifiers argument is a list of the method qualifiers for the

method. The order of the method qualifiers is significant.

The specializers argument is a list of the parameter specializers for the
method. It must correspond in length to the number of required arguments

of the generic function, or an error is signaled. This means that to obtain

the default method on a given generic function, a list whose elements are the

class named t must be given.

If there is no such method and the errorp argument is not supplied or is

non-nil, find-method signals an error. If there is no such method and the

errorp argument is nil, find-method returns nil. The default value of errorp

is t.

The result of find-method is the method object with the given method

qualifiers and parameter specializers.

See section 28.1.6.3.
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[Generic function]function-keywords method

[Primary method ]function-keywords (method standard-method)

The generic function function-keywords is used to return the keyword pa-

rameter specifiers for a given method.

The method argument is a method object.

The generic function function-keywords returns two values: a list of the

explicitly named keywords and a boolean that states whether &allow-other-

keys had been specified in the method definition.

[Special form]generic-flet ( {(function-name lambda-list

[[ ↓option | {method-description}∗ ]] )}∗ )
{ form}∗

The generic-flet special form is analogous to the flet special form. It

produces new generic functions and establishes new lexical function definition
bindings. Each generic function is created with the set of methods specified

by its method descriptions.

The special form generic-flet is used to define generic functions whose

names are meaningful only locally and to execute a series of forms with these

function definition bindings. Any number of such local generic functions may

be defined.

The names of functions defined by generic-flet have lexical scope; they

retain their local definitions only within the body of the generic-flet. Any

references within the body of the generic-flet to functions whose names
are the same as those defined within the generic-flet are thus references to

the local functions instead of to any global functions of the same names. The

scope of these generic function definition bindings, however, includes only the

body of generic-flet, not the definitions themselves. Within the method
bodies, local function names that match those being defined refer to global

functions defined outside the generic-flet. It is thus not possible to define

recursive functions with generic-flet.

The function-name, lambda-list , option, method-qualifier, and specialized-

lambda-list arguments are the same as for defgeneric.

A generic-flet local method definition is identical in form to the method

definition part of a defmethod.

The body of each method is enclosed in an implicit block. If function-

name is a symbol, this block bears the same name as the generic function. If

function-name is a list of the form (setf symbol), the name of the block is

symbol.
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The result returned by generic-flet is the value or values returned by the

last form executed. If no forms are specified, generic-flet returns nil.

See generic-labels, defmethod, defgeneric, and generic-function.

[Macro]generic-function lambda-list [[ ↓option | {method-description}∗ ]]

option ::= (:argument-precedence-order {parameter-name}+ )

| (declare {declaration}+ )

| (:documentation string)

| (:method-combination symbol {arg}∗ )
| (:generic-function-class class-name)

| (:method-class class-name)

method-description ::= (:method {method-qualifier}∗
specialized-lambda-list

{declaration | documentation}∗
{ form}∗ )

The generic-function macro creates an anonymous generic function. The

generic function is created with the set of methods specified by its method

descriptions.

The option, method-qualifier, and specialized-lambda-list arguments are the

same as for defgeneric.

The generic function object is returned as the result.

If no method descriptions are specified, an anonymous generic function with
no methods is created.

See defgeneric, generic-flet, generic-labels, and defmethod.

[Special form]generic-labels ( {(function-name lambda-list

[[ ↓option | {method-description}∗ ]] )}∗ )
{ form}∗

The generic-labels special form is analogous to the labels special form. It

produces new generic functions and establishes new lexical function definition

bindings. Each generic function is created with the set of methods specified

by its method descriptions.

The special form generic-labels is used to define generic functions whose

names are meaningful only locally and to execute a series of forms with these

function definition bindings. Any number of such local generic functions may

be defined.
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The names of functions defined by generic-labels have lexical scope; they

retain their local definitions only within the body of the generic-labels

construct. Any references within the body of the generic-labels construct

to functions whose names are the same as those defined within the generic-

labels form are thus references to the local functions instead of to any global
functions of the same names. The scope of these generic function definition

bindings includes the method bodies themselves as well as the body of the

generic-labels construct.

The function-name, lambda-list , option, method-qualifier, and specialized-

lambda-list arguments are the same as for defgeneric.

A generic-labels local method definition is identical in form to the

method definition part of a defmethod.

The body of each method is enclosed in an implicit block. If function-

name is a symbol, this block bears the same name as the generic function. If

function-name is a list of the form (setf symbol), the name of the block is

symbol.

The result returned by generic-labels is the value or values returned by

the last form executed. If no forms are specified, generic-labels returns
nil.

See generic-flet, defmethod, defgeneric, generic-function.

[Generic function]initialize-instance instance &rest initargs

[Primary method ]initialize-instance (instance standard-object)

&rest initargs

The generic function initialize-instance is called by make-instance

to initialize a newly created instance. The generic function initialize-

instance is called with the new instance and the defaulted initialization ar-

guments.

The system-supplied primary method on initialize-instance initializes

the slots of the instance with values according to the initialization arguments

and the :initform forms of the slots. It does this by calling the generic

function shared-initialize with the following arguments: the instance, t
(this indicates that all slots for which no initialization arguments are provided

should be initialized according to their :initform forms) and the defaulted

initialization arguments.

The instance argument is the object to be initialized.

The initargs argument consists of alternating initialization argument names

and values.

The modified instance is returned as the result.
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Programmers can define methods for initialize-instance to specify ac-

tions to be taken when an instance is initialized. If only :after methods

are defined, they will be run after the system-supplied primary method for

initialization and therefore will not interfere with the default behavior of

initialize-instance.

See sections 28.1.9, 28.1.9.4, and 28.1.9.2 as well as shared-initialize,
make-instance, slot-boundp, and slot-makunbound.

[Function]invalid-method-error method format-string &rest args

The function invalid-method-error is used to signal an error when there
is an applicable method whose qualifiers are not valid for the method combi-

nation type. The error message is constructed by using a format string and

any arguments to it. Because an implementation may need to add additional

contextual information to the error message, invalid-method-error should
be called only within the dynamic extent of a method combination function.

The function invalid-method-error is called automatically when a
method fails to satisfy every qualifier pattern and predicate in a define-

method-combination form. A method combination function that imposes

additional restrictions should call invalid-method-error explicitly if it en-

counters a method it cannot accept.

The method argument is the invalid method object.

The format-string argument is a control string that can be given to format,

and args are any arguments required by that string.

Whether invalid-method-error returns to its caller or exits via throw is
implementation-dependent.

See define-method-combination.

[Generic function]make-instance class &rest initargs

[Primary method ]make-instance (class standard-class)

&rest initargs

[Primary method ]make-instance (class symbol) &rest initargs

The generic function make-instance creates a new instance of the given class.

The generic function make-instance may be used as described in sec-

tion 28.1.9.

The class argument is a class object or a symbol that names a class. The

remaining arguments form a list of alternating initialization argument names

and values.
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If the second of the preceding methods is selected, that method invokes

make-instance on the arguments (find-class class) and initargs.

The initialization arguments are checked within make-instance (see sec-

tion 28.1.9).

The new instance is returned.

The meta-object protocol can be used to define new methods on make-

instance to replace the object-creation protocol.

See section 28.1.9 as well as defclass, initialize-instance, and class-

of.

[Generic function]make-instances-obsolete class

[Primary method ]make-instances-obsolete (class standard-class)

[Primary method ]make-instances-obsolete (class symbol)

The generic function make-instances-obsolete is invoked automatically by

the system when defclass has been used to redefine an existing standard

class and the set of local slots accessible in an instance is changed or the order

of slots in storage is changed. It can also be explicitly invoked by the user.

The function make-instances-obsolete has the effect of initiating the
process of updating the instances of the class. During updating, the generic

function update-instance-for-redefined-class will be invoked.

The class argument is a class object symbol that names the class whose

instances are to be made obsolete.

If the second of the preceding methods is selected, that method invokes

make-instances-obsolete on (find-class class).

The modified class is returned. The result of make-instances-obsolete

is eq to the class argument supplied to the first of the preceding methods.

See section 28.1.10 as well as update-instance-for-redefined-class.

[Function]method-combination-error format-string &rest args

The function method-combination-error is used to signal an error in method

combination. The error message is constructed by using a format string and
any arguments to it. Because an implementation may need to add additional

contextual information to the error message, method-combination-error

should be called only within the dynamic extent of a method combination

function.

The format-string argument is a control string that can be given to format,

and args are any arguments required by that string.
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Whether method-combination-error returns to its caller or exits via

throw is implementation-dependent.

See define-method-combination.

[Generic function]method-qualifiers method

[Primary method ]method-qualifiers (method standard-method)

The generic function method-qualifiers returns a list of the qualifiers of the

given method.

The method argument is a method object.

A list of the qualifiers of the given method is returned.

Example:

(setq methods (remove-duplicates methods

:from-end t

:key #--’method-qualifiers

:test #--’equal))

See define-method-combination.

[Function]next-method-p

The locally defined function next-method-p can be used within the body of

a method defined by a method-defining form to determine whether a next
method exists.

The function next-method-p takes no arguments.

The function next-method-p returns true or false.

Like call-next-method, the function next-method-p has lexical scope (for

it is defined only within the body of a method defined by a method-defining
form) and indefinite extent.

See call-next-method.

[Generic function]no-applicable-method generic-function

&rest function-arguments

[Primary method ]no-applicable-method (generic-function t)

&rest function-arguments

The generic function no-applicable-method is called when a generic function

of the class standard-generic-function is invoked and no method on that

generic function is applicable. The default method signals an error.



COMMON LISP OBJECT SYSTEM 923

The generic function no-applicable-method is not intended to be called

by programmers. Programmers may write methods for it.

The generic-function argument of no-applicable-method is the generic

function object on which no applicable method was found.

The function-arguments argument is a list of the arguments to that generic
function.

[Generic function]no-next-method generic-function method &rest args

[Primary method ]no-next-method

(generic-function standard-generic-function)

(method standard-method) &rest args

The generic function no-next-method is called by call-next-method when

there is no next method. The system-supplied method on no-next-method

signals an error.

The generic function no-next-method is not intended to be called by pro-

grammers. Programmers may write methods for it.

The generic-function argument is the generic function object to which the

method that is the second argument belongs.

The method argument is the method that contains the call to call-next-

method for which there is no next method.

The args argument is a list of the arguments to call-next-method.

See call-next-method.

[Generic function]print-object object stream
[Primary method ]print-object (object standard-object) stream

The generic function print-object writes the printed representation of an

object to a stream. The function print-object is called by the print system;

it should not be called by the user.
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Each implementation must provide a method on the class standard-object

and methods on enough other classes so as to ensure that there is always an

applicable method. Implementations are free to add methods for other classes.

Users can write methods for print-object for their own classes if they do

not wish to inherit an implementation-supplied method.

The first argument is any Lisp object. The second argument is a stream; it
cannot be t or nil.

The function print-object returns its first argument, the object.

Methods on print-object must obey the print control special variables

named *print-xxx* for various xxx. The specific details are the following:

. Each method must implement *print-escape*.

. The *print-pretty* control variable can be ignored by most methods
other than the one for lists.

. The *print-circle* control variable is handled by the printer and can be

ignored by methods.

. The printer takes care of *print-level* automatically, provided that each

method handles exactly one level of structure and calls write (or an equiv-

alent function) recursively if there are more structural levels. The printer’s

decision of whether an object has components (and therefore should not
be printed when the printing depth is not less than *print-level*) is

implementation-dependent. In some implementations its print-object

method is not called; in others the method is called, and the determination

that the object has components is based on what it tries to write to the
stream.

. Methods that produce output of indefinite length must obey *print-

length*, but most methods other than the one for lists can ignore it.

. The *print-base*, *print-radix*, *print-case*, *print-gensym*, and

*print-array* control variables apply to specific types of objects and are

handled by the methods for those objects.

. X3J13 voted in June 1989 〈40〉 to add the following point. All methods for

print-object must obey *print-readably*, which takes precedence over
all other printer control variables. This includes both user-defined methods

and implementation-defined methods.

If these rules are not obeyed, the results are undefined.
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In general, the printer and the print-object methods should not rebind

the print control variables as they operate recursively through the structure,

but this is implementation-dependent.

In some implementations the stream argument passed to a print-object

method is not the original stream but is an intermediate stream that im-

plements part of the printer. Methods should therefore not depend on the

identity of this stream.

All of the existing printing functions (write, prin1, print, princ, pprint,

write-to-string, prin1-to-string, princ-to-string, the ~S and ~A

format operations, and the ~B, ~D, ~E, ~F, ~G, ~$, ~O, ~R, and ~X format

operations when they encounter a non-numeric value) are required to be

changed to go through the print-object generic function. Each implemen-

tation is required to replace its former implementation of printing with one or

more print-objectmethods. Exactly which classes have methods for print-
object is not specified; it would be valid for an implementation to have one

default method that is inherited by all system-defined classes.

[Generic function]reinitialize-instance instance &rest initargs

[Primary method ]reinitialize-instance (instance standard-object)

&rest initargs

The generic function reinitialize-instance can be used to change the val-

ues of local slots according to initialization arguments. This generic function

is called by the Meta-Object Protocol. It can also be called by users.

The system-supplied primary method for reinitialize-instance checks

the validity of initialization arguments and signals an error if an initializa-
tion argument is supplied that is not declared valid. The method then calls

the generic function shared-initialize with the following arguments: the

instance, nil (which means no slots should be initialized according to their

:initform forms) and the initialization arguments it received.

The instance argument is the object to be initialized.

The initargs argument consists of alternating initialization argument names

and values.

The modified instance is returned as the result.

Initialization arguments are declared valid by using the :initarg option to
defclass, or by defining methods for reinitialize-instance or shared-

initialize. The keyword name of each keyword parameter specifier in the

lambda-list of any method defined on reinitialize-instance or shared-

initialize is declared a valid initialization argument name for all classes for

which that method is applicable.
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See sections 28.1.12, 28.1.9.4, 28.1.9.2 as well as initialize-instance,

slot-boundp, update-instance-for-redefined-class, update-instance-

for-different-class, slot-makunbound, and shared-initialize.

[Generic function]remove-method generic-function method

[Primary method ]remove-method

(generic-function standard-generic-function) method

The generic function remove-method removes a method from a generic func-

tion. It destructively modifies the specified generic function and returns the

modified generic function as its result.
The generic-function argument is a generic function object.

The method argument is a method object. The function remove-method

does not signal an error if the method is not one of the methods on the generic

function.

The modified generic function is returned. The result of remove-method is
eq to the generic-function argument.

See find-method.

[Generic function]shared-initialize instance slot-names

&rest initargs

[Primary method ]shared-initialize (instance standard-object)

slot-names &rest initargs

The generic function shared-initialize is used to fill the slots of an in-

stance using initialization arguments and :initform forms. It is called

when an instance is created, when an instance is re-initialized, when an
instance is updated to conform to a redefined class, and when an in-

stance is updated to conform to a different class. The generic function

shared-initialize is called by the system-supplied primary method for

initialize-instance, reinitialize-instance, update-instance-for-

redefined-class, and update-instance-for-different-class.
The generic function shared-initialize takes the following arguments:

the instance to be initialized, a specification of a set of names of slots ac-

cessible in that instance, and any number of initialization arguments. The

arguments after the first two must form an initialization argument list. The
system-supplied primary method on shared-initialize initializes the slots

with values according to the initialization arguments and specified :initform

forms. The second argument indicates which slots should be initialized ac-

cording to their :initform forms if no initialization arguments are provided

for those slots.
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The system-supplied primary method behaves as follows, regardless of

whether the slots are local or shared:

. If an initialization argument in the initialization argument list specifies a

value for that slot, that value is stored into the slot, even if a value has

already been stored in the slot before the method is run.

. Any slots indicated by the second argument that are still unbound at this

point are initialized according to their :initform forms. For any such

slot that has an :initform form, that form is evaluated in the lexical

environment of its defining defclass form and the result is stored into

the slot. For example, if a :before method stores a value in the slot, the
:initform form will not be used to supply a value for the slot.

. The rules mentioned in section 28.1.9.4 are obeyed.

The instance argument is the object to be initialized.

The slot-names argument specifies the slots that are to be initialized ac-

cording to their :initform forms if no initialization arguments apply. It is

supplied in one of three forms as follows:

. It can be a list of slot names, which specifies the set of those slot names.

. It can be nil, which specifies the empty set of slot names.

. It can be the symbol t, which specifies the set of all of the slots.

The initargs argument consists of alternating initialization argument names

and values.

The modified instance is returned as the result.

Initialization arguments are declared valid by using the :initarg option

to defclass, or by defining methods for shared-initialize. The keyword

name of each keyword parameter specifier in the lambda-list of any method
defined on shared-initialize is declared a valid initialization argument

name for all classes for which that method is applicable.

Implementations are permitted to optimize :initform forms that neither
produce nor depend on side effects by evaluating these forms and storing them

into slots before running any initialize-instance methods, rather than by

handling them in the primary initialize-instance method. (This opti-

mization might be implemented by having the allocate-instance method

copy a prototype instance.)

Implementations are permitted to optimize default initial value forms for

initialization arguments associated with slots by not actually creating the

complete initialization argument list when the only method that would receive
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the complete list is the method on standard-object. In this case, default

initial value forms can be treated like :initform forms. This optimization

has no visible effects other than a performance improvement.

See sections 28.1.9, 28.1.9.4, 28.1.9.2 as well as initialize-

instance, reinitialize-instance, update-instance-for-redefined-

class, update-instance-for-different-class, slot-boundp, and slot-

makunbound.

[Function]slot-boundp instance slot-name

The function slot-boundp tests whether a specific slot in an instance is
bound.

The arguments are the instance and the name of the slot.

The function slot-boundp returns true or false.

This function allows for writing :after methods on initialize-instance

in order to initialize only those slots that have not already been bound.

If no slot of the given name exists in the instance, slot-missing is called

as follows:

(slot-missing (class-of instance)

instance
slot-name

’slot-boundp)

The function slot-boundp is implemented using slot-boundp-using-

class. See slot-missing.

[Function]slot-exists-p object slot-name

The function slot-exists-p tests whether the specified object has a slot of

the given name.

The object argument is any object. The slot-name argument is a symbol.

The function slot-exists-p returns true or false.

The function slot-exists-p is implemented using slot-exists-p-using-

class.

[Function]slot-makunbound instance slot-name

The function slot-makunbound restores a slot in an instance to the unbound

state.
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The arguments to slot-makunbound are the instance and the name of the

slot.

The instance is returned as the result.

If no slot of the given name exists in the instance, slot-missing is called

as follows:

(slot-missing (class-of instance)

instance
slot-name

’slot-makunbound)

The function slot-makunbound is implemented using slot-makunbound-

using-class. See slot-missing.

[Generic function]slot-missing class object slot-name operation

&optional new-value

[Primary method ]slot-missing (class t) object slot-name operation
&optional new-value

The generic function slot-missing is invoked when an attempt is made to

access a slot in an object whose metaclass is standard-class and the name

of the slot provided is not a name of a slot in that class. The default method
signals an error.

The generic function slot-missing is not intended to be called by pro-

grammers. Programmers may write methods for it.

The required arguments to slot-missing are the class of the object that

is being accessed, the object, the slot name, and a symbol that indicates the
operation that caused slot-missing to be invoked. The optional argument

to slot-missing is used when the operation is attempting to set the value of

the slot.

If a method written for slot-missing returns values, these values get re-

turned as the values of the original function invocation.

The generic function slot-missing may be called during evaluation of
slot-value, (setf slot-value), slot-boundp, and slot-makunbound. For

each of these operations the corresponding symbol for the operation argument

is slot-value, setf, slot-boundp, and slot-makunbound, respectively.

The set of arguments (including the class of the instance) facilitates defining

methods on the metaclass for slot-missing.
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[Generic function]slot-unbound class instance slot-name

[Primary method ]slot-unbound (class t) instance slot-name

The generic function slot-unbound is called when an unbound slot is read in

an instance whose metaclass is standard-class. The default method signals
an error.

The generic function slot-unbound is not intended to be called by program-

mers. Programmers may write methods for it. The function slot-unbound

is called only by the function slot-value-using-class and thus indirectly
by slot-value.

The arguments to slot-unbound are the class of the instance whose slot

was accessed, the instance itself, and the name of the slot.

If a method written for slot-unbound returns values, these values get re-

turned as the values of the original function invocation.
An unbound slot may occur if no :initform form was specified for the slot

and the slot value has not been set, or if slot-makunbound has been called

on the slot.

See slot-makunbound.

[Function]slot-value object slot-name

The function slot-value returns the value contained in the slot slot-name of

the given object. If there is no slot with that name, slot-missing is called.

If the slot is unbound, slot-unbound is called.

The macro setf can be used with slot-value to change the value of a slot.
The arguments are the object and the name of the given slot.

The result is the value contained in the given slot.

If an attempt is made to read a slot and no slot of the given name exists in

the instance, slot-missing is called as follows:

(slot-missing (class-of instance)

instance

slot-name

’slot-value)

If an attempt is made to write a slot and no slot of the given name exists
in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)

instance

slot-name

’setf
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new-value)

The function slot-value is implemented using slot-value-using-class.

Implementations may optimize slot-value by compiling it in-line.

See slot-missing and slot-unbound.

[At this point the original CLOS report [5, 7] contained a specification for
symbol-macrolet. This specification is omitted here. Instead, a description

of symbol-macrolet appears with those of related constructs in chapter 7.—

GLS]

[Generic function]update-instance-for-different-class

previous current &rest initargs

[Primary method ]update-instance-for-different-class

(previous standard-object) (current standard-object)

&rest initargs

The generic function update-instance-for-different-class is not in-

tended to be called by programmers. Programmers may write methods for it.

This function is called only by the function change-class.

The system-supplied primary
method on update-instance-for-different-class checks the validity of

initialization arguments and signals an error if an initialization argument is

supplied that is not declared valid. This method then initializes slots with val-

ues according to the initialization arguments and initializes the newly added
slots with values according to their :initform forms. It does this by calling

the generic function shared-initialize with the following arguments: the

instance, a list of names of the newly added slots, and the initialization argu-

ments it received. Newly added slots are those local slots for which no slot of

the same name exists in the previous class.

Methods for update-instance-for-different-class can be defined to
specify actions to be taken when an instance is updated. If only :after

methods for update-instance-for-different-class are defined, they will

be run after the system-supplied primary method for initialization and there-

fore will not interfere with the default behavior of update-instance-for-
different-class.

The arguments to update-instance-for-different-class are computed

by change-class. When change-class is invoked on an instance, a copy

of that instance is made; change-class then destructively alters the original

instance. The first argument to update-instance-for-different-class,

previous , is that copy; it holds the old slot values temporarily. This argument
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has dynamic extent within change-class; if it is referenced in any way once

update-instance-for-different-class returns, the results are undefined.

The second argument to update-instance-for-different-class, current,

is the altered original instance.

The intended use of previous is to extract old slot values by using slot-

value or with-slots or by invoking a reader generic function, or to run other

methods that were applicable to instances of the original class.

The initargs argument consists of alternating initialization argument names

and values.

The value returned by update-instance-for-different-class is ignored

by change-class.

See the example for the function change-class.

Initialization arguments are declared valid by using the :initarg option
to defclass, or by defining methods for update-instance-for-different-

class or shared-initialize. The keyword name of each keyword parameter

specifier in the lambda-list of any method defined on update-instance-for-

different-class or shared-initialize is declared a valid initialization ar-

gument name for all classes for which that method is applicable.

Methods on update-instance-for-different-class can be defined to

initialize slots differently from change-class. The default behavior of

change-class is described in section 28.1.11.

See sections 28.1.11, 28.1.9.4, and 28.1.9.2 as well as change-class and
shared-initialize.
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[Generic function]update-instance-for-redefined-class

instance added-slots discarded-slots property-list &rest initargs

[Primary method ]update-instance-for-redefined-class

(instance standard-object) added-slots discarded-slots property-list

&rest initargs

The generic function update-instance-for-redefined-class is not in-

tended to be called by programmers. Programmers may write methods for
it. The generic function update-instance-for-redefined-class is called

by the mechanism activated by make-instances-obsolete.

The system-supplied primary
method on update-instance-for-different-class checks the validity of

initialization arguments and signals an error if an initialization argument is

supplied that is not declared valid. This method then initializes slots with val-

ues according to the initialization arguments and initializes the newly added

slots with values according to their :initform forms. It does this by calling
the generic function shared-initialize with the following arguments: the

instance, a list of names of the newly added slots, and the initialization argu-

ments it received. Newly added slots are those local slots for which no slot of

the same name exists in the old version of the class.

When make-instances-obsolete is invoked or when a class has been rede-

fined and an instance is being updated, a property list is created that captures

the slot names and values of all the discarded slots with values in the original
instance. The structure of the instance is transformed so that it conforms

to the current class definition. The arguments to update-instance-for-

redefined-class are this transformed instance, a list of the names of the

new slots added to the instance, a list of the names of the old slots discarded
from the instance, and the property list containing the slot names and values

for slots that were discarded and had values. Included in this list of discarded

slots are slots that were local in the old class and are shared in the new class.

The initargs argument consists of alternating initialization argument names

and values.

The value returned by update-instance-for-redefined-class is ig-
nored.

Initialization arguments are declared valid by using the :initarg option
to defclass or by defining methods for update-instance-for-redefined-

class or shared-initialize. The keyword name of each keyword parameter

specifier in the lambda-list of any method defined on update-instance-for-

redefined-class or shared-initialize is declared a valid initialization ar-

gument name for all classes for which that method is applicable.
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See sections 28.1.10, 28.1.9.4, and 28.1.9.2 as well as shared-initialize

and make-instances-obsolete.

(defclass position () ())

(defclass x-y-position (position)

((x :initform 0 :accessor position-x)

(y :initform 0 :accessor position-y)))

;;; It turns out polar coordinates are used more than Cartesian

;;; coordinates, so the representation is altered and some new

;;; accessor methods are added.

(defmethod update-instance-for-redefined-class :before

((pos x-y-position) added deleted plist &key)

;; Transform the x-y coordinates to polar coordinates

;; and store into the new slots.

(let ((x (getf plist ’x))

(y (getf plist ’y)))

(setf (position-rho pos) (sqrt (+ (* x x) (* y y)))

(position-theta pos) (atan y x))))

(defclass x-y-position (position)

((rho :initform 0 :accessor position-rho)

(theta :initform 0 :accessor position-theta)))

;;; All instances of the old x-y-position class will be updated

;;; automatically.

;;; The new representation has the look and feel of the old one.

(defmethod position-x ((pos x-y-position))

(with-slots (rho theta) pos (* rho (cos theta))))

(defmethod (setf position-x) (new-x (pos x-y-position))

(with-slots (rho theta) pos

(let ((y (position-y pos)))

(setq rho (sqrt (+ (* new-x new-x) (* y y)))

theta (atan y new-x))

new-x)))
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(defmethod position-y ((pos x-y-position))

(with-slots (rho theta) pos (* rho (sin theta))))

(defmethod (setf position-y) (new-y (pos x-y-position))

(with-slots (rho theta) pos

(let ((x (position-x pos)))

(setq rho (sqrt (+ (* x x) (* new-y new-y)))

theta (atan new-y x))

new-y)))

[Macro]with-accessors ( {slot-entry}∗ ) instance-form

{declaration}∗ { form}∗

The macro with-accessors creates a lexical environment in which specified
slots are lexically available through their accessors as if they were variables.

The macro with-accessors invokes the appropriate accessors to access the

specified slots. Both setf and setq can be used to set the value of the slot.

The result returned is that obtained by executing the forms specified by
the body argument.

Example:

(with-accessors ((x position-x) (y position-y)) p1

(setq x y))

A with-accessors expression of the form

(with-accessors (slot-entry1 ... slot-entryn) instance

declaration1 ... declarationm)

form1 ... formk)

expands into the equivalent of

(let ((in instance))

(symbol-macrolet ((variable-name1 (accessor-name1 in))

...

(variable-namen (accessor-namen in)))

declaration1 ... declarationm)

form1 ... formk)

[X3J13 voted in March 1989 〈173〉 to modify the definition of symbol-

macrolet substantially and also voted 〈172〉 to allow declarations before the

body of symbol-macrolet but with peculiar treatment of special and type
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declarations. The syntactic changes are reflected in this definition of with-

accessors.—GLS]

See with-slots and symbol-macrolet.

[Special form]with-added-methods (function-name lambda-list

[[ ↓option | {method-description}∗ ]] )

{ form}∗

The with-added-methods special form produces new generic functions and

establishes new lexical function definition bindings. Each generic function

is created by adding the set of methods specified by its method definitions

to a copy of the lexically visible generic function of the same name and its

methods. If such a generic function does not already exist, a new generic
function is created; this generic function has lexical scope.

The special form with-added-methods is used to define functions whose

names are meaningful only locally and to execute a series of forms with these
function definition bindings.

The names of functions defined by with-added-methods have lexical scope;

they retain their local definitions only within the body of the with-added-

methods construct. Any references within the body of the with-added-

methods construct to functions whose names are the same as those defined

within the with-added-methods form are thus references to the local func-

tions instead of to any global functions of the same names. The scope of these

generic function definition bindings includes the method bodies themselves as
well as the body of the with-added-methods construct.

The function-name, option, method-qualifier, and specialized-lambda-list ar-

guments are the same as for defgeneric.

The body of each method is enclosed in an implicit block. If function-

name is a symbol, this block bears the same name as the generic function. If

function-name is a list of the form (setf symbol), the name of the block is

symbol.

The result returned by with-added-methods is the value or values of the

last form executed. If no forms are specified, with-added-methods returns

nil.

If a generic function with the given name already exists, the lambda-

list specified in the with-added-methods form must be congruent with the

lambda-lists of all existing methods on that function as well as with the

lambda-lists of all methods defined by the with-added-methods form; other-

wise an error is signaled.
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If function-name specifies an existing generic function that has a dif-

ferent value for any of the following option arguments, the copy of that

generic function is modified to have the new value: :argument-precedence-

order, declare, :documentation, :generic-function-class, :method-

combination.

If function-name specifies an existing generic function that has a differ-

ent value for the :method-class option argument, that value is changed in
the copy of that generic function, but any methods copied from the existing

generic function are not changed.

If a function of the given name already exists, that function is copied into

the default method for a generic function of the given name. Note that this

behavior differs from that of defgeneric.

If a macro or special form of the given name already exists, an error is

signaled.

If there is no existing generic function, the option arguments have the same

default values as the option arguments to defgeneric.

See generic-labels, generic-flet, defmethod, defgeneric, and

ensure-generic-function.

[Macro]with-slots ( {slot-entry}∗ ) instance-form {declaration}∗ { form}∗

slot-entry ::= slot-name | (variable-name slot-name)

The macro with-slots creates a lexical context for referring to specified slots

as though they were variables. Within such a context the value of the slot can
be specified by using its slot name, as if it were a lexically bound variable.

Both setf and setq can be used to set the value of the slot.

The macro with-slots translates an appearance of the slot name as a

variable into a call to slot-value.

The result returned is that obtained by executing the forms specified by

the body argument.

Example:

(with-slots (x y) position-1

(sqrt (+ (* x x) (* y y))))

(with-slots ((x1 x) (y1 y)) position-1

(with-slots ((x2 x) (y2 y)) position-2

(psetf x1 x2

y1 y2))))
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(with-slots (x y) position

(setq x (1+ x)

y (1+ y)))

A with-slots expression of the form:

(with-slots (slot-entry1 ... slot-entryn) instance

declaration1 ... declarationm)

form1 ... formk)

expands into the equivalent of

(let ((in instance))

(symbol-macrolet (Q1 ... Qn)

declaration1 ... declarationm)

form1 ... formk)

where Qj is

(slot-entry j (slot-value in ’slot-entry j))

if slot-entryj is a symbol and is

(variable-name j (slot-value in ’slot-name j))

if slot-entryj is of the form (variable-name j slot-name j).

[X3J13 voted in March 1989 〈173〉 to modify the definition of symbol-

macrolet substantially and also voted 〈172〉 to allow declarations before the

body of symbol-macrolet but with peculiar treatment of special and type
declarations. The syntactic changes are reflected in this definition of with-

slots.—GLS]

See with-accessors and symbol-macrolet.
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Conditions

BY KENT M. PITMAN

preface: The language defined by the first edition contained an enormous

lacuna: although facilities were specified for signaling errors, no means was

defined for handling errors. This occurred not through neglect of the issue, but
because this part of the Lisp language generally was in a state of flux. There

were several proposals at the time. The committee, finding that it could not

agree on any one proposal, agreed to disagree and omit error handling from

Common Lisp for the time being. This defect has now been addressed.

X3J13 voted in June 1988 〈30〉 to adopt the Common Lisp Condition System

as a part of the forthcoming draft Common Lisp standard. X3J13 voted in

March 1989 〈186〉 to amend the specification of conditions to integrate them
with the Common Lisp Object System (see chapter 28). X3J13 voted in

June 1989 〈31〉 to amend the specification of restarts in certain ways. These

amendments have been incorporated here with little further comment.

This chapter presents the bulk of the Common Lisp Condition System pro-

posal, written by Kent M. Pitman and amended by X3J13. I have edited it

only very lightly to conform to the overall style of this book and have inserted

a small number of bracketed remarks identified by the initials GLS. Please see
the Acknowledgments to this second edition for the author’s acknowledgments

to others who contributed to the Condition System proposal.

—Guy L. Steele Jr.

29.1. Introduction

Often we find it useful to describe a function in terms of its behavior in

“normal situations.” For example, we may say informally that the function +

returns the sum of its arguments or that the function read-char returns the

next available character on a given input stream.

939



940 COMMON LISP

Sometimes, however, an “exceptional situation” will arise that does not fit

neatly into such descriptions. For example, + might receive an argument that

is not a number, or read-char might receive as a single argument a stream

that has no more available characters. This distinction between normal and

exceptional situations is in some sense arbitrary but is often very useful in
practice.

For example, suppose a function f were defined to allow only integer ar-

guments but also guaranteed to detect and signal an error for non-integer

arguments. Such a description is in fact internally inconsistent (that is, para-

doxical) because the function’s behavior is well-defined for non-integers. Yet
we would not want this annoying paradox to force description of f as a func-

tion that accepts any kind of argument (just in case f is being called only as

a quick way to signal an error, for example). Using the normal/exceptional

distinction, we can say clearly that f accepts integers in the normal situation

and signals an error in exceptional situations. Moreover, we can say that when
we refer to the definition of a function informally, it is acceptable to speak

only of its normal behavior. For example, we can speak informally about f as

a function that accepts only integers without feeling that we are committing

some awful fraud.

Not all exceptional situations are errors. For example, a program that is
directing the typing of a long line of text may come to an end-of-line. It is

possible that no real harm will result from failing to signal end-of-line to its

caller because the operating system will simply force a carriage return on the

output device, which will continue typing on the next line. However, it may
still be interesting to establish a protocol whereby the printing program can

inform its caller of end-of-line exceptions. The caller could then opt to deal

with these situations in interesting ways at certain times. For example, a caller

might choose to terminate printing, obtaining an end-of-line truncation. The

important thing, however, is that the failure of the caller to provide advice
about the situation need not prevent the printer program from operating

correctly.

Mechanisms for dealing with exceptional situations vary widely. When

an exceptional situation is encountered, a program may attempt to handle

it by returning a distinguished value, returning an additional value, setting
a variable, calling a function, performing a special transfer of control, or

stopping the program altogether and entering the debugger.

For the most part, the facilities described in this chapter do not introduce

any fundamentally new way of dealing with exceptional situations. Rather,

they encapsulate and formalize useful patterns of data and control flow that

have been seen to be useful in dealing with exceptional situations.



CONDITIONS 941

A proper conceptual approach to errors should perhaps begin from first

principles, with a discussion of conditions in general, and eventually work up to

the concept of an error as just one of the many kinds of conditions. However,

given the primitive state of error-handling technology, a proper buildup may

be as inappropriate as requiring that a beggar learn to cook a gourmet meal
before being allowed to eat. Thus, we deal first with the essentials—error

handling—and then go back later to fill in the missing details.

29.2. Changes in Terminology

In this section, we introduce changes to the terminology defined in sec-

tion 1.2.4.

A condition is an interesting situation in a program that has been detected
and announced. Later we allow this term also to refer to objects that programs

use to represent such situations.

An error is a condition in which normal program execution may not continue
without some form of intervention (either interactively by the user or under

some sort of program control, as described below).

The process by which a condition is formally announced by a program is

called signaling. The function signal is the primitive mechanism by which

such announcement is done. Other abstractions, such as error and cerror,

are built using signal.

The first edition is ambiguous about the reason why a particular program

action “is an error.” There are two principal reasons why an action may be

an error without being required to signal an error:

. Detecting the error might be prohibitively expensive.

For example, (+ nil 3) is an error. It is likely that the designers of Com-

mon Lisp believed this would be an error in all implementations but felt it
might be excessively expensive to detect the problem in compiled code on

stock hardware, so they did not require that it signal an error.

. Some implementations might implement the behavior as an extension.

For example, (loop for x from 1 to 3 do (print x)) is an error be-
cause loop is not defined to take atoms in its body. In fact, however, some

implementations offer an extension that makes this well-defined. In order

to leave room for such extensions, the first edition used the “is an error”

terminology to keep implementors from being forced to signal an error in

the extended implementations.
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[This example was written well before the vote by X3J13 in January 1989

to add exactly this extension to the forthcoming draft standard (see chap-

ter 26).—GLS]

In this chapter, we use the following terminology. [Compare this to the

terminology presented in section 28.1.1.—GLS]

. If the signaling of a condition or error is part of a function’s contract in all

situations, we say that it “signals” or “must signal” that condition or error.

. If the signaling of a condition or error is optional for some important rea-

son (such as performance), we say that the program “might signal” that

condition or error. In this case, we are defining the operation to be illegal

in all implementations, but allowing some implementations to fail to detect

the error.

. If an action is left undefined for the sake of implementation-dependent ex-

tension, we say that it “is undefined” or “has undefined effect.” This means

that it is not possible to depend portably upon the effects of that action. A

program that has undefined effect may enter the debugger, transfer control,

or modify data in unpredictable ways.

. In the special case where only the return value of an operation is not well

defined but any side effect and transfer-of-control behavior is well defined,

we say that it has “undefined value.” In this case, the number and nature

of the return values is not defined, but the function can reasonably be

expected to return. It is worth noting that under this description, there are
some (though not many) legitimate ways in which such return value(s) can

be used. For example, if the function foo has no side effects and undefined

value, the expression (length (list (foo))) is completely well defined

even for portable code. However, the effect of (print (list (foo))) is
not well defined.

29.3. Survey of Concepts

This section discusses various aspects of the condition system by topic, illus-

trating them with extensive examples. The next section contains definitions

of specific functions, macros, and other facilities.

29.3.1. Signaling Errors

Conceptually, signaling an error in a program is an admission by that program

that it does not know how to continue and requires external intervention. Once



CONDITIONS 943

an error is signaled, any decision about how to continue must come from the

“outside.”

The simplest way to signal an error is to use the error function with

format-style arguments describing the error for the sake of the user interface.
If error is called and there are no active handlers (described in sections 29.3.2

and 29.3.3), the debugger will be entered and the error message will be typed

out. For example:

Lisp> (defun factorial (x)

(cond ((or (not (typep x ’integer)) (minusp x))

(error "~S is not a valid argument to FACTORIAL."

x))

((zerop x) 1)

(t (* x (factorial (- x 1))))))

⇒ FACTORIAL

Lisp> (factorial 20)

⇒ 2432902008176640000

Lisp> (factorial -1)

Error: -1 is not a valid argument to FACTORIAL.

To continue, type :CONTINUE followed by an option number:

1: Return to Lisp Toplevel.

Debug>

In general, a call to error cannot directly return. Unless special work has

been done to override this behavior, the debugger will be entered and there

will be no option to simply continue.

The only exception may be that some implementations may provide debug-

ger commands for interactively returning from individual stack frames; even

then, however, such commands should never be used except by someone who

has read the erring code and understands the consequences of continuing from
that point. In particular, the programmer should feel confident about writing

code like this:

(defun wargames:no-win-scenario ()

(when (true) (error "Pushing the button would be stupid."))

(push-the-button))

In this scenario, there should be no chance that the function error will return

and the button will be pushed.

Remark: It should be noted that the notion of “no chance” that the button will be
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pushed is relative only to the language model; it assumes that the language is accu-
rately implemented. In practice, compilers have bugs, computers have glitches, and
users have been known to interrupt at inopportune moments and use the debugger
to return from arbitrary stack frames. Such violations of the language model are
beyond the scope of the condition system but not necessarily beyond the scope of po-
tential failures that the programmer should consider and defend against. The possi-
bility of such unusual failures may of course also influence the design of code meant to
handle less drastic situations, such as maintaining a database uncorrupted.—KMP
and GLS

In some cases, the programmer may have a single, well-defined idea of a
reasonable recovery strategy for this particular error. In that case, he can use

the function cerror, which specifies information about what would happen if

the user did simply continue from the call to cerror. For example:

Lisp> (defun factorial (x)

(cond ((not (typep x ’integer))

(error "~S is not a valid argument to FACTORIAL."

x))

((minusp x)

(let ((x-magnitude (- x)))

(cerror "Compute -(~D!) instead."

"(-~D)! is not defined." x-magnitude)

(- (factorial x-magnitude))))

((zerop x) 1)

(t (* x (factorial (- x 1))))))

⇒ FACTORIAL

Lisp> (factorial -3)

Error: (-3)! is not defined.

To continue, type :CONTINUE followed by an option number:

1: Compute -(3!) instead.

2: Return to Lisp Toplevel.

Debug> :continue 1

⇒ -6

29.3.2. Trapping Errors

By default, a call to error will force entry into the debugger. You can over-

ride that behavior in a variety of ways. The simplest (and most blunt) tool

for inhibiting entry to the debugger on an error is to use ignore-errors.

In the normal situation, forms in the body of ignore-errors are evaluated
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sequentially and the last value is returned. If a condition of type error is sig-

naled, ignore-errors immediately returns two values, namely nil and the

condition that was signaled; the debugger is not entered and no error message

is printed. For example:

Lisp> (setq filename "nosuchfile")

⇒ "nosuchfile"

Lisp> (ignore-errors (open filename :direction :input))

⇒ NIL and #--<FILE-ERROR 3437523>

The second return value is an object that represents the kind of error. This
is explained in greater detail in section 29.3.4.

In many cases, however, ignore-errors is not desirable because it deals

with too many kinds of errors. Contrary to the belief of some, a program

that does not enter the debugger is not necessarily better than one that does.
Excessive use of ignore-errors may keep the program out of the debugger,

but it may not increase the program’s reliability, because the program may

continue to run after encountering errors other than those you meant to work

past. In general, it is better to attempt to deal only with the particular

kinds of errors that you believe could legitimately happen. That way, if an
unexpected error comes along, you will still find out about it.

ignore-errors is a useful special case built from a more general facility,

handler-case, that allows the programmer to deal with particular kinds of

conditions (including non-error conditions) without affecting what happens
when other kinds of conditions are signaled. For example, an effect equivalent

to that of ignore-errors above is achieved in the following example:

Lisp> (setq filename "nosuchfile")

⇒ "nosuchfile"

Lisp> (handler-case (open filename :direction :input)

(error (condition)

(values nil condition)))

⇒ NIL and #--<FILE-ERROR 3437525>

However, using handler-case, one can indicate a more specific condition type

than just “error.” Condition types are explained in detail later, but the syntax

looks roughly like the following:

Lisp> (makunbound ’filename)

⇒ FILENAME

Lisp> (handler-case (open filename :direction :input)

(file-error (condition)
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(values nil condition)))

Error: The variable FILENAME is unbound.

To continue, type :CONTINUE followed by an option number:

1: Retry getting the value of FILENAME.

2: Specify a value of FILENAME to use this time.

3: Specify a value of FILENAME to store and use.

4: Return to Lisp Toplevel.

Debug>

29.3.3. Handling Conditions

Blind transfer of control to a handler-case is only one possible kind of re-

covery action that can be taken when a condition is signaled. The low-level

mechanism offers great flexibility in how to continue once a condition has been
signaled.

The basic idea behind condition handling is that a piece of code called the

signaler recognizes and announces the existence of an exceptional situation

using signal or some function built on signal (such as error).
The process of signaling involves the search for and invocation of a handler,

a piece of code that will attempt to deal appropriately with the situation.

If a handler is found, it may either handle the situation, by performing some

non-local transfer of control, or decline to handle it, by failing to perform a

non-local transfer of control. If it declines, other handlers are sought.
Since the lexical environment of the signaler might not be available to han-

dlers, a data structure called a condition is created to represent explicitly the

relevant state of the situation. A condition either is created explicitly using

make-condition and then passed to a function such as signal, or is created
implicitly by a function such as signal when given appropriate non-condition

arguments.

In order to handle the error, a handler is permitted to use any non-local

transfer of control such as go to a tag in a tagbody, return from a block,

or throw to a catch. In addition, structured abstractions of these primitives
are provided for convenience in exception handling.

A handler can be made dynamically accessible to a program by use of

handler-bind. For example, to create a handler for a condition of type

arithmetic-error, one might write:

(handler-bind ((arithmetic-error handler))body)

The handler is a function of one argument, the condition. If a condition of

the designated type is signaled while the body is executing (and there are no
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intervening handlers), the handler would be invoked on the given condition,

allowing it the option of transferring control. For example, one might write

a macro that executes a body, returning either its value(s) or the two values

nil and the condition:

(defmacro without-arithmetic-errors (&body forms)

(let ((tag (gensym)))

‘(block ,tag

(handler-bind ((arithmetic-error

#--’(lambda (c) ;Argument c is a condition

(return-from ,tag (values nil c)))))

,@body))))

The handler is executed in the dynamic context of the signaler, except that

the set of available condition handlers will have been rebound to the value that

was active at the time the condition handler was made active. If a handler
declines (that is, it does not transfer control), other handlers are sought. If no

handler is found and the condition was signaled by error or cerror (or some

function such as assert that behaves like these functions), the debugger is

entered, still in the dynamic context of the signaler.

29.3.4. Object-Oriented Basis of Condition Handling

Of course, the ability of the handler to usefully handle an exceptional situation

is related to the quality of the information it is provided. For example, if all

errors were signaled by

(error "some format string")

then the only piece of information that would be accessible to the handler
would be an object of type simple-error that had a slot containing the

format string.

If this were done, string-equalwould be the preferred way to tell one error

from another, and it would be very hard to allow flexibility in the presentation

of error messages because existing handlers would tend to be broken by even
tiny variations in the wording of an error message. This phenomenon has

been the major failing of most error systems previously available in Lisp. It

is fundamentally important to decouple the error message string (the human

interface) from the objects that formally represent the error state (the program

interface). We therefore have the notion of typed conditions, and of formal
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operations on those conditions that make them inspectable in a structured

way.

This object-oriented approach to condition handling has the following im-

portant advantages over a text-based approach:

. Conditions are classified according to subtype relationships, making it easy

to test for categories of conditions.

. Conditions have named slot values through which parameters are conveyed

from the program that signals the condition to the program that handles

it.

. Inheritance of methods and slots reduces the amount of explicit specification
necessary to achieve various interesting effects.

Some condition types are defined by this document, but the set of condition

types is extensible using define-condition. Common Lisp condition types

are in fact CLOS classes, and condition objects are ordinary CLOS objects;

define-condition merely provides an abstract interface that is a bit more

convenient than defclass for defining conditions.

Here, as an example, we define a two-argument function called divide that
is patterned after the / function but does some stylized error checking:

(defun divide (numerator denominator)

(cond ((or (not (numberp numerator))

(not (numberp denominator)))

(error "(DIVIDE ’~S ’~S) - Bad arguments."

numerator denominator))

((zerop denominator)

(error ’division-by-zero

:operator ’divide

:operands (list numerator denominator)))

(t ...)))

Note that in the first clause we have used error with a string argument and

in the second clause we have named a particular condition type, division-

by-zero. In the case of a string argument, the condition type that will be
signaled is simple-error.

The particular kind of error that is signaled may be important in cases where

handlers are active. For example, simple-error inherits from type error,

which in turn inherits from type condition. On the other hand, division-

by-zero inherits from arithmetic-error, which inherits from error, which

inherits from condition. So if a handler existed for arithmetic-errorwhile
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a division-by-zero condition was signaled, that handler would be tried;

however, if a simple-error condition were signaled in the same context, the

handler for type arithmetic-error would not be tried.

29.3.5. Restarts

In older Lisp dialects (such as MacLisp), an attempt to signal an error of a

given type often carried with it an implicit promise to support the standard
recovery strategy for that type of error. If the signaler knew the type of error

but for whatever reason was unable to deal with the standard recovery strategy

for that kind of error, it was necessary to signal an untyped error (for which

there was no defined recovery strategy). This sometimes led to confusion
when people signaled typed errors without realizing the full implications of

having done so, but more often than not it meant that users simply avoided

typed errors altogether.

The Common Lisp Condition System, which is modeled after the Zetalisp

condition system, corrects this troublesome aspect of previous Lisp dialects by
creating a clear separation between the act of signaling an error of a particular

type and the act of saying that a particular way of recovery is appropriate.

In the divide example above, simply signaling an error does not imply a

willingness on the part of the signaler to cooperate in any corrective action.
For example, the following sample interaction illustrates that the only recovery

action offered for this error is “Return to Lisp Toplevel”:

Lisp> (+ (divide 3 0) 7)

Error: Attempt to divide 3 by 0.

To continue, type :CONTINUE followed by an option number:

1: Return to Lisp Toplevel.

Debug> :continue 1

Returned to Lisp Toplevel.

Lisp>

When an error is detected and the function error is called, execution cannot
continue normally because error will not directly return. Control can be

transferred to other points in the program, however, by means of specially

established “restarts.”

29.3.6. Anonymous Restarts

The simplest kind of restart involves structured transfer of control using a

macro called restart-case. The restart-case form allows execution of a
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piece of code in a context where zero or more restarts are active, and where

if one of those restarts is “invoked,” control will be transferred to the corre-

sponding clause in the restart-case form. For example, we could rewrite

the previous divide example as follows.

(defun divide (numerator denominator)

(loop

(restart-case

(return

(cond ((or (not (numberp numerator))

(not (numberp denominator)))

(error "(DIVIDE ’~S ’~S) - Bad arguments."

numerator denominator))

((zerop denominator)

(error ’division-by-zero

:operator ’divide

:operands (list numerator denominator)))

(t ...)))

(nil (arg1 arg2)

:report "Provide new arguments for use by DIVIDE."

:interactive

(lambda ()

(list (prompt-for ’number "Numerator: ")

(prompt-for ’number "Denominator: ")))

(setq numerator arg1 denominator arg2))

(nil (result)

:report "Provide a value to return from DIVIDE."

:interactive

(lambda () (list (prompt-for ’number "Result: ")))

(return result)))))

Remark: The function prompt-for used in this chapter in a number of places is
not a part of Common Lisp. It is used in the examples in this chapter only to keep
the presentation simple. It is assumed to accept a type specifier and optionally a
format string and associated arguments. It uses the format string and associated
arguments as part of an interactive prompt, and uses read to read a Lisp object;
however, only an object of the type indicated by the type specifier is accepted.

The question of whether or not prompt-for (or something like it) would be a
useful addition to Common Lisp is under consideration by X3J13, but as of January
1989 no action has been taken. In spite of its use in a number of examples, nothing
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in the Common Lisp Condition System depends on this function.

In the example, the nil at the head of each clause means that it is an

“anonymous” restart. Anonymous restarts are typically invoked only from

within the debugger. As we shall see later, it is possible to have “named
restarts” that may be invoked from code without the need for user interven-

tion.

If the arguments to anonymous restarts are not optional, then special infor-

mation must be provided about what the debugger should use as arguments.

Here the :interactive keyword is used to specify that information.
The :report keyword introduces information to be used when presenting

the restart option to the user (by the debugger, for example).

Here is a sample interaction that takes advantage of the restarts provided

by the revised definition of divide:

Lisp> (+ (divide 3 0) 7)

Error: Attempt to divide 3 by 0.

To continue, type :CONTINUE followed by an option number:

1: Provide new arguments for use by the DIVIDE function.

2: Provide a value to return from the DIVIDE function.

3: Return to Lisp Toplevel.

Debug> :continue 1

1

Numerator: 4

Denominator: 2

⇒ 9

29.3.7. Named Restarts

In addition to anonymous restarts, one can have named restarts, which can
be invoked by name from within code. As a trivial example, one could write

(restart-case (invoke-restart ’foo 3)

(foo (x) (+ x 1)))

to add 3 to 1, returning 4. This trivial example is conceptually analogous to

writing:

(+ (catch ’something (throw ’something 3)) 1)

For a more realistic example, the code for the function symbol-valuemight

signal an unbound variable error as follows:
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(restart-case (error "The variable ~S is unbound." variable)

(continue ()

:report

(lambda (s) ;Argument s is a stream

(format s "Retry getting the value of ~S." variable))

(symbol-value variable))

(use-value (value)

:report

(lambda (s) ;Argument s is a stream
(format s "Specify a value of ~S to use this time."

variable))

value)

(store-value (value)

:report

(lambda (s) ;Argument s is a stream

(format s "Specify a value of ~S to store and use."

variable))

(setf (symbol-value variable) value)

value))

If this were part of the implementation of symbol-value, then it would be

possible for users to write a variety of automatic handlers for unbound variable

errors. For example, to make unbound variables evaluate to themselves, one
might write

(handler-bind ((unbound-variable

#--’(lambda (c) ;Argument c is a condition
(when (find-restart ’use-value)

(invoke-restart ’use-value

(cell-error-name c))))))

body)

29.3.8. Restart Functions

For commonly used restarts, it is conventional to define a program interface

that hides the use of invoke-restart. Such program interfaces to restarts
are called restart functions.

The normal convention is for the function to share the name of the restart.

The pre-defined functions abort, continue, muffle-warning, store-value,

and use-value are restart functions. With use-value the above example of

handler-bind could have been written more concisely as
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(handler-bind ((unbound-variable

#--’(lambda (c) ;Argument c is a condition

(use-value (cell-error-name c)))))

body)

29.3.9. Comparison of Restarts and Catch/Throw

One important feature that restart-case (or restart-bind) offers that

catch does not is the ability to reason about the available points to which

control might be transferred without actually attempting the transfer. One
could, for example, write

(ignore-errors (throw ...))

which is a sort of poor man’s variation of

(when (find-restart ’something)

(invoke-restart ’something))

but there is no way to use ignore-errors and throw to simulate something

like

(when (and (find-restart ’something)

(find-restart ’something-else))

(invoke-restart ’something))

or even just

(when (and (find-restart ’something)

(yes-or-no-p "Do something? "))

(invoke-restart ’something))

because the degree of inspectability that comes with simply writing

(ignore-errors (throw ...))

is too primitive—getting the desired information also forces transfer of control,

perhaps at a time when it is not desirable.

Many programmers have previously evolved strategies like the following on

a case-by-case basis:

(defvar *foo-tag-is-available* nil)

(defun fn-1 ()



954 COMMON LISP

(catch ’foo

(let ((*foo-tag-is-available* t))

... (fn-2) ...)))

(defun fn-2 ()

...

(if *foo-tag-is-available* (throw ’foo t))

...)

The facility provided by restart-case and find-restart is intended to pro-

vide a standardized protocol for this sort of information to be communicated
between programs that were developed independently so that individual vari-

ations from program to program do not thwart the overall modularity and

debuggability of programs.

Another difference between the restart facility and the catch/throw facility

is that a catch with any given tag completely shadows any outer pending

catch that uses the same tag. Because of the presence of compute-restarts,

however, it is possible to see shadowed restarts, which may be very useful in

some situations (particularly in an interactive debugger).
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29.3.10. Generalized Restarts

restart-case is a mechanism that allows only imperative transfer of control

for its associated restarts. restart-case is built on a lower-level mechanism

called restart-bind, which does not force transfer of control.

restart-bind is to restart-case as handler-bind is to handler-case.

The syntax is

(restart-bind ((name function . options)) . body)

The body is executed in a dynamic context within which the function will

be called whenever (invoke-restart ’name) is executed. The options are

keyword-style and are used to pass information such as that provided with

the :report keyword in restart-case.

A restart-case expands into a call to restart-bind where the function

simply does an unconditional transfer of control to a particular body of code,

passing along “argument” information in a structured way.

It is also possible to write restarts that do not transfer control. Such restarts

may be useful in implementing various special commands for the debugger that

are of interest only in certain situations. For example, one might imagine a
situation where file space was exhausted and the following was done in an

attempt to free space in directory dir:

(restart-bind ((nil #--’(lambda () (expunge-directory dir))

:report-function

#--’(lambda (stream)

(format stream "Expunge ~A."

(directory-namestring dir)))))

(cerror "Try this file operation again."

’directory-full :directory dir))

In this case, the debugger might be entered and the user could first perform

the expunge (which would not transfer control from the debugger context)

and then retry the file operation:

Lisp> (open "FOO" :direction :output)

Error: The directory PS:<JDOE> is full.

To continue, type :CONTINUE followed by an option number:

1: Try this file operation again.

2: Expunge PS:<JDOE>.

3: Return to Lisp Toplevel.

Debug> :continue 2
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Expunging PS:<JDOE> ... 3 records freed.

Debug> :continue 1

⇒ #--<OUTPUT-STREAM "PS:<JDOE>FOO.LSP" 2323473>

29.3.11. Interactive Condition Handling

When a program does not know how to continue, and no active handler is

able to advise it, the “interactive condition handler,” or “debugger,” can be

entered. This happens implicitly through the use of functions such as error

and cerror, or explicitly through the use of the function invoke-debugger.

The interactive condition handler never returns directly; it returns only

through structured non-local transfer of control to specially defined restart

points that can be set up either by the system or by user code. The mech-

anisms that support the establishment of such structured restart points for
portable code are outlined in sections 29.3.5 through 29.3.10.

Actually, implementations may also provide extended debugging facilities

that allow return from arbitrary stack frames. Although such commands

are frequently useful in practice, their effects are implementation-dependent

because they violate the Common Lisp program abstraction. The effect of
using such commands is undefined with respect to Common Lisp.

29.3.12. Serious Conditions

The ignore-errors macro will trap conditions of type error. There are,

however, conditions that are not of type error.

Some conditions are not considered errors but are still very serious, so

we call them serious conditions and we use the type serious-condition to

represent them. Conditions such as those that might be signaled for “stack
overflow” or “storage exhausted” are in this category.

The type error is a subtype of serious-condition, and it would tech-

nically be correct to use the term “serious condition” to refer to all serious

conditions whether errors or not. However, normally we use the term “seri-

ous condition” to refer to things of type serious-condition but not of type
error.

The point of the distinction between errors and other serious conditions is

that some conditions are known to occur for reasons that are beyond the scope

of Common Lisp to specify clearly. For example, we know that a stack will

generally be used to implement function calling, and we know that stacks tend

to be of finite size and are prone to overflow. Since the available stack size
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may vary from implementation to implementation, from session to session, or

from function call to function call, it would be confusing to have expressions

such as (ignore-errors (+ a b)) return a number sometimes and nil other

times if a and b were always bound to numbers and the stack just happened

to overflow on a particular call. For this reason, only conditions of type error
and not all conditions of type serious-condition are trapped by ignore-

errors. To trap other conditions, a lower-level facility must be used (such as

handler-bind or handler-case).

By convention, the function error is preferred over signal to signal con-
ditions of type serious-condition (including those of type error). It is the

use of the function error, and not the type of the condition being signaled,

that actually causes the debugger to be entered.

Compatibility note: The Common Lisp Condition System differs from that of
Zetalisp in this respect. In Zetalisp the debugger is entered for an unhandled signal
if the error function is used or if the condition is of type error.

29.3.13. Non-Serious Conditions

Some conditions are neither errors nor serious conditions. They are signaled
to give other programs a chance to intervene, but if no action is taken, com-

putation simply continues normally.

For example, an implementation might choose to signal a non-serious

(and implementation-dependent) condition called end-of-line when output

reaches the last character position on a line of character output. In such an
implementation, the signaling of this condition might allow a convenient way

for other programs to intervene, producing output that is truncated at the

end of a line.

By convention, the function signal is used to signal conditions that are not
serious. It would be possible to signal serious conditions using signal, and

the debugger would not be entered if the condition went unhandled. However,

by convention, handlers will generally tend to assume that serious conditions

and errors were signaled by calling the error function (and will therefore

force entry to the interactive condition handler) and that they should work
to avoid this.

29.3.14. Condition Types

Some types of conditions are predefined by the system. All types of conditions

are subtypes of condition. That is, (typep x ’condition) is true if and
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only if the value of x is a condition.

Implementations supporting multiple (or non-hierarchical) type inheritance

are expressly permitted to exploit multiple inheritance in the tree of condition

types as implementation-dependent extensions, as long as such extensions are

compatible with the specifications in this chapter. [X3J13 voted in March 1989

〈186〉 to integrate the Condition System and the Object System, so multiple
inheritance is always available for condition types.—GLS]

In order to avoid problems in portable code that runs both in systems with

multiple type inheritance and in systems without it, programmers are explic-

itly warned that while all correct Common Lisp implementations will ensure

that (typep c ’condition) is true for all conditions c (and all subtype rela-
tionships indicated in this chapter will also be true), it should not be assumed

that two condition types specified to be subtypes of the same third type are

disjoint. (In some cases, disjoint subtypes are identified explicitly, but such

disjointness is not to be assumed by default.) For example, it follows from
the subtype descriptions contained in this chapter that in all implementa-

tions (typep c ’control-error) implies (typep c ’error), but note that

(typep c ’control-error) does not imply (not (typep c ’cell-error)).

29.3.15. Signaling Conditions

When a condition is signaled, the system tries to locate the most appropriate
handler for the condition and to invoke that handler.

Handlers are established dynamically using handler-bind or abstractions

built on handler-bind.

If an appropriate handler is found, it is called. In some circumstances,

the handler may decline simply by returning without performing a non-local

transfer of control. In such cases, the search for an appropriate handler is
picked up where it left off, as if the called handler had never been present.

If no handler is found, or if all handlers that were found decline, signal

returns nil.

Although it follows from the description above, it is perhaps worth noting

explicitly that the lookup procedure described here will prefer a general but

more (dynamically) local handler over a specific but less (dynamically) local
handler. Experience with existing condition systems suggests that this is a

reasonable approach and works adequately in most situations. Some care

should be taken when binding handlers for very general kinds of conditions,

such as is done in ignore-errors. Often, binding for a more specific condition

type than error is more appropriate.
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29.3.16. Resignaling Conditions

[The contents of this section are still a subject of some debate within X3J13.

The reader may wish to take this section with a grain of salt.—GLS]

Note that signaling a condition has no side effect on that condition, and

that there is no dynamic state contained in a condition object. As such, it
may at times be reasonable and appropriate to consider caching condition ob-

jects for repeated use, re-signaling conditions from within handlers, or saving

conditions away somewhere and re-signaling them later.

For example, it may be desirable for the system to pre-allocate objects of

type storage-condition so that they can be signaled when needed without
attempting to allocate more storage.

29.3.17. Condition Handlers

A handler is a function of one argument, the condition to be handled. The
handler may inspect the object to be sure it is “interested” in handling the

condition.

A handler is executed in the dynamic context of the signaler, except that

the set of available condition handlers will have been rebound to the value

that was active at the time the condition handler was made active. The intent
of this is to prevent infinite recursion because of errors in a condition handler.

After inspecting the condition, the handler should take one of the following

actions:

. It might decline to handle the condition (by simply returning). When this

happens, the returned values are ignored and the effect is the same as if the
handler had been invisible to the mechanism seeking to find a handler. The

next handler in line will be tried, or if no such handler exists, the condition

will go unhandled.

. It might handle the condition (by performing some non-local transfer of

control). This may be done either primitively using go, return, or throw,
or more abstractly using a function such as abort or invoke-restart.

. It might signal another condition.

. It might invoke the interactive debugger.

In fact, the latter two actions (signaling another condition or entering the

debugger) are really just ways of putting off the decision to either handle or

decline, or trying to get someone else to make such a decision. Ultimately, all

a handler can do is to handle or decline to handle.
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29.3.18. Printing Conditions

When *print-escape* is nil (for example, when the princ function or the

~A directive is used with format), the report method for the condition will

be invoked. This will be done automatically by functions such as invoke-

debugger, break, and warn, but there may still be situations in which it is

desirable to have a condition report under explicit user control. For example,

(let ((form ’(open "nosuchfile")))

(handler-case (eval form)

(serious-condition (c)

(format t "~&Evaluation of ~S failed:~%~A" form c))))

might print something like

Evaluation of (OPEN "nosuchfile") failed:

The file "nosuchfile" was not found.

Some suggestions about the form of text typed by report methods:

. The message should generally be a complete sentence, beginning with a

capital letter and ending with appropriate punctuation (usually a period).

. The message should not include any introductory text such as “Error:” or

“Warning:” and should not be followed by a trailing newline. Such text

will be added as may be appropriate to context by the routine invoking the

report method.

. Except where unavoidable, the tab character (which is only semi-standard

anyway) should not be used in error messages. Its effect may vary from

one implementation to another and may cause problems even within an

implementation because it may do different things depending on the column

at which the error report begins.

. Single-line messages are preferred, but newlines in the middle of long mes-

sages are acceptable.

. If any program (for example, the debugger) displays messages indented

from the prevailing left margin (for example, indented seven spaces because
they are prefixed by the seven-character herald “Error: ”), then that pro-

gram will take care of inserting the appropriate indentation into the extra

lines of a multi-line error message. Similarly, a program that prefixes error

messages with semicolons so that they appear to be comments should take

care of inserting a semicolon at the beginning of each line in a multi-line
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error message. (These rules are important because, even within a single

implementation, there may be more than one program that presents error

messages to the user, and they may use different styles of presentation.

The caller of error cannot anticipate all such possible styles, and so it is

incumbent upon the presenter of the message to make any necessary ad-
justments.)

[Note: These recommendations expand upon those in section 24.1.—GLS]

When *print-escape* is not nil, the object should print in some useful

(but usually fairly abbreviated) fashion according to the style of the imple-

mentation. It is not expected that a condition will be printed in a form
suitable for read. Something like #--<ARITHMETIC-ERROR 1734> is fine.

X3J13 voted in March 1989 〈186〉 to integrate the Condition System and

the Object System. In the original Condition System proposal, no function

was provided for directly accessing or setting the printer for a condition type,

or for invoking it; the techniques described above were the sole interface to
reporting. The vote specified that, in CLOS terms, condition reporting is

mediated through the print-object method for the condition type (that is,

class) in question, with *print-escape* bound to nil. Specifying (:report

fn) to define-condition when defining condition type C is equivalent to a

separate method definition:

(defmethod print-object ((x C) stream)

(if *print-escape*

(call-next-method)

(funcall #--’fn x stream)))

Note that the method uses fn to print the condition only when *print-

escape* has the value nil.

29.4. Program Interface to the Condition System

This section describes functions, macros, variables, and condition types asso-

ciated with the Common Lisp Condition System.

29.4.1. Signaling Conditions

The functions in this section provide various mechanisms for signaling warn-

ings, breaks, continuable errors, and fatal errors.
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[Function]error datum &rest arguments

[This supersedes the description of error given in section 24.1.—GLS]

Invokes the signal facility on a condition. If the condition is not han-

dled, (invoke-debugger condition) is executed. As a consequence of calling
invoke-debugger, error never directly returns to its caller; the only exit

from this function can come by non-local transfer of control in a handler or

by use of an interactive debugging command.

If datum is a condition, then that condition is used directly. In this case,

it is an error for the list of arguments to be non-empty; that is, error must
have been called with exactly one argument, the condition.

If datum is a condition type (a class or class name), then the condition used

is effectively the result of (apply #--’make-condition datum arguments).

If datum is a string, then the condition used is effectively the result of

(make-condition ’simple-error

:format-string datum

:format-arguments arguments)

[Function]cerror continue-format-string datum &rest arguments

[This supersedes the description of cerror given in section 24.1.—GLS]

The function cerror invokes the error facility on a condition. If the con-

dition is not handled, (invoke-debugger condition) is executed. While sig-

naling is going on, and while control is in the debugger (if it is reached), it

is possible to continue program execution (thereby returning from the call to

cerror) using the continue restart.

If datum is a condition, then that condition is used directly. In this case, the

list of arguments need not be empty, but will be used only with the continue-

format-string and will not be used to initialize datum.

If datum is a condition type (a class or class name), then the condition used

is effectively the result of (apply #--’make-condition datum arguments).

If datum is a string, then the condition used is effectively the result of

(make-condition ’simple-error

:format-string datum
:format-arguments arguments)

The continue-format-string must be a string. Note that if datum is not a

string, then the format arguments used by the continue-format-string will still

be the list of arguments (which is in keyword format if datum is a condition
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type). In this case, some care may be necessary to set up the continue-format-

string correctly. The format directive ~*, which ignores and skips over format

arguments, may be particularly useful in this situation.

The value returned by cerror is nil.

[Function]signal datum &rest arguments

Invokes the signal facility on a condition. If the condition is not handled,

signal returns nil.

If datum is a condition, then that condition is used directly. In this case,

it is an error for the list of arguments to be non-empty; that is, error must
have been called with exactly one argument, the condition.

If datum is a condition type (a class or class name), then the condition used

is effectively the result of (apply #--’make-condition datum arguments).

If datum is a string, then the condition used is effectively the result of

(make-condition ’simple-error

:format-string datum

:format-arguments arguments)

Note that if (typep condition *break-on-signals*) is true, then the de-

bugger will be entered prior to beginning the process of signaling. The

continue restart function may be used to continue with the signaling pro-

cess; the restart is associated with the signaled condition as if by use of with-

condition-restarts. This is true also for all other functions and macros that
signal conditions, such as warn, error, cerror, assert, and check-type.

During the dynamic extent of a call to signal with a particular condition,

the effect of calling signal again on that condition object for a distinct ab-

stract event is not defined. For example, although a handler may resignal a
condition in order to allow outer handlers first shot at handling the condition,

two distinct asynchronous keyboard events must not signal an the same (eq)

condition object at the same time.

For further details about signaling and handling, see the discussion of con-
dition handlers in section 29.3.17.

[Variable]*break-on-signals*

This variable is intended primarily for use when the user is debugging pro-

grams that do signaling. The value of *break-on-signals* should be suitable

as a second argument to typep, that is, a type or type specifier.
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When (typep condition *break-on-signals*) is true, then calls to

signal (and to other advertised functions such as error that implicitly

call signal) will enter the debugger prior to signaling that condition. The

continue restart may be used to continue with the normal signaling process;

the restart is associated with the signaled condition as if by use of with-

condition-restarts.

Note that nil is a valid type specifier. If the value of *break-on-signals*

is nil, then signal will never enter the debugger in this implicit manner.

When setting this variable, the user is encouraged to choose the most re-
strictive specification that suffices. Setting this flag effectively violates the

modular handling of condition signaling that this chapter seeks to establish.

Its complete effect may be unpredictable in some cases, since the user may

not be aware of the variety or number of calls to signal that are used in

programs called only incidentally.
By default—and certainly in any “production” use—the value of this vari-

able should be nil, both for reasons of performance and for reasons of mod-

ularity and abstraction.

X3J13 voted in March 1989 〈10〉 to remove *break-on-warnings* from the
language; *break-on-signals* offers all the power of *break-on-warnings*

and more.

Compatibility note: This variable is similar to the Zetalisp variable trace-

conditions except for the obvious difference that zl:trace-conditions takes a
type or list of types while *break-on-signals* takes a single type specifier.

[There is no loss of generality in Common Lisp because the or type specifier may
be used to indicate that any of a set of conditions should enter the debugger.—GLS]

29.4.2. Assertions

These facilities are designed to make it convenient for the user to insert error

checks into code.

[Macro]check-type place typespec [string]

[This supersedes the description of check-type given in section 24.2.—GLS]
A check-type form signals an error of type type-error if the contents of

place are not of the desired type.

If a condition is signaled, handlers of this condition can use the functions

type-error-datum and type-error-expected-type to access the contents

of place and the typespec, respectively.
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This function can return only if the store-value restart is invoked, either

explicitly from a handler or implicitly as one of the options offered by the

debugger. The restart is associated with the signaled condition as if by use of

with-condition-restarts.

If store-value is called, check-type will store the new value that is the
argument to store-value (or that is prompted for interactively by the debug-

ger) in place and start over, checking the type of the new value and signaling

another error if it is still not the desired type. Subforms of place may be

evaluated multiple times because of the implicit loop generated. check-type
returns nil.

The place must be a generalized variable reference acceptable to setf. The

typespec must be a type specifier; it is not evaluated. The string should be

an English description of the type, starting with an indefinite article (“a” or

“an”); it is evaluated. If the string is not supplied, it is computed automat-
ically from the typespec. (The optional string argument is allowed because

some applications of check-type may require a more specific description of

what is wanted than can be generated automatically from the type specifier.)

The error message will mention the place, its contents, and the desired type.

Implementation note: An implementation may choose to generate a somewhat
differently worded error message if it recognizes that place is of a particular form,
such as one of the arguments to the function that called check-type.

Lisp> (setq aardvarks ’(sam harry fred))

⇒ (SAM HARRY FRED)

Lisp> (check-type aardvarks (array * (3)))

Error: The value of AARDVARKS, (SAM HARRY FRED),

is not a 3-long array.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use instead.

2: Return to Lisp Toplevel.

Debug> :continue 1

Use Value: #--(sam fred harry)

⇒ NIL

Lisp> aardvarks

⇒ #--<ARRAY-3 13571>

Lisp> (map ’list #--’identity aardvarks)

⇒ (SAM FRED HARRY)

Lisp> (setq aacount ’foo)

⇒ FOO
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Lisp> (check-type aacount (integer 0 *) "a non-negative integer")

Error: The value of AACOUNT, FOO, is not a non-negative integer.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use instead.

2: Return to Lisp Toplevel.

Debug> :continue 2

Lisp>

Compatibility note: In Zetalisp, the equivalent facility is called check-arg-type.

[Macro]assert test-form [( {place}∗ ) [datum {argument}∗ ] ]

[This supersedes the description of assert given in section 24.2.—GLS]

An assert form signals an error if the value of the test-form is nil. Con-
tinuing from this error using the continue restart will allow the user to alter

the values of some variables, and assert will then start over, evaluating the

test-form again. (The restart is associated with the signaled condition as if

by use of with-condition-restarts.) assert returns nil.

The test-form may be any form. Each place (there may be any number of

them, or none) must be a generalized variable reference acceptable to setf.

These should be variables on which test-form depends, whose values may
sensibly be changed by the user in attempting to correct the error. Subforms of

each place are evaluated only if an error is signaled, and may be re-evaluated if

the error is re-signaled (after continuing without actually fixing the problem).

The datum and arguments are evaluated only if an error is to be signaled,

and re-evaluated if the error is to be signaled again.

If datum is a condition, then that condition is used directly. In this case, it

is an error to specify any arguments.

If datum is a condition type (a class or class name), then the condi-

tion used is effectively the result of (apply #--’make-condition datum (list

{argument}∗ )).
If datum is a string, then the condition used is effectively the result of

(make-condition ’simple-error

:format-string datum

:format-arguments (list {argument}∗ ))

If datum is omitted, then a condition of type simple-error is constructed

using the test-form as data. For example, the following might be used:
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(make-condition ’simple-error

:format-string "The assertion ~S failed."

:format-arguments ’(test-form))

Note that the test-form itself, and not its value, is used as the format argu-

ment.

Implementation note: The debugger need not include the test-form in the error
message, and any places should not be included in the message, but they should be
made available for the user’s perusal. If the user gives the “continue” command, an
opportunity should be presented to alter the values of any or all of the references.
The details of this depend on the implementation’s style of user interface, of course.

Here is an example of the use of assert:

(setq x (make-array ’(3 5) :initial-element 3))

(setq y (make-array ’(3 5) :initial-element 7))

(defun matrix-multiply (a b)

(let ((*print-array* nil))

(assert (and (UU (array-rank a) (array-rank b) 2)

(UU (array-dimension a 1)

(array-dimension b 0)))

(a b)

"Cannot multiply ~S by ~S." a b)

(really-matrix-multiply a b)))

(matrix-multiply x y)

Error: Cannot multiply #--<ARRAY-3-5 12345> by #--<ARRAY-3-5 12364>.

To continue, type :CONTINUE followed by an option number:

1: Specify new values.

2: Return to Lisp Toplevel.

Debug> :continue 1

Value for A: x

Value for B: (make-array ’(5 3) :initial-element 6)

⇒#--2A((54 54 54 54 54)

(54 54 54 54 54)

(54 54 54 54 54)

(54 54 54 54 54)

(54 54 54 54 54))
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29.4.3. Exhaustive Case Analysis

The syntax for etypecase and ctypecase is the same as for typecase, except

that no otherwise clause is permitted. Similarly, the syntax for ecase and

ccase is the same as for case except for the otherwise clause.

etypecase and ecase are similar to typecase and case, respectively, but

signal a non-continuable error rather than returning nil if no clause is se-
lected.

ctypecase and ccase are also similar to typecase and case, respectively,

but signal a continuable error if no clause is selected.

[Macro]etypecase keyform {(type { form}∗ )}∗

[This supersedes the description of etypecase given in section 24.3.—GLS]

This control construct is similar to typecase, but no explicit otherwise

or t clause is permitted. If no clause is satisfied, etypecase signals an error
(of type type-error) with a message constructed from the clauses. It is not

permissible to continue from this error. To supply an error message, the user

should use typecase with an otherwise clause containing a call to error.

The name of this function stands for “exhaustive type case” or “error-checking

type case.”
Example:

Lisp> (setq x 1/3)

⇒ 1/3

Lisp> (etypecase x

(integer (* x 4))

(symbol (symbol-value x)))

Error: The value of X, 1/3, is neither an integer nor a symbol.

To continue, type :CONTINUE followed by an option number:

1: Return to Lisp Toplevel.

Debug>

[Macro]ctypecase keyplace {(type { form}∗ )}∗

[This supersedes the description of ctypecase given in section 24.3.—GLS]
This control construct is similar to typecase, but no explicit otherwise or

t clause is permitted.

The keyplace must be a generalized variable reference acceptable to setf.

If no clause is satisfied, ctypecase signals an error (of type type-error) with

a message constructed from the clauses. This error may be continued using
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the store-value restart. The argument to store-value is stored in keyplace

and then ctypecase starts over, making the type tests again. Subforms of

keyplace may be evaluated multiple times. If the store-value restart is

invoked interactively, the user will be prompted for the value to be used.

The name of this function is mnemonic for “continuable (exhaustive) type

case.”

Example:

Lisp> (setq x 1/3)

⇒ 1/3

Lisp> (ctypecase x

(integer (* x 4))

(symbol (symbol-value x)))

Error: The value of X, 1/3, is neither an integer nor a symbol.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use instead.

2: Return to Lisp Toplevel.

Debug> :continue 1

Use value: 3.7

Error: The value of X, 3.7, is neither an integer nor a symbol.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use instead.

2: Return to Lisp Toplevel.

Debug> :continue 1

Use value: 12

⇒ 48

[Macro]ecase keyform {( {( {key}∗ ) | key} { form}∗ )}∗

[This supersedes the description of ecase given in section 24.3.—GLS]

This control construct is similar to case, but no explicit otherwise or

t clause is permitted. If no clause is satisfied, ecase signals an error (of

type type-error) with a message constructed from the clauses. It is not

permissible to continue from this error. To supply an error message, the user

should use case with an otherwise clause containing a call to error. The
name of this function stands for “exhaustive case” or “error-checking case.”

Example:

Lisp> (setq x 1/3)

⇒ 1/3
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Lisp> (ecase x

(alpha (foo))

(omega (bar))

((zeta phi) (baz)))

Error: The value of X, 1/3, is not ALPHA, OMEGA, ZETA, or PHI.

To continue, type :CONTINUE followed by an option number:

1: Return to Lisp Toplevel.

Debug>

[Macro]ccase keyplace {( {( {key}∗ ) | key} { form}∗ )}∗

[This supersedes the description of ccase given in section 24.3.—GLS]

This control construct is similar to case, but no explicit otherwise or t

clause is permitted.

The keyplace must be a generalized variable reference acceptable to setf.
If no clause is satisfied, ccase signals an error (of type type-error) with a

message constructed from the clauses. This error may be continued using the

store-value restart. The argument to store-value is stored in keyplace

and then ccase starts over, making the type tests again. Subforms of key-

place may be evaluated multiple times. If the store-value restart is invoked
interactively, the user will be prompted for the value to be used.

The name of this function is mnemonic for “continuable (exhaustive) case.”

Implementation note: The type-error signaled by ccase and ecase is free to
choose any representation of the acceptable argument type that it wishes for place-
ment in the expected-type slot. It will always work to use type (member . keys),
but in some cases it may be more efficient, for example, to use a type that represents
an integer subrange or a type composed using the or type specifier.

29.4.4. Handling Conditions

These macros allow a program to gain control when a condition is signaled.

[Macro]handler-case expression {(typespec ( [var] ) { form}∗ )}∗

Executes the given expression in a context where various specified handlers

are active.

Each typespec may be any type specifier. If during the execution of the

expression a condition is signaled for which there is an appropriate clause—

that is, one for which (typep condition ’typespec) is true—and if there is no



CONDITIONS 971

intervening handler for conditions of that type, then control is transferred to

the body of the relevant clause (unwinding the dynamic state appropriately

in the process) and the given variable var is bound to the condition that

was signaled. If no such condition is signaled and the computation runs to

completion, then the values resulting from the expression are returned by
the handler-case form.

If more than one case is provided, those cases are made accessible in parallel.

That is, in

(handler-case expression

(type1 (var1) form1)

(type2 (var2) form2))

if the first clause (containing form1) has been selected, the handler for the

second is no longer visible (and vice versa).

The cases are searched sequentially from top to bottom. If a signaled condi-

tion matches more than one case (possible if there is type overlap) the earlier

of the two cases will be selected.
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If the variable var is not needed, it may be omitted. That is, a clause such

as

(type (var) (declare (ignore var)) form)

may be written using the following shorthand notation:

(type () form)

If there are no forms in a selected case, the case returns nil. Note that

(handler-case expression

(type1 (var1) . body1)

(type2 (var2) . body2)

...)

is approximately equivalent to

(block #--1UU#--:block-1

(let (#--2UU#--:var-2)

(tagbody

(handler-bind ((type1 #--’(lambda (temp)

(setq #--2#-- temp)

(go #--3UU#--:tag-3)))

(type2 #--’(lambda (temp)

(setq #--2#-- temp)

(go #--4UU#--:tag-4)))

...)

(return-from #--1#-- expression))

#--3#-- (return-from #--1#-- (let ((var1 #--2#--)) . body1))

#--4#-- (return-from #--1#-- (let ((var2 #--2#--)) . body2))

...)))

[Note the use of “gensyms” such as #--:block-1 as block names, variables, and

tagbody tags in this example, and the use of #--nUU and #--n#-- read-macro syntax
to indicate that the very same gensym appears in multiple places.—GLS]

As a special case, the typespec can also be the symbol :no-error in the last
clause. If it is, it designates a clause that will take control if the expression

returns normally. In that case, a completely general lambda-list may follow

the symbol :no-error, and the arguments to which the lambda-list parame-

ters are bound are like those for multiple-value-call on the return value

of the expression. For example,
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(handler-case expression

(type1 (var1) . body1)

(type2 (var2) . body2)

...

(typen (varn) . bodyn)

(:no-error (nvar1 nvar2 ... nvarm) . nbody))

is approximately equivalent to

(block #--1UU#--:error-return

(multiple-value-call #--’(lambda (nvar1 nvar2 ... nvarm) . nbody)
(block #--2UU#--:normal-return

(return-from #--1#--

(handler-case (return-from #--2#-- expression)

(type1 (var1) . body1)

(type2 (var2) . body2)

...

(typen (varn) . bodyn))))))

Examples of the use of handler-case:

(handler-case (/ x y)

(division-by-zero () nil))

(handler-case (open *the-file* :direction :input)

(file-error (condition) (format t "~&Fooey: ~A~%" condition)))

(handler-case (some-user-function)

(file-error (condition) condition)

(division-by-zero () 0)

((or unbound-variable undefined-function) () ’unbound))

(handler-case (intern x y)

(error (condition) condition)

(:no-error (symbol status)

(declare (ignore symbol))

status))

[Macro]ignore-errors { form}∗

Executes its body in a context that handles conditions of type error by

returning control to this form. If no such condition is signaled, any values
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returned by the last form are returned by ignore-errors. Otherwise, two

values are returned: nil and the error condition that was signaled.

ignore-errors could be defined by

(defmacro ignore-errors (&body forms)

‘(handler-case (progn ,@forms)

(error (c) (values nil c)))

[Macro]handler-bind ( {(typespec handler)}∗ ) { form}∗

Executes body in a dynamic context where the given handler bindings are in

effect. Each typespec may be any type specifier. Each handler form should

evaluate to a function to be used to handle conditions of the given type(s)
during execution of the forms. This function should take a single argument,

the condition being signaled.

If more than one binding is specified, the bindings are searched sequentially

from top to bottom in search of a match (by visual analogy with typecase).

If an appropriate typespec is found, the associated handler is run in a context
where none of the handler bindings are visible (to avoid recursive errors). For

example, in the case of

(handler-bind ((unbound-variable #--’(lambda ...))

(error #--’(lambda ...)))

...)

if an unbound variable error is signaled in the body (and not handled by an

intervening handler), the first function will be called. If any other kind of

error is signaled, the second function will be called. In either case, neither

handler will be active while executing the code in the associated function.

29.4.5. Defining Conditions

[The contents of this section are still a subject of some debate within X3J13.
The reader may wish to take this section with a grain of salt, two aspirin

tablets, and call a hacker in the morning.—GLS]

[Macro]define-condition name ( {parent-type}∗ )
[( {slot-specifier}∗ ) {option}∗ ]

Defines a new condition type called name, which is a subtype of each given

parent-type. Except as otherwise noted, the arguments are not evaluated.
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Objects of this condition type will have all of the indicated slots, plus any

additional slots inherited from the parent types (its superclasses). If the slots

list is omitted, the empty list is assumed.

A slot must have the form

slot-specifier ::= slot-name | (slot-name [[↓slot-option ]])

For the syntax of a slot-option, see defclass. The slots of a condition object
are normal CLOS slots. Note that with-slotsmay be used instead of accessor

functions to access slots of a condition object.

make-condition will accept keywords (in the keyword package) with the

print name of any of the designated slots, and will initialize the corresponding

slots in conditions it creates.

Accessors are created according to the same rules as used by defclass.

The valid options are as follows:

(:documentation doc-string)

The doc-string should be either nil or a string that describes the purpose

of the condition type. If this option is omitted, nil is assumed. Calling

(documentation ’name ’type) will retrieve this information.

(:report exp)

If exp is not a literal string, it must be a suitable argument to the function

special form. The expression (function exp) will be evaluated in the cur-

rent lexical environment. It should produce a function of two arguments,

a condition and a stream, that prints on the stream a description of the
condition. This function is called whenever the condition is printed while

*print-escape* is nil.

If exp is a literal string, it is shorthand for

(lambda (c s)

(declare (ignore c))

(write-string exp s))

[That is, a function is provided that will simply write the given string literally
to the stream, regardless of the particular condition object supplied.—GLS]

The :report option is processed after the new condition type has been

defined, so use of the slot accessors within the report function is permitted.

If this option is not specified, information about how to report this type of

condition will be inherited from the parent-type.
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[X3J13 voted in March 1989 〈186〉 to integrate the Condition System and

the Object System. In the original Condition System proposal, define-

condition allowed only one parent-type (the inheritance structure was a sim-

ple hierarchy). Slot descriptions were much simpler, even simpler than those

for defstruct:

slot ::= slot-name | (slot-name) | (slot-name default-value)

Similarly, define-condition allowed a :conc-name option similar to that of

defstruct:

(:conc-name symbol-or-string)

Not now part of Common Lisp. As with defstruct, this sets up au-

tomatic prefixing of the names of slot accessors. Also as in defstruct, the

default behavior is to use the name of the new type, name, followed by a
hyphen. (Generated names are interned in the package that is current at the

time that the define-condition is processed).

One consequence of the vote was to make define-condition slot descriptions

like those of defclass.—GLS]

Here are some examples of the use of define-condition.

The following form defines a condition of type peg/hole-mismatch that

inherits from a condition type called blocks-world-error:

(define-condition peg/hole-mismatch (blocks-world-error)

(peg-shape hole-shape)

(:report

(lambda (condition stream)

(with-slots (peg-shape hole-shape) condition

(format stream "A ~A peg cannot go in a ~A hole."

peg-shape hole-shape))))

The new type has slots peg-shape and hole-shape, so make-condition will
accept :peg-shape and :hole-shape keywords. The with-slots macro may

be used to access the peg-shape and hole-shape slots, as illustrated in the

:report information.

Here is another example. This defines a condition called machine-error

that inherits from error:

(define-condition machine-error (error)

((machine-name

:reader machine-error-machine-name))
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(:report (lambda (condition stream)

(format stream "There is a problem with ~A."

(machine-error-machine-name condition)))))

Building on this definition, we can define a new error condition that is a

subtype of machine-error for use when machines are not available:

(define-condition machine-not-available-error (machine-error) ()

(:report (lambda (condition stream)

(format stream "The machine ~A is not available."

(machine-error-machine-name condition)))))

We may now define a still more specific condition, built upon machine-not-

available-error, that provides a default for machine-name but does not

provide any new slots or report information. It just gives the machine-name

slot a default initialization:

(define-condition my-favorite-machine-not-available-error

(machine-not-available-error)

((machine-name :initform "MC.LCS.MIT.EDU")))

Note that since no :report clause was given, the information inherited from

machine-not-available-error will be used to report this type of condition.

29.4.6. Creating Conditions

The function make-condition is the basic means for creating condition ob-

jects.

[Function]make-condition type &rest slot-initializations

Constructs a condition object of the given type using slot-initializations as a
specification of the initial value of the slots. The newly created condition is

returned.

The slot-initializations are alternating keyword/value pairs. For example:

(make-condition ’peg/hole-mismatch

:peg-shape ’square :hole-shape ’round)
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29.4.7. Establishing Restarts

The lowest-level form that creates restart points is called restart-bind. The

restart-casemacro is an abstraction that addresses many common needs for

restart-bindwhile offering a more palatable syntax. See also with-simple-
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restart. The function that transfers control to a restart point established by

one of these macros is called invoke-restart.

All restarts have dynamic extent; a restart does not survive execution of

the form that establishes it.

[Macro]with-simple-restart (name format-string { format-argument}∗ )
{ form}∗

This is shorthand for one of the most common uses of restart-case.

If the restart designated by name is not invoked while executing the forms,
all values returned by the last form are returned. If that restart is invoked,

control is transferred to the with-simple-restart form, which immediately

returns the two values nil and t.

The name may be nil, in which case an anonymous restart is established.

with-simple-restart could be defined by

(defmacro with-simple-restart ((restart-name format-string

&rest format-arguments)

&body forms)

‘(restart-case (progn ,@forms)

(,restart-name ()

:report

(lambda (stream)

(format stream ,format-string ,@format-arguments))

(values nil t))))

Here is an example of the use of with-simple-restart.

Lisp> (defun read-eval-print-loop (level)

(with-simple-restart

(abort "Exit command level ~D." level)

(loop

(with-simple-restart

(abort "Return to command level ~D." level)

(let ((form (prog2 (fresh-line)

(read)

(fresh-line))))

(prin1 (eval form)))))))

⇒ READ-EVAL-PRINT-LOOP

Lisp> (read-eval-print-loop 1)

(+ ’a 3)
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Error: The argument, A, to the function + was of the wrong type.

The function expected a number.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use this time.

2: Return to command level 1.

3: Exit command level 1.

4: Return to Lisp Toplevel.

Debug>

Compatibility note: In contrast to the way that Zetalisp has traditionally defined
abort as a kind of condition to be handled, the Common Lisp Condition System
defines abort as a way to restart (“proceed” in Zetalisp terms).

Remark: Some readers may wonder what ought to be done by the “abort” key
(or whatever the implementation’s interrupt key is—Control-C or Control-G, for
example). Such interrupts, whether synchronous or asynchronous in nature, are
beyond the scope of this chapter and indeed are not currently addressed by Common
Lisp at all. This may be a topic worth standardizing under separate cover. Here is
some speculation about some possible things that might happen.

An implementation might simply call abort or break directly without signaling
any condition.

Another implementation might signal some condition related to the fact that
a key had been pressed rather than to the action that should be taken. This is
one way to allow user customization. Perhaps there would be an implementation-
dependent keyboard-interrupt condition type with a slot containing the key that
was pressed—or perhaps there would be such a condition type, but rather than
its having slots, different subtypes of that type with names like keyboard-abort,
keyboard-break, and so on might be signaled. That implementation would then
document the action it would take if user programs failed to handle the condition,
and perhaps ways for user programs to usefully dismiss the interrupt.

Implementation note: Implementors are encouraged to make sure that there is
always a restart named abort around any user code so that user code can call abort
at any time and expect something reasonable to happen; exactly what the reason-
able thing is may vary somewhat. Typically, in an interactive program, invoking
abort should return the user to top level, though in some batch or multi-processing
situations killing the running process might be more appropriate.
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[Macro]restart-case expression {(case-name arglist

{keyword value}∗
{ form}∗ )}∗

The expression is evaluated in a dynamic context where the clauses have spe-

cial meanings as points to which control may be transferred. If the expression

finishes executing and returns any values, all such values are simply returned
by the restart-case form. While the expression is running, any code may

transfer control to one of the clauses (see invoke-restart). If a transfer

occurs, the forms in the body of that clause will be evaluated and any values

returned by the last such form will be returned by the restart-case form.

As a special case, if the expression is a list whose car is signal, error,

cerror, or warn, then with-condition-restarts is implicitly used to asso-
ciate the restarts with the condition to be signaled. For example,

(restart-case (signal weird-error)

(become-confused ...)

(rewind-line-printer ...)

(halt-and-catch-fire ...))

is equivalent to

(restart-case (with-condition-restarts

weird-error

(list (find-restart ’become-confused)

(find-restart ’rewind-line-printer)

(find-restart ’halt-and-catch-fire))

(signal weird-error))

(become-confused ...)

(rewind-line-printer ...)

(halt-and-catch-fire ...))

If there are no forms in a selected clause, restart-case returns nil.

The case-name may be nil or a symbol naming this restart.

It is possible to have more than one clause use the same case-name. In
this case, the first clause with that name will be found by find-restart.

The other clauses are accessible using compute-restarts. [In this respect,

restart-case is rather different from case!—GLS]

Each arglist is a normal lambda-list containing parameters to be bound

during the execution of its corresponding forms. These parameters are used

to pass any necessary data from a call to invoke-restart to the restart-

case clause.
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By default, invoke-restart-interactively will pass no arguments and

all parameters must be optional in order to accommodate interactive restart-

ing. However, the parameters need not be optional if the :interactive key-

word has been used to inform invoke-restart-interactively about how

to compute a proper argument list.

The valid keyword value pairs are the following:

:test fn

The fn must be a suitable argument for the function special form. The ex-

pression (function fn) will be evaluated in the current lexical environment.

It should produce a function of one argument, a condition. If this function

returns nil when given some condition, functions such as find-restart,
compute-restart, and invoke-restart will not consider this restart when

searching for restarts associated with that condition. If this pair is not sup-

plied, it is as if

(lambda (c) (declare (ignore c)) t)

were used for the fn.

:interactive fn

The fn must be a suitable argument for the function special form. The ex-
pression (function fn) will be evaluated in the current lexical environment.

It should produce a function of no arguments that returns arguments to be

used by invoke-restart-interactively when invoking this function. This

function will be called in the dynamic environment available prior to any
restart attempt. It may interact with the user on the stream in *query-io*.

If a restart is invoked interactively but no :interactive option was sup-
plied, the argument list used in the invocation is the empty list.

:report exp

If exp is not a literal string, it must be a suitable argument to the function

special form. The expression (function exp) will be evaluated in the current

lexical environment. It should produce a function of one argument, a stream,

that prints on the stream a description of the restart. This function is called

whenever the restart is printed while *print-escape* is nil.

If exp is a literal string, it is shorthand for

(lambda (s) (write-string exp s))
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[That is, a function is provided that will simply write the given string literally

to the stream.—GLS]

If a named restart is asked to report but no report information has been

supplied, the name of the restart is used in generating default report text.

When *print-escape* is nil, the printer will use the report information

for a restart. For example, a debugger might announce the action of typing

“:continue” by executing the equivalent of

(format *debug-io* "~&~S -- ~A~%" ’:continue some-restart)

which might then display as something like

:CONTINUE -- Return to command level.

It is an error if an unnamed restart is used and no report information is

provided.

Rationale: Unnamed restarts are required to have report information on the
grounds that they are generally only useful interactively, and an interactive option
that has no description is of little value.

Implementation note: Implementations are encouraged to warn about this error
at compilation time.

At run time, this error might be noticed when entering the debugger. Since
signaling an error would probably cause recursive entry into the debugger (causing
yet another recursive error, and so on), it is suggested that the debugger print some
indication of such problems when they occur, but not actually signal errors.

Note that

(restart-case expression
(name1 arglist1 options1 . body1)

(name2 arglist2 options2 . body2)

...)

is essentially equivalent to
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(block #--1UU#--:block-1

(let ((#--2UU#--:var-2 nil))

(tagbody

(restart-bind ((name1 #--’(lambda (&rest temp)

(setq #--2#-- temp)

(go #--3UU#--:tag-3))

〈slightly transformed options1〉)
(name2 #--’(lambda (&rest temp)

(setq #--2#-- temp)

(go #--4UU#--:tag-4))

〈slightly transformed options2〉)
...)

(return-from #--1#-- expression))

#--3#-- (return-from #--1#--

(apply #--’(lambda arglist1 . body1) #--2#--))

#--4#-- (return-from #--1#--

(apply #--’(lambda arglist2 . body2) #--2#--))

...)))

[Note the use of “gensyms” such as #--:block-1 as block names, variables, and
tagbody tags in this example, and the use of #--nUU and #--n#-- read-macro syntax

to indicate that the very same gensym appears in multiple places.—GLS]

Here are some examples of the use of restart-case.

(loop

(restart-case (return (apply function some-args))

(new-function (new-function)

:report "Use a different function."

:interactive

(lambda ()

(list (prompt-for ’function "Function: ")))

(setq function new-function))))

(loop

(restart-case (return (apply function some-args))

(nil (new-function)

:report "Use a different function."

:interactive

(lambda ()

(list (prompt-for ’function "Function: ")))

(setq function new-function))))
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(restart-case (a-command-loop)

(return-from-command-level ()

:report

(lambda (s) ;Argument s is a stream
(format s "Return from command level ~D." level))

nil))

(loop

(restart-case (another-random-computation)

(continue () nil)))

The first and second examples are equivalent from the point of view of someone

using the interactive debugger, but they differ in one important aspect for non-

interactive handling. If a handler “knows about” named restarts, as in, for

example,

(when (find-restart ’new-function)

(invoke-restart ’new-function the-replacement))

then only the first example, and not the second, will have control transferred
to its correction clause, since only the first example uses a restart named

new-function.

Here is a more complete example:

(let ((my-food ’milk)

(my-color ’greenish-blue))

(do ()

((not (bad-food-color-p my-food my-color)))

(restart-case (error ’bad-food-color

:food my-food :color my-color)

(use-food (new-food)

:report "Use another food."

(setq my-food new-food))

(use-color (new-color)

:report "Use another color."

(setq my-color new-color))))

;; We won’t get to here until MY-FOOD

;; and MY-COLOR are compatible.

(list my-food my-color))

Assuming that use-food and use-color have been defined as
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(defun use-food (new-food)

(invoke-restart ’use-food new-food))

(defun use-color (new-color)

(invoke-restart ’use-color new-color))

a handler can then restart from the error in either of two ways. It may correct

the color or correct the food. For example:

#--’(lambda (c) ... (use-color ’white) ...) ;Corrects color

#--’(lambda (c) ... (use-food ’cheese) ...) ;Corrects food

Here is an example using handler-bind and restart-case that refers to

a condition type foo-error, presumably defined elsewhere:

(handler-bind ((foo-error #--’(lambda (ignore) (use-value 7))))

(restart-case (error ’foo-error)

(use-value (x) (* x x))))

⇒ 49

[Macro]restart-bind ( {(name function {keyword value}∗ )}∗ ) { form}∗

Executes a body of forms in a dynamic context where the given restart bind-

ings are in effect.

Each name may be nil to indicate an anonymous restart, or some other

symbol to indicate a named restart.
Each function is a form that should evaluate to a function to be used to

perform the restart. If invoked, this function may either perform a non-

local transfer of control or it may return normally. The function may take

whatever arguments the programmer feels are appropriate; it will be invoked
only if invoke-restart is used from a program, or if a user interactively

asks the debugger to invoke it. In the case of interactive invocation, the

:interactive-function option is used.

The valid keyword value pairs are as follows:

:test-function form

The form will be evaluated in the current lexical environment and should re-

turn a function of one argument, a condition. If this function returns nil when

given some condition, functions such as find-restart, compute-restart,

and invoke-restartwill not consider this restart when searching for restarts

associated with that condition. If this pair is not supplied, it is as if
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#--’(lambda (c) (declare (ignore c)) t)

were used for the form.

:interactive-function form

The form will be evaluated in the current lexical environment and should

return a function of no arguments that constructs a list of arguments to be

used by invoke-restart-interactively when invoking this restart. The

function may prompt interactively using *query-io* if necessary.

:report-function form

The form will be evaluated in the current lexical environment and should

return a function of one argument, a stream, that prints on the stream a

summary of the action this restart will take. This function is called whenever

the restart is printed while *print-escape* is nil.

[Macro]with-condition-restarts condition-form restarts-form

{declaration}∗ { form}∗

The value of condition-form should be a condition C and the value of restarts-

form should be a list of restarts (R1 R2 ...). The forms of the body are

evaluated as an implicit progn. While in the dynamic context of the body,

an attempt to find a restart associated with a particular condition C ′ will

consider the restarts R1, R2, . . . if C ′ is eq to C.
Usually this macro is not used explicitly in code, because restart-case

handles most of the common uses in a way that is syntactically more concise.

[The X3J13 vote 〈31〉 left it unclear whether with-condition-restarts

permits declarations to appear at the heads of its body. I believe that was
the intent, but this is only my interpretation.—GLS]

29.4.8. Finding and Manipulating Restarts

The following functions determine what restarts are active and invoke restarts.

[Function]compute-restarts &optional condition

Uses the dynamic state of the program to compute a list of the restarts that

are currently active. See restart-bind.

If condition is nil or not supplied, all outstanding restarts are returned. If

condition is not nil, only restarts associated with that condition are returned.
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Each restart represents a function that can be called to perform some form

of recovery action, usually a transfer of control to an outer point in the running

program. Implementations are free to implement these objects in whatever

manner is most convenient; the objects need have only dynamic extent (rela-

tive to the scope of the binding form that instantiates them).
The list that results from a call to compute-restarts is ordered so that

the inner (that is, more recently established) restarts are nearer the head of

the list.

Note, too, that compute-restarts returns all valid restarts, including
anonymous ones, even if some of them have the same name as others and

would therefore not be found by find-restart when given a symbol argu-

ment.

Implementations are permitted, but not required, to return different (that

is, non-eq) lists from repeated calls to compute-restarts while in the same
dynamic environment. It is an error to modify the list that is returned by

compute-restarts.

[Function]restart-name restart

Returns the name of the given restart, or nil if it is not named.

[Function]find-restart restart-identifier &optional condition

Searches for a particular restart in the current dynamic environment.

If condition is nil or not supplied, all outstanding restarts are considered.

If condition is not nil, only restarts associated with that condition are con-
sidered.

If the restart-identifier is a non-nil symbol, then the innermost (that is,

most recently established) restart with that name is returned; nil is returned

if no such restart is found.
If restart-identifier is a restart object, then it is simply returned, unless it

is not currently active, in which case nil is returned.

Although anonymous restarts have a name of nil, it is an error for the

symbol nil to be given as the restart-identifier. Applications that would

seem to require this should be rewritten to make appropriate use of compute-
restarts instead.

[Function]invoke-restart restart-identifier &rest arguments

Calls the function associated with the given restart-identifier, passing any

given arguments. The restart-identifier must be a restart or the non-null name
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of a restart that is valid in the current dynamic context. If the argument is

not valid, an error of type control-error will be signaled.

Implementation note: Restart functions call this function, not vice versa.

[Function]invoke-restart-interactively restart-identifier

Calls the function associated with the given restart-identifier, prompting for

any necessary arguments. The restart-identifier must be a restart or the non-

null name of a restart that is valid in the current dynamic context. If the

argument is not valid, an error of type control-error will be signaled.
The function invoke-restart-interactively will prompt for arguments

by executing the code provided in the :interactive keyword to restart-

case or :interactive-function keyword to restart-bind.

If no :interactive or :interactive-function option has been supplied
in the corresponding restart-case or restart-bind, then it is an error if

the restart takes required arguments. If the arguments are optional, an empty

argument list will be used in this case.

Once invoke-restart-interactively has calculated the arguments, it

simply performs (apply #--’invoke-restart restart-identifier arguments).
invoke-restart-interactively is used internally by the debugger and

may also be useful in implementing other portable, interactive debugging

tools.

29.4.9. Warnings

Warnings are a subclass of errors that are conventionally regarded as “mild.”

[Function]warn datum &rest arguments

[This supersedes the description of warn given in section 24.1.—GLS]
Warns about a situation, by signaling a condition of type warning.

If datum is a condition, then that condition is used directly. In this case,

if the condition is not of type warning or arguments is non-nil, an error of

type type-error is signaled.
If datum is a condition type (a class or class name), then the condi-

tion used is effectively the result of (apply #--’make-condition datum argu-

ments). This result must be of type warning or an error of type type-error

is signaled.

If datum is a string, then the condition used is effectively the result of
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(make-condition ’simple-error

:format-string datum

:format-arguments arguments)

The precise mechanism for warning is as follows.

1. The warning condition is signaled.

While the warning condition is being signaled, the muffle-warning restart

is established for use by a handler to bypass further action by warn (that

is, to cause warn to immediately return nil).

As part of the signaling process, if (typep condition *break-on-

signals*) is true, then a break will occur prior to beginning the signaling

process.

2. If no handlers for the warning condition are found, or if all such handlers

decline, then the condition will be reported to *error-output* by the warn

function (with possible implementation-specific extra output such as motion

to a fresh line before or after the display of the warning, or supplying some

introductory text mentioning the name of the function that called warn or
the fact that this is a warning).

3. The value returned by warn (if it returns) is nil.

29.4.10. Restart Functions

Common Lisp has the following restart functions built in.

[Function]abort &optional condition

This function transfers control to the restart named abort. If no such restart

exists, abort signals an error of type control-error.

If condition is nil or not supplied, all outstanding restarts are considered.
If condition is not nil, only restarts associated with that condition are con-

sidered.

The purpose of the abort restart is generally to allow control to return to

the innermost “command level.”

[Function]continue &optional condition

This function transfers control to the restart named continue. If no such

restart exists, continue returns nil.
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If condition is nil or not supplied, all outstanding restarts are considered.

If condition is not nil, only restarts associated with that condition are con-

sidered.

The continue restart is generally part of simple protocols where there

is a single “obvious” way to continue, as with break and cerror. Some
user-defined protocols may also wish to incorporate it for similar reasons. In

general, however, it is more reliable to design a special-purpose restart with

a name that better suits the particular application.

[Function]muffle-warning &optional condition

This function transfers control to the restart named muffle-warning. If no

such restart exists, muffle-warning signals an error of type control-error.

If condition is nil or not supplied, all outstanding restarts are considered.
If condition is not nil, only restarts associated with that condition are con-

sidered.

warn sets up this restart so that handlers of warning conditions have a way

to tell warn that a warning has already been dealt with and that no further
action is warranted.

[Function]store-value value &optional condition

This function transfers control (and one value) to the restart named store-

value. If no such restart exists, store-value returns nil.

If condition is nil or not supplied, all outstanding restarts are considered.

If condition is not nil, only restarts associated with that condition are con-

sidered.
The store-value restart is generally used by handlers trying to recover

from errors of types such as cell-error or type-error, where the handler

may wish to supply a replacement datum to be stored permanently.

[Function]use-value value &optional condition

This function transfers control (and one value) to the restart named use-

value. If no such restart exists, use-value returns nil.

If condition is nil or not supplied, all outstanding restarts are considered.
If condition is not nil, only restarts associated with that condition are con-

sidered.

The use-value restart is generally used by handlers trying to recover from

errors of types such as cell-error, where the handler may wish to supply a
replacement datum for one-time use.
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29.4.11. Debugging Utilities

Common Lisp does not specify exactly what a debugger is or does, but it does

provide certain means for indicating intent to transfer control to a supervisory
or debugging facility.

[Function]break &optional format-string &rest format-arguments

[This supersedes the description of break given in section 24.1.—GLS]

The function break prints the message described by the format-string and

format-arguments and then goes directly into the debugger without allowing
any possibility of interception by programmed error-handling facilities.

If no format-string is supplied, a suitable default will be generated.

If continued, break returns nil.

Note that break is presumed to be used as a way of inserting temporary

debugging “breakpoints” in a program, not as a way of signaling errors; it
is expected that continuing from a break will not trigger any unusual re-

covery action. For this reason, break does not take the additional format

control string that cerror takes as its first argument. This and the lack of

any possibility of interception by programmed error handling are the only
program-visible differences between break and cerror. The user interface

aspects of these functions are permitted to vary more widely; for example, it

is permissible for a read-eval-print loop to be entered by break rather than

by the conventional debugger.

break could be defined by

(defun break (&optional (format-string "Break")

&rest format-arguments)

(with-simple-restart (continue "Return from BREAK.")

(invoke-debugger

(make-condition ’simple-condition

:format-string format-string

:format-arguments format-arguments)))

nil)

[Function]invoke-debugger condition

Attempts interactive handling of its argument, which must be a condition.

If the variable *debugger-hook* is not nil, it will be called as a function

on two arguments: the condition being handled and the value of *debugger-

hook*. If a hook function returns normally, the standard debugger will be

tried.



CONDITIONS 993

The standard debugger will never directly return. Return can occur only

by a special transfer of control, such as the use of a restart.

Remark: The exact way in which the debugger interacts with users is expected to
vary considerably from system to system. For example, some systems may use a
keyboard interface, while others may use a mouse interface. Of those systems using
keyboard commands, some may use single-character commands and others may use
parsed line-at-a-time commands. The exact set of commands will vary as well. The
important properties of a debugger are that it makes information about the error
accessible and that it makes the set of apparent restarts easily accessible.

It is desirable to have a mode where the debugger allows other features, such as
the ability to inspect data, stacks, etc. However, it may sometimes be appropriate to
have this kind of information hidden from users. Experience on the Lisp Machines
has shown that some users who are not programmers develop a terrible phobia of
debuggers. The reason for this usually may be traced to the fact that the debugger is
very foreign to them and provides an overwhelming amount of information of interest
only to programmers. With the advent of restarts, there is a clear mechanism for
the construction of “friendly” debuggers. Programmers can be taught how to get
to the information they need for debugging, but it should be possible to construct
user interfaces to the debugger that are natural, convenient, intelligible, and friendly
even to non-programmers.

[Variable]*debugger-hook*

This variable should hold either nil or a function of two arguments, a con-
dition and the value of *debugger-hook*. This function may either handle

the condition (transfer control) or return normally (allowing the standard

debugger to run).

Note that, to minimize recursive errors while debugging, *debugger-hook*

is bound to nil when calling this function. When evaluating code typed in by
the user interactively, the hook function may want to bind *debugger-hook*

to the function that was its second argument so that recursive errors can be

handled using the same interactive facility.

29.5. Predefined Condition Types

[The proposal for the Common Lisp Condition System introduced a new no-

tation for documenting types, treating them in the same syntactic manner

as functions and variables. This notation is used in this section but is not

reflected throughout the entire book.—GLS]
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X3J13 voted in March 1989 〈186〉 to integrate the Condition System and

the Object System. All condition types are CLOS classes and all condition

objects are ordinary CLOS objects.

[Type]restart

This is the data type used to represent a restart.

The Common Lisp condition type hierarchy is illustrated in table 29-1.

The types that are not leaves in the hierarchy (that is, condition, warning,
storage-condition, error, arithmetic-error, control-error, and so on)

are provided primarily for type inclusion purposes. Normally they would not

be directly instantiated.

Implementations are permitted to support non-portable synonyms for these
types, as well as to introduce other types that are above, below, or between

the types shown in this tree as long as the indicated subtype relationships are

not violated.

The types simple-condition, serious-condition, and warning are pair-

wise disjoint. The type error is also disjoint from types simple-condition

and warning.

[Type]condition

All types of conditions, whether error or non-error, must inherit from this

type.

[Type]warning

All types of warnings should inherit from this type. This is a subtype of
condition.

[Type]serious-condition

All serious conditions (conditions serious enough to require interactive inter-

vention if not handled) should inherit from this type. This is a subtype of

condition.
This condition type is provided primarily for terminological convenience.

In fact, signaling a condition that inherits from serious-condition does not

force entry into the debugger. Rather, it is conventional to use error (or

something built on error) to signal conditions that are of this type, and to

use signal to signal conditions that are not of this type.
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Table 29-1: Condition Type Hierarchy

condition

simple-condition

serious-condition

error

simple-error

arithmetic-error

division-by-zero

floating-point-overflow

floating-point-underflow

...

cell-error

unbound-variable

undefined-function

...

control-error

file-error

package-error

program-error

stream-error

end-of-file

...

type-error

simple-type-error

...

...

storage-condition

...

warning

simple-warning

...

...

[Type]error

All types of error conditions inherit from this condition. This is a subtype of
serious-condition.

The default condition type for signal and warn is simple-condition. The

default condition type for error and cerror is simple-error.
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[Type]simple-condition

Conditions signaled by signal when given a format string as a first argument

are of this type. This is a subtype of condition. The initialization key-

words :format-string and :format-arguments are supported to initialize
the slots, which can be accessed using simple-condition-format-string

and simple-condition-format-arguments. If :format-arguments is not

supplied to make-condition, the format-arguments slot defaults to nil.

[Type]simple-warning

Conditions signaled by warn when given a format string as a first argument

are of this type. This is a subtype of warning. The initialization key-
words :format-string and :format-arguments are supported to initialize

the slots, which can be accessed using simple-condition-format-string

and simple-condition-format-arguments. If :format-arguments is not

supplied to make-condition, the format-arguments slot defaults to nil.

In implementations supporting multiple inheritance, this type will also be
a subtype of simple-condition.

[Type]simple-error

Conditions signaled by error and cerror when given a format string as a first

argument are of this type. This is a subtype of error. The initialization key-

words :format-string and :format-arguments are supported to initialize

the slots, which can be accessed using simple-condition-format-string

and simple-condition-format-arguments. If :format-arguments is not

supplied to make-condition, the format-arguments slot defaults to nil.

In implementations supporting multiple inheritance, this type will also be

a subtype of simple-condition.

[Function]simple-condition-format-string condition

Accesses the format-string slot of a given condition, which must be of
type simple-condition, simple-warning, simple-error, or simple-type-

error.

[Function]simple-condition-format-arguments condition

Accesses the format-arguments slot of a given condition, which must be of

type simple-condition, simple-warning, simple-error, or simple-type-

error.
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[Type]storage-condition

Conditions that relate to storage overflow should inherit from this type. This

is a subtype of serious-condition.

[Type]type-error

Errors in the transfer of data in a program should inherit from this type.

This is a subtype of error. For example, conditions to be signaled by check-

type should inherit from this type. The initialization keywords :datum and
:expected-type are supported to initialize the slots, which can be accessed

using type-error-datum and type-error-expected-type.

[Function]type-error-datum condition

Accesses the datum slot of a given condition, which must be of type type-

error.

[Function]type-error-expected-type condition

Accesses the expected-type slot of a given condition, which must be of type
type-error. Users of type-error conditions are expected to fill this slot

with an object that is a valid Common Lisp type specifier.

[Type]simple-type-error

Conditions signaled by facilities similar to check-type may want to use

this type. The initialization keywords :format-string and :format-

arguments are supported to initialize the slots, which can be accessed

using simple-condition-format-string and simple-condition-format-

arguments. If :format-arguments is not supplied to make-condition, the
format-arguments slot defaults to nil.

In implementations supporting multiple inheritance, this type will also be

a subtype of simple-condition.

[Type]program-error

Errors relating to incorrect program syntax that are statically detectable

should inherit from this type (regardless of whether they are in fact statically

detected). This is a subtype of error. This is not a subtype of control-

error.



998 COMMON LISP

[Type]control-error

Errors in the dynamic transfer of control in a program should inherit from this

type. This is a subtype of error. This is not a subtype of program-error.

The errors that result from giving throw a tag that is not active or from

giving go or return-from a tag that is no longer dynamically available are

control errors.

On the other hand, the errors that result from naming a go tag or return-

from tag that is not lexically apparent are not control errors. They are pro-
gram errors. See program-error.

[Type]package-error

Errors that occur during operations on packages should inherit from this type.

This is a subtype of error. The initialization keyword :package is supported

to initialize the slot, which can be accessed using package-error-package.

[Function]package-error-package condition

Accesses the package (or package name) that was being modified or manipu-

lated in a condition of type package-error.

[Type]stream-error

Errors that occur during input from, output to, or closing a stream should

inherit from this type. This is a subtype of error. The initialization key-

word :stream is supported to initialize the slot, which can be accessed using
stream-error-stream.

[Function]stream-error-stream condition

Accesses the offending stream of a condition of type stream-error.

[Type]end-of-file

The error that results when a read operation is done on a stream that has no

more tokens or characters should inherit from this type. This is a subtype of

stream-error.
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[Type]file-error

Errors that occur during an attempt to open a file, or during some low-level

transaction with a file system, should inherit from this type. This is a subtype

of error. The initialization keyword :pathname is supported to initialize the
slot, which can be accessed using file-error-pathname.

[Function]file-error-pathname condition

Accesses the offending pathname of a condition of type file-error.

[Type]cell-error

Errors that occur while accessing a location should inherit from this type.

This is a subtype of error. The initialization keyword :name is supported to
initialize the slot, which can be accessed using cell-error-name.

[Function]cell-error-name condition

Accesses the offending cell name of a condition of type cell-error.

[Type]unbound-variable

The error that results from trying to access the value of an unbound variable
should inherit from this type. This is a subtype of cell-error.

[Type]undefined-function

The error that results from trying to access the value of an undefined function

should inherit from this type. This is a subtype of cell-error.

Remark: [Note: This remark was written well before the vote by X3J13 in June
1988 〈12〉 to add the Common Lisp Object System to the forthcoming draft standard
(see chapter 28) and the vote to integrate the Condition System and the Object
System. I have retained the remark here for reasons of historical interest.—GLS]

Some readers may wonder why undefined-function is not defined to inherit from
some condition such as control-error. The answer is that any such arrangement
would require the presence of multiple inheritance—a luxury we do not currently
have (without resorting to deftype, which we are currently avoiding). When the
Common Lisp Object System comes into being, we might want to consider issues
like this. Multiple inheritance makes a lot of things in a condition system much
more flexible to deal with.
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[Type]arithmetic-error

Errors that occur while doing arithmetic type operations should inherit from

this type. This is a subtype of error. The initialization keywords :operation

and :operands are supported to initialize the slots, which can be accessed
using arithmetic-error-operation and arithmetic-error-operands.

[Function]arithmetic-error-operation condition

Accesses the offending operation of a condition of type arithmetic-error.

[Function]arithmetic-error-operands condition

Accesses a list of the offending operands in a condition of type arithmetic-

error.

[Type]division-by-zero

Errors that occur because of division by zero should inherit from this type.
This is a subtype of arithmetic-error.

[Type]floating-point-overflow

Errors that occur because of floating-point overflow should inherit from this

type. This is a subtype of arithmetic-error.

[Type]floating-point-underflow

Errors that occur because of floating-point underflow should inherit from this

type. This is a subtype of arithmetic-error.



Appendix A

Series

BY RICHARD C. WATERS

preface: A series is a data structure much like a sequence, with similar

kinds of operations. The difference is that in many situations, operations on

series may be composed functionally and yet execute iteratively, without the

need to construct intermediate series values explicitly. In this manner, series

provide both the clarity of a functional programming style and the efficiency
of an iterative programming style.

The remainder of this chapter consists of a description by Richard C. Waters

of his work on an existing implementation of series. This is the culmination

of many years of design and use of this approach, during which some 100,000
lines of application code have been written (by about half a dozen people

over the course of seven years) using the series facility in nearly all iteration

situations. This includes one large system (KBEmacs) of over 40,000 lines of

code.

I have edited the chapter only very lightly to conform to the overall style
of this book. Please see the Preface to this book for more information about

the genesis of the series approach and its relationship to the work of X3J13.

—Guy L. Steele Jr.

A.1. Introduction

Series combine aspects of sequences, streams, and loops. Like sequences, series

represent totally ordered multi-sets. In addition, the series functions have
the same flavor as the sequence functions—namely, they operate on whole

series, rather than extracting elements to be processed by other functions.

For instance, the series expression below computes the sum of the positive

elements in a list.

(collect-sum (choose-if #--’plusp (scan ’(1 -2 3 -4)))) ⇒ 4

1001



1002 COMMON LISP

Like streams, series can represent unbounded sets of elements and are sup-

ported by lazy evaluation: each element of a series is not computed until it is

needed. For instance, the series expression below returns a list of the first five

even natural numbers and their sum. The call on scan-range returns a series

of all the even natural numbers. However, since no elements beyond the first
five are ever used, no elements beyond the first five are ever computed.

(let ((x (subseries (scan-range :from 0 :by 2) 0 5)))

(values (collect x) (collect-sum x)))

⇒ (0 2 4 6 8) and 20

Like sequences and unlike streams, a series is not altered when its elements

are accessed. For instance, both users of x above receive the same elements.

A totally ordered multi-set of elements can be represented in a loop by the

successive values of a variable. This is extremely efficient, because it avoids

the need to store the elements as a group in any kind of data structure. In

most situations, series expressions achieve this same high level of efficiency,
because they are automatically transformed into loops before being evaluated

or compiled. For instance, the first expression above is transformed into a

loop like the following.

(let ((sum 0))

(dolist (i ’(1 -2 3 -4) sum)

(when (plusp i) (setq sum (+ sum i))))) ⇒ 4

A wide variety of algorithms can be expressed clearly and succinctly with
series expressions. In particular, at least 90 percent of the loops programmers

typically write can be replaced by series expressions that are much easier to

understand and modify, and just as efficient. From this perspective, the key

feature of series is that they are supported by a rich set of functions. These

functions more or less correspond to the union of the operations provided by
the sequence functions, the loop clauses, and the vector operations of APL.

Some series expressions cannot be transformed into loops. This is unfortu-
nate, because while transformable series expressions are much more efficient

than equivalent expressions involving sequences or streams, non-transformable

series expressions are much less efficient. Whenever a problem comes up that

blocks the transformation of a series expression, a warning message is issued.

On the basis of information in the message, it is usually easy to provide an
efficient fix for the problem (see section A.3).

Fortunately, most series expressions can be transformed into loops. In par-

ticular, pure expressions (ones that do not store series in variables) can always
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be transformed. As a result, the best approach for programmers to take is

simply to write series expressions without worrying about transformability.

When problems come up, they can be ignored (since they cannot lead to the

computation of incorrect results) or dealt with on an individual basis.

Implementation note: The series functions and the theory underlying them are
described in greater detail in [52, 53]. These reports also discuss the algorithms
required to transform series expressions into loops and explain how to obtain a
portable implementation.

A.2. Series Functions

Throughout this chapter the notation Sj is used to denote the j th element of

the series S. As in a list or vector, the first element of a series has the subscript

zero.

The #-- macro character syntax #--Zlist denotes a series that contains the

elements of list. This syntax is also used when series are printed.

(choose-if #--’symbolp #--Z(a 2 b)) ⇒ #--Z(a b)

Series are self-evaluating objects and the series data type is disjoint from all
other types.

[Type specifier ]series element-type

The type specifier (series element-type) denotes the set of series whose

elements are all members of the type element-type.

[Function]series arg &rest args

The function series returns an unbounded series that endlessly repeats the

values of the arguments. The second example below shows the preferred

method for constructing a bounded series.

(series ’b ’c) ⇒ #--Z(b c b c b c ...)

(scan (list ’a ’b ’c)) ⇒ #--Z(a b c)
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A.2.1. Scanners

Scanners create series outputs based on non-series inputs. Either they operate
based on some formula (for example, scanning a range of integers) or they

enumerate the elements in an aggregate data structure (for example, scanning

the elements in a list or array).

[Function]scan-range &key (:start 0) (:by 1) (:type ’number)

:upto :below :downto :above :length

The function scan-range returns a series of numbers starting with the :start

argument (default integer 0) and counting up by the :by argument (default
integer 1). The :type argument (default number) is a type specifier indicating

the type of numbers in the series produced. The :type argument must be a

(not necessarily proper) subtype of number. The :start and :by arguments

must be of that type.
One of the last five arguments may be used to specify the kind of end test

to be used; these are called termination arguments. If :upto is specified,

counting continues only so long as the numbers generated are less than or

equal to :upto. If :below is specified, counting continues only so long as the

numbers generated are less than :below. If :downto is specified, counting
continues only so long as the numbers generated are greater than or equal

to :downto. If :above is specified, counting continues only so long as the

numbers generated are greater than :above. If :length is specified, it must

be a non-negative integer and the output series has this length.

If none of the termination arguments are specified, the output has un-
bounded length. If more than one termination argument is specified, it is an

error.

(scan-range :upto 4) ⇒ #--Z(0 1 2 3 4)

(scan-range :from 1 :by -1 :above -4) ⇒ #--Z(1 0 -1 -2 -3)

(scan-range :from .5 :by .1 :type ’float) ⇒ #--Z(.5 .6 .7 ...)

(scan-range) ⇒ #--Z(0 1 2 3 4 5 6 ...)

[Function]scan sequence

[Function]scan type sequence

scan returns a series containing the elements of sequence in order. The type

argument is a type specifier indicating the type of sequence to be scanned; it

must be a (not necessarily proper) subtype of sequence. If type is omitted, it

defaults to list. (This function exhibits an argument pattern that is unusual
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for Common Lisp: an “optional” argument preceding a required argument.

This pattern cannot be expressed in the usual manner with &optional. It is

indicated above by two definition lines, showing the two possible argument

patterns.)

If the sequence is a list, it must be a proper list ending in nil. Scanning

is significantly more efficient if it can be determined at compile time whether

type is a subtype of list or vector and for vectors what the length of the
vector is.

(scan ’(a b c)) ⇒ #--Z(a b c)

(scan ’string "BAR") ⇒ #--Z(#--\B #--\A #--\R)

[Function]scan-sublists list

scan-sublists returns a series containing the successive sublists of list. The

list must be a proper list ending in nil.

(scan-sublists ’(a b c)) ⇒ #--Z((a b c) (b c) (c))

[Function]scan-multiple type first-sequence &rest more-sequences

Several sequences can be scanned at once by using several calls on scan.

Each call on scan will test to see when its sequence runs out of elements and
execution will stop as soon as any of the sequences are exhausted. Although

very robust, this approach to scanning can be inefficient. In situations where

it is known in advance which sequence is the shortest, scan-multiple can be

used to obtain the same results more rapidly.

scan-multiple is similar to scan except that several sequences can be

scanned at once. If there are n sequence inputs, scan-multiple returns n

series containing the elements of these sequences. It must be the case that
none of the sequence inputs is shorter than the first sequence. All of the output

series are the same length as the first input sequence. Extra elements in the

other input sequences are ignored. Using scan-multiple is more efficient

than using multiple instances of scan, because scan-multiple only has to

check for the first input running out of elements.

If type is of the form (values t1 . . . txm), then there must be m sequence

inputs and the ith sequence must have type ti. Otherwise there can be any

number of sequence inputs, each of which must have type type.
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(multiple-value-bind (data weights)

(scan-multiple ’list ’(1 6 3 2 8) ’(2 3 3 3 2))

(collect (map-fn t #--’* data weights)))

⇒ (2 18 9 6 16)

[Function]scan-lists-of-lists lists-of-lists &optional leaf-test
[Function]scan-lists-of-lists-fringe lists-of-lists &optional

leaf-test

The argument lists-of-lists is viewed as a tree where each internal node is a

non-empty list and the elements of the list are the children of the node. scan-
lists-of-lists and scan-lists-of-lists-fringe each scan lists-of-lists in

preorder and return a series of its nodes. scan-lists-of-lists returns every

node in the tree. scan-lists-of-lists-fringe returns only the leaf nodes.

The scan proceeds as follows. The argument lists-of-lists can be any Lisp
object. If lists-of-lists is an atom or satisfies the predicate leaf-test (if present),

it is a leaf node. (The predicate can count on being applied only to conses.)

Otherwise, lists-of-lists is a (not necessarily proper) list. The first element of

lists-of-lists is recursively scanned in full, followed by the second and so on

until a non-cons cdr is encountered. Whether or not this final cdr is nil, it is
ignored.

(scan-lists-of-lists ’((2) (nil)))

⇒ #--Z(((2) (nil)) (2) 2 (nil) nil)

(scan-lists-of-lists-fringe ’((2) (nil))) ⇒ #--Z(2 nil)

(scan-lists-of-lists-fringe ’((2) (nil))

#--’(lambda (e) (numberp (car e))))

⇒ #--Z((2) nil)

[Function]scan-alist a-list &optional (test #--’eql)

[Function]scan-plist plist

[Function]scan-hash table

When given an association list, a property list, or a hash table (respectively),

each of these functions produces two outputs: a series of keys K and a series of

the corresponding values V. Each key in the input appears exactly once in the
output, even if it appears more than once in the input. (The test argument

of scan-alist specifies the equality test between keys; it defaults to eql.)

The two outputs have the same length. Each Vj is the value returned by the

appropriate accessing function (cdr of assoc, getf, or gethash, respectively)

when given Kj. scan-alist and scan-plist scan keys in the order they
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appear in the underlying structure. scan-hash scans keys in no particular

order.

(scan-plist ’(a 1 b 3)) ⇒ #--Z(a b) and #--Z(1 3)

(scan-alist ’((a . 1) nil (a . 3) (b . 2)))

⇒ #--Z(a b) and #--Z(1 2)

[Function]scan-symbols &optional (package *package*)

scan-symbols returns a series, in no particular order, and possibly containing

duplicates, of the symbols accessible in package (which defaults to the current

package).

[Function]scan-file file-name &optional (reader #--’read)

scan-file opens the file named by the string file-name and applies the func-

tion reader to it repeatedly until the end of the file is reached. Reader must ac-

cept the standard input function arguments input-stream, eof-error-p, and eof-

value as its arguments. (For instance, reader can be read, read-preserving-
white-space, read-line, or read-char.) If omitted, reader defaults to read.

scan-file returns a series of the values returned by reader, up to but not

including the value returned when the end of the file is reached. The file is

correctly closed, even if an abort occurs.

[Function]scan-fn type init step &optional test

The higher-order function scan-fn supports the general concept of scanning.

The type argument is a type specifier indicating the type of values returned

by init and step. The values type specifier can be used for this argument
to indicate multiple types; however, type cannot indicate zero values. If type

indicates m types t1, . . . , tm, then scan-fn returns m series T1, . . . , Tm,

where Ti has the type (series ti). The arguments init, step, and test are

functions.

The init must be of type (function () (values t1 ... tm)).

The step must be of type (function (t1 ... tm) (values t1 ... tm)).

The test (if present) must be of type (function (t1 ... tm) t).

The elements of the Ti are computed as follows:

(values T10 ... Tm0) UU (funcall init)

(values T1j ... Tmj) UU (funcall step T1(j−1) ... Tm(j−1))
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The outputs all have the same length. If there is no test, the outputs have

unbounded length. If there is a test, the outputs consist of the elements up to,

but not including, the first elements (with index j, say) for which the following

termination test is not nil.

(funcall test T1j ... Tmj)

It is guaranteed that step will not be applied to the elements that pass this

termination test.

If init, step, or test has side effects when invoked, it can count on being

called in the order indicated by the equations above, with test called just
before step on each cycle. However, given the lazy evaluation nature of series,

these functions will not be called until their outputs are actually used (if

ever). In addition, no assumptions can be made about the relative order of

evaluation of these calls with regard to execution in other parts of a given

series expression. The first example below scans down a list stepping two
elements at a time. The second example generates two unbounded series: the

integers counting up from 1 and the sequence of partial sums of the first i

integers.

(scan-fn t #--’(lambda () ’(a b c d)) #--’cddr #--’null)

⇒ #--Z((a b c d) (c d))

(scan-fn ’(values integer integer)

#--’(lambda () (values 1 0))

#--’(lambda (i sum) (values (+ i 1) (+ sum i))))

⇒ #--Z(1 2 3 4 ...) and #--Z(0 1 3 6 ...)

[Function]scan-fn-inclusive type init step test

The higher-order function scan-fn-inclusive is the same as scan-fn except

that the first set of elements for which test returns a non-null value is included

in the output. As with scan-fn, it is guaranteed that step will not be applied
to the elements for which test is non-null.

A.2.2. Mapping

By far the most common kind of series operation is mapping. In cognizance

of this fact, four different ways are provided for specifying mapping: one fun-

damental form (map-fn) and three shorthand forms that are more convenient

in particular common situations.
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[Function]map-fn type function &rest series-inputs

The higher-order function map-fn supports the general concept of mapping.

The type argument is a type specifier indicating the type of values returned
by function. The values construct can be used to indicate multiple types;

however, type cannot indicate zero values. If type indicates m types t1, . . . , tm,

then map-fn returns m series T1, . . . , Tm, where Ti has the type (series ti).

The argument function is a function. The remaining arguments (if any) are

all series. Let these series be S1, . . . , Sn and suppose that Si has the type
(series si).

The function must be of type

(function (s1 ... sn) (values t1 ... tm))

The length of each output is the same as the length of the shortest input. If

there are no bounded series inputs, the outputs are unbounded. The elements

of the Ti are the results of applying function to the corresponding elements
of the series inputs.

(values T1j ... Tmj) ≡ (funcall function S1j ... Snj)

If function has side effects, it can count on being called first on the Si0, then

on the Si1, and so on. However, given the lazy evaluation nature of series,

function will not be called on any group of input elements until the result is

actually used (if ever). In addition, no assumptions can be made about the
relative order of evaluation of the calls on function with regard to execution

in other parts of a given series expression.

(map-fn ’integer #--’+ #--Z(1 2 3) #--Z(4 5)) ⇒ #--Z(5 7)

(map-fn t #--’gensym) ⇒ #--Z(#--:G3 #--:G4 #--:G5 ...)

(map-fn ’(values integer rational) #--’floor #--Z(1/4 9/5 12/3))

⇒ #--Z(0 1 4) and #--Z(1/4 4/5 0)

The #-- macro character syntax #--M makes it easy to specify uses of map-

fn where type is t and the function is a named function. The notation

(#--Mfunction ...) is an abbreviation for (map-fn t #--’function ...). The

form function can be the printed representation of any Lisp object. The no-

tation #--Mfunction can appear only in the function position of a list.

(collect (#--M1+ (scan ’(1 2 3)))) ⇒ (2 3 4)
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[Macro]mapping ( {( {var | ( {var}∗ )} value)}∗ ) {declaration}∗ { form}∗

The macro mapping makes it easy to specify uses of map-fn where type is t

and the function is a literal lambda. The syntax of mapping is analogous to

that of let. The binding list specifies zero or more variables that are bound

in parallel to successive values of series. The value part of each pair is an

expression that must produce a series. The declarations and forms are treated

as the body of a lambda expression that is mapped over the series values. A
series of the first values returned by this lambda expression is returned as the

result of mapping.

(mapping ((x r) (y s)) ...) ≡
(map-fn t #--’(lambda (x y) ...) r s)

(mapping ((x (scan ’(2 -2 3))))

(expt (abs x) 3))

⇒ #--Z(8 8 27)

The form mapping supports a special syntax that facilitates the use of series

functions returning multiple values. Instead of being a single variable, the

variable part of a var-value pair can be a list of variables. This list is treated

the same way as the first argument to multiple-value-bind and can be used
to access the elements of multiple series returned by a series function.

(mapping (((i v) (scan-plist ’(a 1 b 2))))

(list i v))

⇒ #--Z((a 1) (b 2))

[Macro]iterate ( {( {var | ( {var}∗ )} value)}∗ ) {declaration}∗ { form}∗

The form iterate is the same as mapping, except that after mapping the

forms over the values, the results are discarded and nil is returned.

(let ((item (scan ’((1) (-2) (3)))))

(iterate ((x (#--Mcar item)))

(if (plusp x) (prin1 x))))

⇒ nil (after printing “13”)

To a first approximation, iterate and mapping differ in the same way

as mapc and mapcar. In particular, like mapc, iterate is intended to be

used in situations where the forms are being evaluated for side effects rather

than for their results. However, given the lazy evaluation semantics of series,
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the difference between iterate and mapping is more than just a question of

efficiency.

If mapcar is used in a situation where the output is not used, time is wasted

unnecessarily creating the output list. However, if mapping is used in a sit-

uation where the output is not used, no computation is performed, because
series elements are not computed until they are used. Thus iterate can be

thought of as a declaration that the indicated computation is to be performed

even though the output is not used for anything.

A.2.3. Truncation and Other Simple Transducers

Transducers compute series from series and form the heart of most series

expressions. Mapping is by far the most common transducer. This section

presents a number of additional simple transducers.

[Function]cotruncate &rest series-inputs

[Function]until bools &rest series-inputs

[Function]until-if pred &rest series-inputs

Each of these functions accepts one or more series inputs S1, . . . , Sn as its

&rest argument and returns n series outputs T1, . . . , Tn that contain the

same elements in the same order—that is, Tij=Sij. Let k be the length of

the shortest input Si. cotruncate truncates the series so that each output
has length k . Let k ′ be the position of the first element in the boolean series

bools that is not nil or, if every element is nil, the length of bools. until

truncates the series so that each output has length (min k k’). Let itk′′ be

the position of the first element in S1 such that (pred S1k’’) is not nil or,

if there is no such element, the length of S1. until-if truncates the series so
that each output has length (min k k’’).

(cotruncate #--Z(1 2 -3 4) #--Z(a b c))

⇒ #--Z(1 2 -3) and #--Z(a b c)

(until #--Z(nil nil t nil) #--Z(1 2 -3 4) #--Z(a b c))

⇒ #--Z(1 2) and #--Z(a b)

(until-if #--’minusp #--Z(1 2 -3 4) #--Z(a b c))

⇒ #--Z(1 2) and #--Z(a b)

[Function]previous items &optional (default nil) (amount 1)

The series returned by previous is the same as the input series items except

that it is shifted to the right by the positive integer amount. The shifting is
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done by inserting amount copies of default before items and discarding amount

elements from the end of items.

(previous #--Z(10 11 12) 0) ⇒ #--Z(0 10 11)

[Function]latch items &key :after :before :pre :post

The series returned by latch is the same as the input series items except

that some of the elements are replaced by other values. latch acts like a

latch electronic circuit component. Each input element causes the creation of
a corresponding output element. After a specified number of non-null input

elements have been encountered, the latch is triggered and the output mode

is permanently changed.

The :after and :before arguments specify the latch point. The latch

point is just after the :after-th non-null element in items or just before the
:before-th non-null element. If neither :after nor :before is specified, an

:after of 1 is assumed. If both are specified, it is an error.

If a :pre is specified, every element prior to the latch point is replaced

by this value. If a :post is specified, every element after the latch point is
replaced by this value. If neither is specified, a :post of nil is assumed.

(latch #--Z(nil c nil d e)) ⇒ #--Z(nil c nil nil nil)

(latch #--Z(nil c nil d e) :before 2 :post t) ⇒ #--Z(nil c nil t t)

[Function]collecting-fn type init function &rest series-inputs

The higher-order function collecting-fn supports the general concept of a

simple transducer with internal state. The type argument is a type specifier

indicating the type of values returned by function. The values construct can

be used to indicate multiple types; however, type cannot indicate zero values.
If type indicates m types t1, . . . , tm, then collecting-fn returns m series

T1, . . . , Tm, where Ti has the type (series ti). The arguments init and

function are functions. The remaining arguments (if any) are all series. Let

these series be S1, . . . , Sn and suppose that Si has the type (series si).
The init must be of type (function () (values t1 ... tm)).

The function must be of type

(function (t1 ... tm s1 ... sn) (values t1 ... tm))

The length of each output is the same as the length of the shortest input. If

there are no bounded series inputs, the outputs are unbounded. The elements

of the Ti are computed as follows:
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(values T10 ... Tm0) ≡
(multiple-value-call function (funcall init) S10 ... Sn0)

(values T1j ... Tmj) ≡
(funcall function T1(j−1) ... Tm(j−1) S1j ... Snj)

If init or function has side effects, it can count on being called in the order

indicated by the equations above. However, given the lazy evaluation nature
of series, these functions will not be called until their outputs are actually

used (if ever). In addition, no assumptions can be made about the relative

order of evaluation of these calls with regard to execution in other parts of

a given series expression. The second example below computes a series of
partial sums of the numbers in an input series. The third example computes

two output series: the partial sums of its first input and the partial products

of its second input.

(defun running-averages (float-list)

(multiple-value-call #--’map-fn

’float #--’/

(collecting-fn ’(values float integer)

#--’(lambda () (values 0.0 0)

#--’(lambda (s n x) (values (+ s x) (+ n 1))))

float-list)))

(collecting-fn ’integer #--’(lambda () 0) #--’+ #--Z(1 2 3))

⇒ #--Z(1 3 6)

(collecting-fn ’(values integer integer)

#--’(lambda () (values 0 1))

#--’(lambda (sum prod x y)

(values (+ sum x) (* prod y)))

#--Z(4 6 8)

#--Z(1 2 3))

⇒ #--Z(4 10 18) and #--Z(1 2 6)

A.2.4. Conditional and Other Complex Transducers

This section presents a number of complex transducers, including ones that

support conditional computation.
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[Function]choose bools &optional (items bools)

[Function]choose-if pred items

Each of these functions takes in a series of elements (items) and returns a

series containing the same elements in the same order, but with some elements

removed. choose removes itemsj if boolsj is nil or j is beyond the end of bools.

If items is omitted, choose returns the non-null elements of bools. choose-if
removes itemsj if (pred itemsj) is nil.

(choose #--Z(t nil t nil) #--Z(a b c d)) ⇒ #--Z(a c)

(collect-sum (choose-if #--’plusp #--Z(-1 2 -3 4))) ⇒ 6

[Function]expand bools items &optional (default nil)

expand is a quasi-inverse of choose. The output contains the elements of

the input series items spread out into the positions specified by the non-null

elements in bools—that is, itemsj is in the position occupied by the j th non-

null element in bools. The other positions in the output are occupied by

default. The output stops as soon as bools runs out of elements or a non-null
element in bools is encountered for which there is no corresponding element

in items.

(expand #--Z(nil t nil t t) #--Z(a b c)) ⇒ #--Z(nil a nil b c)

(expand #--Z(nil t nil t t) #--Z(a)) ⇒ #--Z(nil a nil)

[Function]split items &rest test-series-inputs

[Function]split-if items &rest test-predicates

These functions are like choose and choose-if except that instead of pro-

ducing one restricted output, they partition the input series items between

several outputs. If there are n test inputs following items, then there are
n + 1 outputs. Each input element is placed in exactly one output series,

depending on the outcome of a sequence of tests. If the element itemsj fails

the first k − 1 tests and passes the kh test, it is put in the kth output. If

itemsj fails every test, it is placed in the last output. In addition, all output
stops as soon as any series input runs out of elements. The test inputs to

split are series of values; itemsj passes the kth test if the j th element of the

kth test series is not nil. The test inputs to split-if are predicates; itemsj
passes the kth test if the kth test predicate returns non-null when applied to

itemsj.
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(split #--Z(-1 2 3 -4) #--Z(t nil nil t))

⇒ #--Z(-1 -4) and #--Z(2 3)

(multiple-value-bind (+x -x) (split-if #--Z(-1 2 3 -4) #--’plusp)

(values (collect-sum +x) (collect-sum -x)))

⇒ 5 and -5

[Function]catenate &rest series-inputs

catenate combines two or more series into one long series by appending them

end to end. The length of the output is the sum of the lengths of the inputs.

(catenate #--Z(b c) #--Z() #--Z(d)) ⇒ #--Z(b c d)

[Function]subseries items start &optional below

subseries returns a series containing the elements of the input series items

indexed by the non-negative integers from start up to, but not including,
below. If below is omitted or greater than the length of items, the output goes

all the way to the end of items.

(subseries #--Z(a b c d) 1) ⇒ #--Z(b c d)

(subseries #--Z(a b c d) 1 3) ⇒ #--Z(b c)

[Function]positions bools

positions returns a series of the indices of the non-null elements in the series

input bools.

(positions #--Z(t nil t 44)) ⇒ #--Z(0 2 3)

[Function]mask monotonic-indices

mask is a quasi-inverse of positions. The series input monotonic-indices must
be a strictly increasing series of non-negative integers. The output, which is

always unbounded, contains t in the positions specified by monotonic-indices

and nil everywhere else.

(mask #--Z(0 2 3)) ⇒ #--Z(t nil t t nil nil ...)

(mask #--Z()) ⇒ #--Z(nil nil ...)

(mask (positions #--Z(nil a nil b nil)))

⇒ #--Z(nil t nil t nil ...)
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[Function]mingle items1 items2 comparator

The series returned by mingle contains all and only the elements of the two
input series. The length of the output is the sum of the lengths of the inputs

and is unbounded if either input is unbounded. The order of the elements

remains unchanged; however, the elements from the two inputs are stably

intermixed under the control of the comparator.

The comparator must accept two arguments and return non-null if and

only if its first argument is strictly less than its second argument (in some
appropriate sense). At each step, the comparator is used to compare the

current elements in the two series. If the current element from items2 is

strictly less than the current element from items1, the current element is

removed from items2 and transferred to the output. Otherwise, the next

output element comes from items1.

(mingle #--Z(1 3 7 9) #--Z(4 5 8) #--’<) ⇒ #--Z(1 3 4 5 7 8 9)

(mingle #--Z(1 7 3 9) #--Z(4 5 8) #--’<) ⇒ #--Z(1 4 5 7 3 8 9)

[Function]chunk m n items

This function has the effect of breaking up the input series items into (possibly
overlapping) chunks of length m. The starting positions of successive chunks

differ by n. The inputs m and n must both be positive integers.

chunk produces m output series. The ith chunk provides the ith element

for each of the m outputs. Suppose that the length of items is l. The length

of each output is b1 + (l −m)/nc. The ith element of the kth output is the

(i ∗ n + k)th element of items (i and k counting from zero).

Note that if l < m, there will be no output elements, and if l − m is not

a multiple of n, the last few input elements will not appear in the output. If

m ≥ n, one can guarantee that the last chunk will contain the last element of
items by catenating n − 1 copies of an appropriate padding value to the end

of items.

The first example below shows chunk being used to compute a moving

average. The second example shows chunk being used to convert a property

list into an association list.

(mapping (((xi xi+1 xi+2) (chunk 3 1 #--Z(1 5 3 4 5 6))))

(/ (+ xi xi+1 xi+2) 3))

⇒ #--Z(3 4 4 5)
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(collect

(mapping (((prop val) (chunk 2 2 (scan ’(a 2 b 5 c 8)))))

(cons prop val)))

⇒ ((a . 2) (b . 5) (c . 8))

A.2.5. Collectors

Collectors produce non-series outputs based on series inputs. They either

create a summary value based on some formula (the sum, for example) or
collect the elements of a series in an aggregate data structure (such as a list).

[Function]collect-first items &optional (default nil)

[Function]collect-last items &optional (default nil)

[Function]collect-nth n items &optional (default nil)

Given a series items, these functions return the first element, the last ele-

ment, and the nth element, respectively. If items has no elements (or no nth

element), default is returned. If default is not specified, then nil is used for
default.

(collect-first #--Z() ’z) ⇒ z

(collect-last #--Z(a b c)) ⇒ c

(collect-nth 1 #--Z(a b c)) ⇒ b

[Function]collect-length items

collect-length returns the number of elements in a series.

(collect-length #--Z(a b c)) ⇒ 3

[Function]collect-sum numbers &optional (type ’number)

collect-sum returns the sum of the elements in a series of numbers. The

type is a type specifier that indicates the type of sum to be created. If type

is not specified, then number is used for the type. If there are no elements in

the input, a zero (of the appropriate type) is returned.

(collect-sum #--Z(1.1 1.2 1.3)) ⇒ 3.6

(collect-sum #--Z() ’complex) ⇒ #--C(0 0)
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[Function]collect-max numbers

[Function]collect-min numbers

Given a series of non-complex numbers, these functions compute the maxi-

mum element and the minimum element, respectively. If there are no elements

in the input, nil is returned.

(collect-max #--Z(2 1 4 3)) ⇒ 4

(collect-min #--Z(1.2 1.1 1.4 1.3)) ⇒ 1.1

(collect-min #--Z()) ⇒ nil

[Function]collect-and bools

collect-and returns the and of the elements in a series. As with the macro

and, nil is returned if any element of bools is nil. Otherwise, the last element

of bools is returned. The value t is returned if there are no elements in bools.

(collect-and #--Z(a b c)) ⇒ c

(collect-and #--Z(a nil c)) ⇒ nil

[Function]collect-or bools

collect-or returns the or of the elements in a series. As with the macro or,

nil is returned if every element of bools is nil. Otherwise, the first non-null

element of bools is returned. The value nil is returned if there are no elements

in bools.

(collect-or #--Z(nil b c)) ⇒ b

(collect-or #--Z()) ⇒ nil

[Function]collect items

[Function]collect type items

collect returns a sequence containing the elements of the series items. The

type is a type specifier indicating the type of sequence to be created. It must be

either a proper subtype of sequence or the symbol bag. If type is omitted, it
defaults to list. (This function exhibits an argument pattern that is unusual

for Common Lisp: an “optional” argument preceding a required argument.

This pattern cannot be expressed in the usual manner with &optional. It is

indicated above by two definition lines, showing the two possible argument

patterns.)
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If the type is bag, a list is created with the elements in whatever order

can be most efficiently obtained. Otherwise, the order of the elements in the

sequence is the same as the order in items. If type specifies a length (that is,

of a vector) this length must be greater than or equal to the length of items.

The nth element of items is placed in the nth slot of the sequence produced.

Any unneeded slots are left in their initial state. Collecting is significantly

more efficient if it can be determined at compile time whether type is a subtype

of list or vector and for vectors what the length of the vector is.

(collect #--Z(a b c)) ⇒ (a b c)

(collect ’bag #--Z(a b c)) ⇒ (c a b) or (b a c) or . . .
(collect ’(vector integer 3) #--Z(1 2 3)) ⇒ #--(1 2 3)

[Function]collect-append sequences

[Function]collect-append type sequences

Given a series of sequences, collect-append returns a new sequence by con-

catenating these sequences together in order. The type is a type specifier

indicating the type of sequence created and must be a proper subtype of
sequence. If type is omitted, it defaults to list. (This function exhibits an

argument pattern that is unusual for Common Lisp: an “optional” argument

preceding a required argument. This pattern cannot be expressed in the usual

manner with &optional. It is indicated above by two definition lines, showing
the two possible argument patterns.)

It must be possible for every element of every sequence in the input series

to be an element of a sequence of type type. The result does not share any
structure with the sequences in the input.

(collect-append #--Z((a b) nil (c d))) ⇒ (a b c d)

(collect-append ’string #--Z("a " "big " "cat")) ⇒ "a big cat"

[Function]collect-nconc lists

collect-nconc nconcs the elements of the series lists together in order and

returns the result. This is the same as collect-append except that the input

must be a series of lists, the output is always a list, the concatenation is

done rapidly by destructively modifying the input elements, and therefore the

output shares all of its structure with the input elements.
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[Function]collect-alist keys values

[Function]collect-plist keys values

[Function]collect-hash keys values &key :test :size :rehash-size

:rehash-threshold

Given a series of keys and a series of corresponding values, these functions

return an association list, a property list, and a hash table, respectively. Fol-

lowing the order of the input, each keysj-valuesj pair is entered into the output

so that it overrides all earlier associations. If one of the input series is longer

than the other, the extra elements are ignored. The keyword arguments of
collect-hash specify attributes of the hash table produced and have the

same meanings as the arguments to make-hash-table.

(collect-alist #--Z(a b c) #--Z(1 2)) ⇒ ((b . 2) (a . 1))

(collect-plist #--Z(a b c) #--Z(1 2)) ⇒ (b 2 a 1)

(collect-hash #--Z() #--Z(1 2) :test #--’eq) ⇒ 〈an empty hash table〉

[Function]collect-file file-name items &optional (printer #--’print)

This creates a file named file-name and writes the elements of the series items

into it using the function printer. Printer must accept two inputs: an object

and an output stream. (For instance, printer can be print, prin1, princ,

pprint, write-char, write-string, or write-line.) If omitted, printer

defaults to print. The value t is returned. The file is correctly closed, even
if an abort occurs.

[Function]collect-fn type init function &rest series-inputs

The higher-order function collect-fn supports the general concept of col-
lecting. It is identical to collecting-fn except that it returns only the last

element of each series computed. If there are no elements in these series, the

values returned by init are passed on directly as the output of collect-fn.

(collect-fn ’integer #--’(lambda () 0) #--’+ #--Z(1 2 3)) ⇒ 6

(collect-fn ’integer #--’(lambda () 0) #--’+ #--Z()) ⇒ 0

(collect-fn ’integer #--’(lambda () 1) #--’* #--Z(1 2 3 4 5)) ⇒ 120

A.2.6. Alteration of Series

Series that come from scanning data structures such as lists and vectors are

closely linked to these structures. The function alter can be used to modify
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the underlying data structure with reference to the series derived from it.

(Conversely, it is possible to modify a series by destructively modifying the

data structure it is derived from. However, given the lazy evaluation nature

of series, the effects of such modifications can be very hard to predict. As a

result, this kind of modification is inadvisable.)

[Function]alter destinations items

alter changes the series destinations so that it contains the elements in the

series items. More importantly, in the manner of setf, the data structure

that underlies destinations is changed so that if the series destinations were
to be regenerated, the new values would be obtained. The alteration process

stops as soon as either input runs out of elements. The value nil is always

returned. In the example below each negative element in a list is replaced

with its square.

(let* ((data (list 1 -2 3 4 -5 6))

(x (choose-if #--’minusp (scan data))))

(alter x (#--M* x x))

data)

⇒ (1 4 3 4 25 6)

alter can be applied only to series that are alterable. scan, scan-alist,

scan-multiple, scan-plist, and scan-lists-of-lists-fringe produce

alterable series. However, the alterability of the output of scan-lists-of-
lists-fringe is incomplete. If scan-lists-of-lists-fringe is applied to

an object that is a leaf, altering the output series does not change the object.

In general, the output of a transducer is alterable as long as the elements of

the output come directly from the elements of an input that is alterable. In
particular, the outputs of choose, choose-if, split, split-if, cotruncate,

until, until-if, and subseries are alterable as long as the corresponding

inputs are alterable.

[Function]to-alter items alter-fn &rest args

Given a series items, to-alter returns an alterable series A containing the

same elements. The argument alter-fn is a function. The remaining arguments

are all series. Let these series be S1, . . . , Sn. If there are n arguments

after alter-fn, alter-fn must accept n + 1 inputs. If (alter A B) is later

encountered, the expression (map-fn t alter-fn B S1 ... Sn) is implicitly
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evaluated. For each element in B, alter-fn should make appropriate changes

in the data structure underlying A.

As an example, consider the following definition of a series function that
scans the elements of a list. Alteration is performed by changing cons cells in

the list being scanned.

(defun scan-list (list)

(declare (optimizable-series-function))

(let ((sublists (scan-sublists list)))

(to-alter (#--Mcar sublists)

#--’(lambda (new parent) (setf (car parent) new))

sublists)))

A.3. Optimization

Series expressions are transformed into loops by pipelining them—the com-

putation is converted from a form where entire series are computed one after
the other to a form where the series are incrementally computed in parallel.

In the resulting loop, each individual element is computed just once, used,

and then discarded before the next element is computed. For this pipelining

to be possible, a number of restrictions have to be satisfied. Before these
restrictions are explained, it will be useful to consider a related issue.

The composition of two series functions cannot be pipelined unless the des-

tination function consumes series elements in the same order that the source
function produces them. Taken together, the series functions guarantee that

this will always be true, because they all follow the same fixed processing or-

der. In particular, they are all preorder functions—they process the elements

of their series inputs and outputs in ascending order starting with the first

element. Further, while it is easy for users to define new series functions, it is
impossible to define one that is not a preorder function.

It turns out that most series operations can easily be implemented in a

preorder fashion, the most notable exceptions being reversal and sorting. As
a result, little is lost by outlawing non-preorder series functions. If some non-

preorder operation has to be applied to a series, the series can be collected into

a list or vector and the operation applied to this new data structure. (This is

inefficient, but no less efficient than what would be required if non-preorder

series functions were supported.)



SERIES 1023

A.3.1. Basic Restrictions

The transformation of series expressions into loops is required to occur at some

time before compiled code is actually run. Optimization may or may not be

applied to interpreted code. If any of the restrictions described below are
violated, optimization is not possible. In this situation, a warning message is

issued at the time optimization is attempted and the code is left unoptimized.

This is not a fatal error and does not prevent the correct results from being

computed. However, given the large improvements in efficiency to be gained,
it is well worth fixing any violations that occur. This is usually easy to do.

[Variable]*suppress-series-warnings*

If this variable is set (or bound) to anything other than its default value of nil,
warnings about conditions that block the optimization of series expressions

are suppressed.

Before the restrictions on series expressions are discussed, it will be useful

to define precisely what is meant by the term series expression. This term

is semantic rather than syntactic in nature. Imagine a program converted

from Lisp code into a data flow graph. In a data flow graph, functions are
represented as boxes, and both control flow and data flow are represented as

arrows between the boxes. Constructs such as let and setq are converted

into patterns of data flow arcs. Control constructs such as if and loop are

converted into patterns of control flow arcs. Suppose further that all loops

have been converted into tail recursions so that the graph is acyclic.
A series expression is a subgraph of the data flow graph for a program that

contains a group of interacting series functions. More specifically, given a

call f on a series function, the series expression E containing it is defined as

follows. E contains f. Every function using a series created by a function in

E is in E. Every function computing a series used by a function in E is in E.
Finally, suppose that two functions g and h are in E and that there is a data

flow path consisting of series and/or non-series data flow arcs from g to h.

Every function touched by this path (be it a series function or not) is in E.

For optimization to be possible, series expressions have to be

statically analyzable. As with most other optimization processes, a series
expression cannot be transformed into a loop at compile time, unless it can

be determined at compile time exactly what computation is being performed.

This places a number of relatively minor limits on what can be written. For

example, for optimization to be possible the type arguments to higher-order

functions such as map-fn and collecting-fn have to be quoted constants.
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Similarly, the numeric arguments to chunk have to be constants. In addition,

if funcall is used to call a series function, the function called has to be of

the form (function ...).

For optimization to be possible, every series created within a

series expression must be used solely inside the expression. If a series

is transmitted outside of the expression that creates it, it has to be physically

represented as a whole. This is incompatible with the transformations required

to pipeline the creating expression. To avoid this problem, a series must not be
returned as a result of a series expression as a whole, assigned to a free variable,

assigned to a special variable, or stored in a data structure. A corollary of

the last point is that when defining new optimizable series functions, series

cannot be passed into &rest arguments. Further, optimization is blocked if
a series is passed as an argument to an ordinary Lisp function. Series can be

passed only to the series functions in section A.2 and to new series functions

defined using the declaration optimizable-series-function.

For optimization to be possible, series expressions must corre-

spond to straight-line computations. That is to say, the data flow graph

corresponding to a series expression cannot contain any conditional branches.

(Complex control flow is incompatible with pipelining.) Optimization is pos-
sible in the presence of standard straight-line forms such as progn, funcall,

setq, lambda, let, let*, and multiple-value-bind as long as none of the

variables bound are special. There is also no problem with macros as long as

they expand into series functions and straight-line forms. However, optimiza-

tion is blocked by forms that specify complex control flow (i.e., conditionals
if, cond, etc., looping constructs loop, do, etc., or branching constructs

tagbody, go, catch, etc.).

In the first example below, optimization is blocked, because the if form is
inside the series expression. In the second example, however, optimization is

possible, because although the if feeds data to the series expression, it is not

inside the corresponding subgraph. Both of the expressions below produce

the same value, but the second one is much more efficient.

(collect (if flag (scan x) (scan y))) ;Warning message issued

(collect (scan (if flag x y)))

A.3.2. Constraint Cycles

Even if a series expression satisfies all of the restrictions above, it still may

not be possible to transform the expression into a loop. The sole remaining
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Figure A-1: A Constraint Cycle in a Series Expression

scan

sum series

#M/ max

problem is that if a series is used in two places, the two uses may place incom-

patible constraints on the times at which series elements should be produced.

The series expression below shows a situation where this problem arises.

The expression creates a series x of the elements in a list. It then creates a
normalized series by dividing each element of x by the sum of the elements in

x. Finally, the expression returns the maximum of the normalized elements.

(let ((x (scan ’(1 2 5 2)))) ;Warning message issued

(collect-max (#--M/ x (series (collect-sum x))))) ⇒ 1/2

The two uses of x in the expression place contradictory constraints on the

way pipelined evaluation must proceed; collect-sum requires that all of the

elements of x be produced before the sum can be returned, and series re-

quires that its input be available before it can start to produce its output.
However, #--M/ requires that the first element of x be available at the same time

as the first element of the output of series. For pipelining to work, the first

element of the output of series (and therefore the output of collect-sum)

must be available before the second element of x is produced. Unfortunately,

this is impossible.

The essence of the inconsistency above is the cycle of constraints used in the
argument. This in turn stems from a cycle in the data flow graph underlying

the expression. In figure A-1 function calls are represented by boxes and data

flow is represented by arrows. Simple arrows indicate the flow of series values

and cross-hatched arrows indicate the flow of non-series values.

Given a data flow graph corresponding to a series expression, a constraint

cycle is a closed oriented loop of data flow arcs such that each arc is traversed
exactly once and no non-series arc is traversed backward. (Series data flow

arcs can be traversed in either direction.) A constraint cycle is said to pass

through an input or output port when exactly one of the arcs in the cycle

touches the port. In figure A-1 the data flow arcs touching scan, sum, series,

and #--M/ form a constraint cycle. Note that if the output of scan were not
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a series, this loop would not be a constraint cycle, because there would be

no valid way to traverse it. Also note that while the constraint cycle passes

through all the other ports it touches, it does not pass through the output of

scan.

Whenever a constraint cycle passes through a non-series output, an argu-

ment analogous to the one above can be constructed and therefore pipelining

will be impossible. When this situation arises, a warning message is issued

identifying the problematical port and the cycle passing through it. For in-
stance, the warning triggered by the example above states that the constraint

cycle associated with scan, collect-sum, series, and #--M/ passes through

the non-series output of collect-sum.

Given this kind of detailed information, it is easy to alleviate the problem.

To start with, every cycle must contain at least one function that has two

series data flows leaving it. At worst, the cycle can be broken by duplicating

this function (and any functions computing series used by it). For instance,
the example above can be rewritten as shown below.

(let ((x (scan ’(1 2 5 2)))

(sum (collect-sum (scan ’(1 2 5 2)))))

(collect-max (#--M/ x (series sum))))

⇒ 1/2

It would be easy enough to automatically apply code copying to break prob-
lematical constraint cycles. However, this is not done for two reasons. First,

there is considerable virtue in maintaining the property that each function in

a series expression turns into one piece of computation in the loop produced.

Users can be confident that series expressions that look simple and efficient

actually are simple and efficient. Second, with a little creativity, constraint
problems can often be resolved in ways that are much more efficient than

copying code. In the example above, the conflict can be eliminated efficiently

by interchanging the operation of computing the maximum with the operation

of normalizing an element.

(let ((x (scan ’(1 2 5 2))))

(/ (collect-max x) (collect-sum x))) ⇒ 1/2

The restriction that optimizable series expressions cannot contain constraint

cycles that pass through non-series outputs places limitations on the qualita-

tive character of optimizable series expressions. In particular, they all must

have the general form of creating some number of series using scanners, com-

puting various intermediate series using transducers, and then computing one
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or more summary results using collectors. The output of a collector cannot

be used in the intermediate computation unless it is the output of a separate

subexpression.

It is worthy of note that the last expression above fixes the constraint

conflict by moving the non-series output out of the cycle, rather than by
breaking the cycle. This illustrates the fact that constraint cycles that do

not pass through non-series outputs do not necessarily cause problems. They

cause problems only if they pass through off-line ports.

A series input port or series output port of a series function is on-line if and
only if it is processed in lockstep with all the other on-line ports as follows:

the initial element of each on-line input is read, then the initial element of

each on-line output is written, then the second element of each on-line input

is read, then the second element of each on-line output is written, and so on.

Ports that are not on-line are off-line. If all of the series ports of a function
are on-line, the function is said to be on-line; otherwise, it is off-line. (The

above extends the standard definition of the term on-line so that it applies to

individual ports as well as whole functions.)

If all of the ports a cycle passes through are on-line, the lockstep processing
of these ports guarantees that there cannot be any conflicts between the con-

straints associated with the cycle. However, passing through an off-line port

leads to the same kinds of problems as passing through a non-series output.

Most of the series functions are on-line. In particular, scanners and col-

lectors are all on-line as are many transducers. However, the transducers in
section A.2.4 are off-line. In particular, the series inputs of catenate, choose-

if, chunk, expand, mask, mingle, positions, and subseries along with the

series outputs of choose, split, and split-if are off-line.

In summary, the fourth and final restriction is that for optimization to be
possible, a series expression cannot contain a constraint cycle that

passes through a non-series output or an off-line port. Whenever this

restriction is violated a warning message is issued. Violations can be fixed

either by breaking the cycle or restructuring the computation so that the

offending port is removed from the cycle.

A.3.3. Defining New Series Functions

New functions operating on series can be defined just as easily as new functions

operating on any other data type. However, expressions containing these new

functions cannot be transformed into loops unless a complete analysis of the

functions is available. Among other things, this implies that the definition of

a new series function must appear before its first use.
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[Declaration specifier ]optimizable-series-function

The declaration specifier (optimizable-series-function integer) indicates

that the function being defined is a series function that needs to be analyzed so

that it can be optimized when it appears in series expressions. (A warning is
issued if the function being defined neither takes a series as input nor produces

a series as output.) Integer (default 1) specifies the number of values returned

by the function being defined. (This cannot necessarily be determined by

local analysis.) The only place optimizable-series-function is allowed to
appear is in a declaration immediately inside a defun. As an example, the

following shows how a simplified version of collect-sum could be defined.

(defun simple-collect-sum (numbers)

(declare (optimizable-series-function 1))

(collect-fn ’number #--’(lambda () 0) #--’+ numbers))

[Declaration specifier ]off-line-port

The declaration specifier (off-line-port port-spec1 port-spec2 ...) spec-

ifies that the indicated inputs and outputs are off-line. This declaration spec-

ifier is only allowed in a defun that contains the declaration optimizable-

series-function. Each port-spec must either be a symbol that is one of the

inputs of the function or an integer j indicating the j th output (counting from
zero). For example, (off-line-port x 1) indicates that the input x and the

second output are off-line. Every port that is not mentioned in an off-line-

port declaration is assumed to be on-line. A warning is issued whenever a

port’s actual on-line/off-line status does not agree with its declared status.
This makes it easier to keep track of which ports are off-line and which are

not. Note that off-line ports virtually never arise when defining scanners or

reducers.

A.3.4. Declarations

A key feature of Lisp is that variable declarations are strictly optional. Nev-

ertheless, it is often the case that they are necessary in situations where effi-

ciency matters. Therefore, it is important that it be possible for programmers
to provide declarations for every variable in a program. The transformation of

series expressions into loops presents certain problems in this regard, because

the loops created contain variables not evident in the original code. How-

ever, if the information described below is supplied by the user, appropriate

declarations can be generated for all of the loop variables created.
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All the explicit variables that are bound in a series expression (for exam-

ple, by a let that is part of the expression) should be given informative

declarations making use of the type specifier (series element-type) where

appropriate.

Informative types should be supplied to series functions (such as scan and

map-fn) that have type arguments. When using scan it is important to

specify the type of element in the sequence as well as the sequence itself (for
example, by using (vector * integer) as opposed to merely vector). The

form (list element-type) can be used to specify the type of elements in a

list.

If it is appropriate to have a type more specific than (series t) associated

with the output of #--M, #--Z, scan-alist, scan-file, scan-hash, scan-lists-

of-lists-fringe, scan-lists-of-lists, scan-plist, series, latch, or
catenate, then the form the must be used to specify this type.

Finally, if the expression computing a non-series argument to a series vari-
able is neither a variable nor a constant, the must be used to specify the type

of its result.

For example, the declarations in the series expressions below are sufficient

to ensure that every loop variable will have an accurate declaration.

(collect-last (choose-if #--’plusp (scan ’(list integer) data)))

(collect ’(vector * float)

(map-fn ’float #--’/

(series (the integer (car data)))

(the (series integer) (scan-file f))))

The amount of information the user has to provide is reduced by the fact

that this information can be propagated from place to place. For instance,

the variable holding the output of choose-if holds a subset of the elements

held by the input variable. As a result, it is appropriate for it to have the

same type. When defining a new series function, the type specifier series-

element-type can be used to indicate where type propagation should occur.

[Type specifier ]series-element-type

The type specifier (series-element-type variable) denotes the type of el-

ements in the series held in variable. Variable must be a variable carrying a

series value (for example, a series argument of a series function). series-

element-type can be used only in three places: in a declaration in a let,
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mapping, producing, or other binding form in a series expression; in a decla-

ration in a defun being used to define a series function; or in a type argument

to a series function. As an example, consider that collect-last could have

been defined as follows. The use of series-element-type ensures that the

internal variable keeping track of the most recent item has the correct type.

(defun collect-last (items &optional (default nil))

(declare (optimizable-series-function))

(collect-fn ’(series-element-type items)

#--’(lambda () default)

#--’(lambda (old new) new)

items))

A.4. Primitives

A large number of series functions are provided, because there are a large

number of useful operations that can be performed on series. However, this

functionality can be boiled down to a small number of primitive constructs.

collecting-fn embodies the fundamental idea of series computations that

utilize internal state. It can be used as the basis for defining any on-line

transducer.

until embodies the fundamental idea of producing a series that is shorter

than the shortest input series. In particular, it embodies the idea of comput-
ing a bounded series from non-series inputs. Together with collecting-fn,

until can be used to define scan-fn, which can be used as the basis for

defining all the other scanners.

collect-last embodies the fundamental idea of producing a non-series

value from a series. Together with collecting-fn, it can be used to define
collect-fn, which (with the occasional assistance of until) can be used as

the basis for defining all the other collectors.

producing embodies the fundamental idea of preorder computation. It can

be used as the basis for defining all the other series functions, including the

off-line transducers.

In addition to the above, four primitives support various specialized aspects

of series functions. Alterability is supported by the function to-alter and

the declaration propagate-alterability. The propagation of type infor-

mation is supported by the type specifier series-element-type. The best

implementation of certain series functions requires the form encapsulated.
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[Macro]producing output-list input-list {declaration}∗ { form}∗

producing computes and returns a group of series and non-series outputs

given a group of series and non-series inputs. The key feature of producing is

that some or all of the series inputs and outputs can be processed in an off-line
way. To support this, the processing in the body (consisting of the forms) is

performed from the perspective of generators and gatherers (see appendix B).

Each series input is converted to a generator before being used in the body.

Each series output is associated with a gatherer in the body.

The output-list has the same syntax as the binding list of a let. The names

of the variables must be distinct from each other and from the names of

the variables in the input-list. If there are n variables in the output-list,

producing computes n outputs. There must be at least one output variable.
The variables act as the names for the outputs and can be used in either of two

ways. First, if an output variable has a value associated with it in the output-

list, then the variable is treated as holding a non-series value. The variable is

initialized to the indicated value and can be used in any way desired in the

body. The eventual output value is whatever value is in the variable when the
execution of the body terminates. Second, if an output variable does not have

a value associated with it in the output-list, the variable is given as its value

a gatherer that collects elements. The only valid way to use the variable in

the body is in a call on next-out. The output returned is a series containing
these elements. If the body never terminates, this series is unbounded.

The input-list also has the same syntax as the binding list of a let. The

names of the variables must be distinct from each other and the names of the

variables in the output-list. The values can be series or non-series. If the value

is not explicitly specified, it defaults to nil. The variables act logically both
as inputs and state variables and can be used in one of two ways. First, if an

input variable is associated with a non-series value, then it is given this value

before the evaluation of the body begins and can be used in any way desired

in the body. Second, if an input variable is associated with a series, then the
variable is given a generator corresponding to this series as its initial value.

The only valid way to use the variable in the body is in a call on next-in.

There can be declarations at the start of the body. However, the only dec-

larations allowed are ignore declarations, type declarations, and propagate-

alterability declarations (see below). In particular, it is an error for any

of the input or output variables to be special.

In conception, the body can contain arbitrary Lisp expressions. After the

appropriate generators and gatherers have been set up, the body is executed

until it terminates. If the body never terminates, the series outputs (if any) are
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unbounded in length and the non-series outputs (if any) are never produced.

Although easy to understand, this view of what can happen in the body

presents severe difficulties when optimizing (and even when evaluating) series
expressions that contain calls on producing. As a result, several limitations

are imposed on the form of the body to simplify the processing required.

The first limitation is that, exclusive of any declarations, the body must
have the form (loop (tagbody ...)). The following example shows how

producing could be used to implement a scanner creating an unbounded

series of integers.

(producing (nums) ((num 0))

(declare (integer num) (type (series integer) nums))

(loop

(tagbody

(setq num (1+ num))

(next-out nums num))))

⇒ #--Z(1 2 3 4 ...)

The second limitation is that the form terminate-producingmust be used

to terminate the execution of the body. Any other method of terminating the
body (with return, for example) is an error. The following example shows

how producing could be used to implement the operation of summing a series.

The function terminate-producing is used to stop the computation when

numbers runs out of elements.

(producing ((sum 0)) ((numbers #--Z(1 2 3)) num)

(loop

(tagbody

(setq num (next-in numbers (terminate-producing)))

(setq sum (+ sum num)))))

⇒ 6

The third limitation is that calls on next-out associated with output vari-
ables must appear at top level in the tagbody in the body. They cannot be

nested in other forms. In addition, an output variable can be the destination

of at most one call on next-out and if it is the destination of a next-out, it

cannot be used in any other way.

If the call on next-out for a given output appears in the final part of the

tagbody in the body, after everything other than other calls on next-out,

then the output is an on-line output—a new value is written on every cycle

of the body. Otherwise the output is off-line.
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The following example shows how producing could be used to split a series

into two parts. Items are read in one at a time and tested. Depending on

the test, they are written to one of two outputs. Note the use of labels and

branches to keep the calls on next-out at top level. Both outputs are off-line.

The first example above shows an on-line output.

(producing (items-1 items-2) ((items #--Z(1 -2 3 -4)) item)

(loop

(tagbody (setq item (next-in items (terminate-producing)))

(if (not (plusp item)) (go D))

(next-out items-1 item)

(go F)

D (next-out items-2 item)

F )))

⇒ #--Z(1 3) and #--Z(-2 -4)

The fourth limitation is that the calls on next-in associated with an in-
put variable v must appear at top level in the tagbody in the body, nested

in assignments of the form (setq var (next-in v ...)). They cannot be

nested in other forms. In addition, an input variable can be the source for at

most one call on next-in and if it is the source for a next-in, it cannot be

used in any other way.

If the call on next-in for a given input has as its sole termination action

(terminate-producing) and appears in the initial part of the tagbody in

the body, before anything other than similar calls on next-in, then the input

is an on-line input—a new value is read on every cycle of the body. Otherwise

the input is off-line.

The example below shows how producing could be used to concatenate two

series. To start with, elements are read from the first input series. When this

runs out, a flag is set and reading begins from the second input. Both inputs

are off-line. (Compare this to the example above, which shows an on-line

input.)
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(producing (items) ((item-1 #--Z(1 2))

(item-2 #--Z(3 4))

(in-2 nil)

item)

(loop

(tagbody (if in-2 (go D))

(setq item (next-in item-1 (setq in-2 t) (go D)))

(go F)

D (setq item (next-in item-2 (terminate-producing)))

F (next-out items item))))

⇒ #--Z(1 2 3 4)

[Macro]terminate-producing

This form (which takes no arguments) is used to terminate execution of (the
expansion of) the producing macro.

As with the form go, terminate-producing does not return any values;
rather, control immediately leaves the current context.

The form terminate-producing is allowed to appear only in a producing

body and causes the termination of the enclosing call on producing.

[Declaration specifier ]propagate-alterability

The declaration specifier (propagate-alterability input output) indicates
that attempts to alter an element of output should be satisfied by altering the

corresponding element of input. (The corresponding element of input is the

one most recently read at the moment when the output element is written.)

This declaration may appear only in a call on producing. The input

and output arguments must be an input and an output, respectively, of the

producing macro. The example below shows how the propagation of alter-

ability could be supported in a simplified version of until.
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(defun simple-until (bools items)

(declare (optimizable-series-function))

(producing (z) ((x bools) (y items) bool item)

(declare (propagate-alterability y z))

(loop

(tagbody

(setq bool (next-in x (terminate-producing)))

(setq item (next-in y (terminate-producing)))

(if bool (terminate-producing))

(next-out z item)))))

[Macro]encapsulated encapsulating-fn scanner-or-collector

Some of the features provided by Common Lisp are supported solely by encap-

sulating forms. For example, there is no way to specify a cleanup expression
that will always be run, even when an abort occurs, without using unwind-

protect. encapsulated makes it possible to take advantage of forms such as

unwind-protect when defining a series function.

encapsulated specifies a function that places an encapsulating form around

the computation performed by its second argument. The first argument must
be a quoted function that takes a Lisp expression and wraps the appropriate

encapsulating form around it, returning the resulting code. The second input

must be a literal call on scan-fn, scan-fn-inclusive, or collect-fn. The

second argument can count on being evaluated in the scope of the encapsu-
lating form. The values returned by the second argument are returned as the

values of encapsulated. The following shows how encapsulated could be

used to define a simplified version of collect-file.

(defun collect-file-wrap (file name body)

‘(with-open-file (,file ,name :direction :output) ,body))

(defmacro simple-collect-file (name items)

(let ((file (gensym)))

‘(encapsulated #--’(lambda (body)

(collect-file-wrap ’,file ’,name body))

(collect-fn t #--’(lambda () t)

#--’(lambda (state item)

(print item ,file)

state)

,items))))



Appendix B

Generators and Gatherers

BY CRISPIN PERDUE AND RICHARD C. WATERS

preface: Generators and gatherers are yet another approach, closely re-
lated to series, to providing iteration in a functional style.

The remainder of this chapter consists of a description by Crispin Perdue
and Richard C. Waters of their work on an existing implementation of gen-

erators and gatherers. I have edited the chapter only very lightly to conform

to the overall style of this book. Please see the Preface to this book for more

information about the genesis of the generators/gatherers approach and its

relationship to the work of X3J13.

—Guy L. Steele Jr.

B.1. Introduction

Generators are generalized input streams in the sense of Smalltalk [20]. A gen-

erator can produce a potentially unbounded number of elements of any type.

Individual elements are not computed until requested by next-in. When an

element is taken from a generator, it is removed by side effect. Subsequent
uses of next-in obtain later elements.

There is a close relationship between a generator and a series of the elements
it produces. In particular, any series can be converted into a generator. As a

result, all the scanner functions used for creating series (see appendix A) can

be used to create generators as well. There is no need to have a separate set

of functions for creating generators.

Gatherers are generalized output streams. Elements of any type can be

entered into a gatherer using next-out. The gatherer combines the elements

together in time-sequence order into a net result. This result can be retrieved
using result-of.

There is a close relationship between a gatherer and a collector function that

combines elements in the same way. In particular, any one-input one-output

1036
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collector can be converted into a gatherer. As a result, all the collectors used

for computing summary results from series can be used to create gatherers.

There is no need to have a separate set of functions for creating gatherers.

B.2. Generators

These functions create and process generators.

[Function]generator series

Given a series, generator returns a generator containing the same elements.

[Macro]next-in generator {action}∗

next-in returns the next element in the generator generator. The actions can
be any Lisp expressions. They are evaluated if and only if no more elements

can be retrieved from generator. If there are no more elements and no actions,

it is an error. It is also an error to apply next-in to a generator a second

time after the generator has run out of elements. As an example of generators,

consider the following.

(let ((x (generator (scan ’(1 2 3 4)))))

(with-output-to-string (s)

(loop (prin1 (next-in x (return)) s)

(prin1 (next-in x (return)) s)

(princ "," s))))

⇒ "12,34,"

B.3. Gatherers

These functions create and process gatherers.

[Function]gatherer collector

The collector must be a function of type (function ((series t1)) t2).

Given this function, gatherer returns a gatherer that accepts elements of

type t1 and returns a final result of type t2. The method for combining ele-

ments used by the gatherer is the same as the one used by the collector.
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[Function]next-out gatherer item

Given a gatherer and a value, next-out enters the value into the gatherer.

[Function]result-of gatherer

result-of retrieves the net result from a gatherer. result-of can be applied
at any time. However, it is an error to apply result-of twice to the same

gatherer or to apply next-out to a gatherer once result-of has been applied.

(let ((g (gatherer #--’collect-sum)))

(dolist (i ’(1 2 3 4))

(next-out g i)

(if (evenp i) (next-out g (* 10 i))))

(result-of g))

⇒ 70

[Macro]gathering ( {(var fn)}∗ ) { form}∗

The first subform must be a list of pairs. The first element of each pair, var,

must be a variable name. The second element of each pair, fn, must be a

form that when wrapped in (function ...) is acceptable as an argument
to gatherer. Each symbol is bound to a gatherer constructed from the cor-

responding collector. The body (consisting of the forms) is evaluated in the

scope of these bindings. When this evaluation is complete, gathering re-

turns the result-of each gatherer. If there are n pairs in the binding list,
gathering returns n values. For example:

(defun examp (data)

(gathering ((x collect) (y collect-sum))

(iterate ((i (scan data)))

(case (first i)

(:slot (next-out x (second i)))

(:part (dolist (j (second i)) (next-out x j))))

(next-out y (third i)))))

(examp ’((:slot a 10) (:part (c d) 40))) ⇒ (a c d) and 50

As a further illustration of gatherers, consider the following definition for a

simplified version of gathering that handles only one binding pair.
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(defmacro simple-gathering (((var collector)) &body body)

‘(let ((,var (gatherer (function ,collector))))

,@body

(result-of ,var)))

The full capabilities of gathering can be supported in much the same way.

B.4. Discussion

The idea of generators and gatherers was first proposed by Pavel Curtis. A

key aspect of his proposal was the realization that generators and gatherers

can be implemented simply and elegantly as closures and that these closures
can be compiled very efficiently if certain conditions are met.

First, the compiler must support an optimization Curtis calls “let eversion”

in addition to the optimization methods presented in [45]. If a closure is

created and used entirely within a limited lexical scope, the scopes of any

bound variables nested in the closure can be enlarged (everted) to enclose all
the uses of the closure. This allows the variables to be allocated on the stack

rather than the heap.

Second, for a generator/gatherer closure to be compiled efficiently, it must

be possible to determine at compile time exactly what closure is involved and
exactly what the scope of use of the closure is. There are several aspects to

this. The expression creating the generator/gatherer cannot refer to a free

series variable. The generator/gatherer must be stored in a local variable.

This variable must be used only in calls of next-in, next-out, and result-

of, and not inside a closure. In particular the generator/gatherer cannot be

stored in a data structure, stored in a special variable, or returned as a result

value.

All of the examples above satisfy these restrictions. For instance, once the

uses of gathering and iterate have been optimized, the body of examp is as
efficient as any loop performing the same computation.

The implementation discussed in [52] includes a portable Common Lisp

implementation of generators and gatherers. Although the implementation

does not support optimizations of the kind discussed in [45], it fully optimizes
uses of gathering.
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Backquote

Here is the code for an implementation of backquote syntax (see sec-

tion 22.1.3) that I have found quite useful in explaining to myself the be-

havior of nested backquotes. It implements the formal rules for backquote

processing and optionally applies a code simplifier to the result. One must
be very careful in choosing the simplification rules; the rules given here work,

but some Common Lisp implementations have run into trouble at one time or

another by using a simplification rule that does not work in all cases. Code

transformations that are plausible when single forms are involved are likely

to fail in the presence of splicing.

At the end of this appendix are some samples of nested backquote syntax

with commentary.

;;; Common Lisp backquote implementation, written in Common Lisp.

;;; Author: Guy L. Steele Jr. Date: 27 December 1985

;;; Tested under Symbolics Common Lisp and Lucid Common Lisp.

;;; This software is in the public domain.

;;; $ is pseudo-backquote and % is pseudo-comma. This makes it

;;; possible to test this code without interfering with normal

;;; Common Lisp syntax.

;;; The following are unique tokens used during processing.

;;; They need not be symbols; they need not even be atoms.

(defvar *comma* (make-symbol "COMMA"))

(defvar *comma-atsign* (make-symbol "COMMA-ATSIGN"))

(defvar *comma-dot* (make-symbol "COMMA-DOT"))

(defvar *bq-list* (make-symbol "BQ-LIST"))

(defvar *bq-append* (make-symbol "BQ-APPEND"))

(defvar *bq-list** (make-symbol "BQ-LIST*"))

1040
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(defvar *bq-nconc* (make-symbol "BQ-NCONC"))

(defvar *bq-clobberable* (make-symbol "BQ-CLOBBERABLE"))

(defvar *bq-quote* (make-symbol "BQ-QUOTE"))

(defvar *bq-quote-nil* (list *bq-quote* nil))

;;; Reader macro characters:

;;; $foo is read in as (BACKQUOTE foo)

;;; %foo is read in as (#--:COMMA foo)

;;; %@foo is read in as (#--:COMMA-ATSIGN foo)

;;; %.foo is read in as (#--:COMMA-DOT foo)

;;; where #--:COMMA is the value of the variable *COMMA*, etc.

;;; BACKQUOTE is an ordinary macro (not a read-macro) that

;;; processes the expression foo, looking for occurrences of

;;; #--:COMMA, #--:COMMA-ATSIGN, and #--:COMMA-DOT. It constructs code

;;; in strict accordance with the rules on pages 349-350 of

;;; the first edition (pages 528-529 of this second edition).

;;; It then optionally applies a code simplifier.

(set-macro-character #--\$

#--’(lambda (stream char)

(declare (ignore char))

(list ’backquote (read stream t nil t))))

(set-macro-character #--\%

#--’(lambda (stream char)

(declare (ignore char))

(case (peek-char nil stream t nil t)

(#--\@ (read-char stream t nil t)

(list *comma-atsign* (read stream t nil t)))

(#--\. (read-char stream t nil t)

(list *comma-dot* (read stream t nil t)))

(otherwise (list *comma* (read stream t nil t))))))

;;; If the value of *BQ-SIMPLIFY* is non-NIL, then BACKQUOTE

;;; processing applies the code simplifier. If the value is NIL,

;;; then the code resulting from BACKQUOTE is exactly that

;;; specified by the official rules.

(defparameter *bq-simplify* t)
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(defmacro backquote (x)

(bq-completely-process x))

;;; Backquote processing proceeds in three stages:

;;;

;;; (1) BQ-PROCESS applies the rules to remove occurrences of

;;; #--:COMMA, #--:COMMA-ATSIGN, and #--:COMMA-DOT corresponding to

;;; this level of BACKQUOTE. (It also causes embedded calls to

;;; BACKQUOTE to be expanded so that nesting is properly handled.)

;;; Code is produced that is expressed in terms of functions

;;; #--:BQ-LIST, #--:BQ-APPEND, and #--:BQ-CLOBBERABLE. This is done

;;; so that the simplifier will simplify only list construction

;;; functions actually generated by BACKQUOTE and will not involve

;;; any user code in the simplification. #--:BQ-LIST means LIST,

;;; #--:BQ-APPEND means APPEND, and #--:BQ-CLOBBERABLE means IDENTITY

;;; but indicates places where "%." was used and where NCONC may

;;; therefore be introduced by the simplifier for efficiency.

;;;

;;; (2) BQ-SIMPLIFY, if used, rewrites the code produced by

;;; BQ-PROCESS to produce equivalent but faster code. The

;;; additional functions #--:BQ-LIST* and #--:BQ-NCONC may be

;;; introduced into the code.

;;;

;;; (3) BQ-REMOVE-TOKENS goes through the code and replaces

;;; #--:BQ-LIST with LIST, #--:BQ-APPEND with APPEND, and so on.

;;; #--:BQ-CLOBBERABLE is simply eliminated (a call to it being

;;; replaced by its argument). #--:BQ-LIST* is replaced by either

;;; LIST* or CONS (the latter is used in the two-argument case,

;;; purely to make the resulting code a tad more readable).

(defun bq-completely-process (x)

(let ((raw-result (bq-process x)))

(bq-remove-tokens (if *bq-simplify*

(bq-simplify raw-result)

raw-result))))

(defun bq-process (x)

(cond ((atom x)

(list *bq-quote* x))

((eq (car x) ’backquote)

(bq-process (bq-completely-process (cadr x))))
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((eq (car x) *comma*) (cadr x))

((eq (car x) *comma-atsign*)

(error ",@~S after ‘" (cadr x)))

((eq (car x) *comma-dot*)

(error ",.~S after ‘" (cadr x)))

(t (do ((p x (cdr p))

(q ’() (cons (bracket (car p)) q)))

((atom p)

(cons *bq-append*

(nreconc q (list (list *bq-quote* p)))))

(when (eq (car p) *comma*)

(unless (null (cddr p)) (error "Malformed ,~S" p))

(return (cons *bq-append*

(nreconc q (list (cadr p))))))

(when (eq (car p) *comma-atsign*)

(error "Dotted ,@~S" p))

(when (eq (car p) *comma-dot*)

(error "Dotted ,.~S" p))))))

;;; This implements the bracket operator of the formal rules.

(defun bracket (x)

(cond ((atom x)

(list *bq-list* (bq-process x)))

((eq (car x) *comma*)

(list *bq-list* (cadr x)))

((eq (car x) *comma-atsign*)

(cadr x))

((eq (car x) *comma-dot*)

(list *bq-clobberable* (cadr x)))

(t (list *bq-list* (bq-process x)))))

;;; This auxiliary function is like MAPCAR but has two extra

;;; purposes: (1) it handles dotted lists; (2) it tries to make

;;; the result share with the argument x as much as possible.

(defun maptree (fn x)

(if (atom x)

(funcall fn x)

(let ((a (funcall fn (car x)))

(d (maptree fn (cdr x))))
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(if (and (eql a (car x)) (eql d (cdr x)))

x

(cons a d)))))

;;; This predicate is true of a form that when read looked

;;; like %@foo or %.foo.

(defun bq-splicing-frob (x)

(and (consp x)

(or (eq (car x) *comma-atsign*)

(eq (car x) *comma-dot*))))

;;; This predicate is true of a form that when read

;;; looked like %@foo or %.foo or just plain %foo.

(defun bq-frob (x)

(and (consp x)

(or (eq (car x) *comma*)

(eq (car x) *comma-atsign*)

(eq (car x) *comma-dot*))))

;;; The simplifier essentially looks for calls to #--:BQ-APPEND and

;;; tries to simplify them. The arguments to #--:BQ-APPEND are

;;; processed from right to left, building up a replacement form.

;;; At each step a number of special cases are handled that,

;;; loosely speaking, look like this:

;;;

;;; (APPEND (LIST a b c) foo) UU> (LIST* a b c foo)

;;; provided a, b, c are not splicing frobs

;;; (APPEND (LIST* a b c) foo) UU> (LIST* a b (APPEND c foo))

;;; provided a, b, c are not splicing frobs

;;; (APPEND (QUOTE (x)) foo) UU> (LIST* (QUOTE x) foo)

;;; (APPEND (CLOBBERABLE x) foo) UU> (NCONC x foo)

(defun bq-simplify (x)

(if (atom x)

x

(let ((x (if (eq (car x) *bq-quote*)

x

(maptree #--’bq-simplify x))))
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(if (not (eq (car x) *bq-append*))

x

(bq-simplify-args x)))))

(defun bq-simplify-args (x)

(do ((args (reverse (cdr x)) (cdr args))

(result

nil

(cond ((atom (car args))

(bq-attach-append *bq-append* (car args) result))

((and (eq (caar args) *bq-list*)

(notany #--’bq-splicing-frob (cdar args)))

(bq-attach-conses (cdar args) result))

((and (eq (caar args) *bq-list**)

(notany #--’bq-splicing-frob (cdar args)))

(bq-attach-conses

(reverse (cdr (reverse (cdar args))))

(bq-attach-append *bq-append*

(car (last (car args)))

result)))

((and (eq (caar args) *bq-quote*)

(consp (cadar args))

(not (bq-frob (cadar args)))

(null (cddar args)))

(bq-attach-conses (list (list *bq-quote*

(caadar args)))

result))

((eq (caar args) *bq-clobberable*)

(bq-attach-append *bq-nconc* (cadar args) result))

(t (bq-attach-append *bq-append*

(car args)

result)))))

((null args) result)))

(defun null-or-quoted (x)

(or (null x) (and (consp x) (eq (car x) *bq-quote*))))

;;; When BQ-ATTACH-APPEND is called, the OP should be #--:BQ-APPEND

;;; or #--:BQ-NCONC. This produces a form (op item result) but

;;; some simplifications are done on the fly:

;;;
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;;; (op ’(a b c) ’(d e f g)) UU> ’(a b c d e f g)

;;; (op item ’nil) UU> item, provided item is not a splicable frob

;;; (op item ’nil) UU> (op item), if item is a splicable frob

;;; (op item (op a b c)) UU> (op item a b c)

(defun bq-attach-append (op item result)

(cond ((and (null-or-quoted item) (null-or-quoted result))

(list *bq-quote* (append (cadr item) (cadr result))))

((or (null result) (equal result *bq-quote-nil*))

(if (bq-splicing-frob item) (list op item) item))

((and (consp result) (eq (car result) op))

(list* (car result) item (cdr result)))

(t (list op item result))))

;;; The effect of BQ-ATTACH-CONSES is to produce a form as if by

;;; ‘(LIST* ,@items ,result) but some simplifications are done

;;; on the fly.

;;;

;;; (LIST* ’a ’b ’c ’d) UU> ’(a b c . d)

;;; (LIST* a b c ’nil) UU> (LIST a b c)

;;; (LIST* a b c (LIST* d e f g)) UU> (LIST* a b c d e f g)

;;; (LIST* a b c (LIST d e f g)) UU> (LIST a b c d e f g)

(defun bq-attach-conses (items result)

(cond ((and (every #--’null-or-quoted items)

(null-or-quoted result))

(list *bq-quote*

(append (mapcar #--’cadr items) (cadr result))))

((or (null result) (equal result *bq-quote-nil*))

(cons *bq-list* items))

((and (consp result)

(or (eq (car result) *bq-list*)

(eq (car result) *bq-list**)))

(cons (car result) (append items (cdr result))))

(t (cons *bq-list** (append items (list result))))))

;;; Removes funny tokens and changes (#--:BQ-LIST* a b) into

;;; (CONS a b) instead of (LIST* a b), purely for readability.

(defun bq-remove-tokens (x)

(cond ((eq x *bq-list*) ’list)

((eq x *bq-append*) ’append)
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((eq x *bq-nconc*) ’nconc)

((eq x *bq-list**) ’list*)

((eq x *bq-quote*) ’quote)

((atom x) x)

((eq (car x) *bq-clobberable*)

(bq-remove-tokens (cadr x)))

((and (eq (car x) *bq-list**)

(consp (cddr x))

(null (cdddr x)))

(cons ’cons (maptree #--’bq-remove-tokens (cdr x))))

(t (maptree #--’bq-remove-tokens x))))

Suppose that we first make the following definitions:

(setq q ’(r s))

(defun r (x) (reduce #--’* x))

(setq r ’(3 5))

(setq s ’(4 6))

Without simplification, the notation $$(%%q) (which stands for ‘‘(,,q))

is read as the expression

(APPEND (LIST ’APPEND) (LIST (APPEND (LIST ’LIST) (LIST Q))))

The value of this expression is

(APPEND (LIST (R S)))

and the value of this value is (24). We conclude that the net effect of twice-

evaluating ‘‘(,,q) is to take the value 24 of the value (r s) of q and plug

it into the template ( ) to produce (24).

With simplification, the notation $$(%%q) is read as the expression

(LIST ’LIST Q)

The value of this expression is

(LIST (R S))

and the value of this value is (24). Thus the two ways of reading $$(%%q)

do not produce the same expression—this we expected—but the values of the

two ways are different as well. Only the values of the values are the same. In

general, Common Lisp guarantees the result of an expression with backquotes
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nested to depth k only after k successive evaluations have been performed; the

results after fewer than k evaluations are implementation-dependent.

(Note that in the expression ‘(foo ,(process ‘(bar ,x))) the back-

quotes are not doubly nested. The inner backquoted expression occurs within

the textual scope of a comma belonging to the outer backquote. The correct
way to determine the backquote nesting level of any subexpression is to start

a count at zero and proceed up the S-expression tree, adding one for each

backquote and subtracting one for each comma. This is similar to the rule for

determining nesting level with respect to parentheses by scanning a character
string linearly, adding or subtracting one as parentheses are passed.)

It is convenient to extend the “≡” notation to handle multiple evaluation:

x ≡≡ y means that the expressions x and y may have different results but

they have the same results when twice evaluated. Similarly, x ≡≡≡ y means

that the values of the values of the values of x and y are the same, and so on.
We can illustrate the differences between non-splicing and splicing back-

quote inclusions quite concisely:

$$(%%q) ≡
(APPEND (LIST ’APPEND) (LIST (APPEND (LIST ’LIST) (LIST Q))))

≡≡ (LIST ’LIST Q) ⇒ (LIST (R S)) ⇒ (24)

$$(%@%q) ≡
(APPEND (LIST ’APPEND) (LIST Q))

≡≡ Q ⇒ (R S) ⇒ 24

$$(%%@q) ≡
(APPEND (LIST ’APPEND) (LIST (APPEND (LIST ’LIST) Q)))

≡≡ (CONS ’LIST Q) ⇒ (LIST R S) ⇒ ((3 5) (4 6))

$$(%@%@q) ≡
(APPEND (LIST ’APPEND) Q)

≡≡ (CONS ’APPEND Q) ⇒ (APPEND R S) ⇒ (3 5 4 6)

In each case I have shown both the unsimplified and simplified forms and then

traced the intermediate evaluations of the simplified form. (Actually, the

unsimplified forms do contain one simplification without which they would

be unreadable: the nil that terminates each list has been systematically
suppressed, so that one sees (append x y) rather than (append x y ’nil).)

The following driver function is useful for tracing the behavior of nested

backquote syntax through multiple evaluations. The argument ls is a list of

strings; each string will be processed by the reader (read-from-string). The

argument n is the number of evaluations desired.
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(defun try (ls &optional (n 0))

(dolist (x ls)

(format t "~&~A"

(substitute #--\‘ #--\$ (substitute #--\, #--\% x)))

(do ((form (macroexpand (read-from-string x)) (eval form))

(str " UU " "~% UU> ")

(j 0 (+ j 1)))

((>UU j n)

(format t str)

(write form :pretty t))

(format t str)

(write form :pretty t)))

(format t "~&"))

This driver routine makes it easdy to explore a large number of cases sys-
tematically. Here is a list of examples that illustrate not only the differences

between , and ,@ but also their interaction with ’.

(setq fools2 ’(

"$$(foo %%p)"

"$$(foo %%@q)"

"$$(foo %’%r)"

"$$(foo %’%@s)"

"$$(foo %@%p)"

"$$(foo %@%@q)"

"$$(foo %@’%r)"

"$$(foo %@’%@s)"

))

Consider this set of sample values:

(setq p ’(union x y))

(setq q ’((union x y) (list ’sqrt 9)))

(setq r ’(union x y))

(setq s ’((union x y)))

Here is what happened when I executed (try fools2 2) with a non-nil

value for the variable *bq-simplify* (to see simplified forms). I have inter-

polated some remarks.
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‘‘(foo ,,p) UU (LIST ’LIST ’’FOO P)

UU> (LIST ’FOO (UNION X Y))

UU> (FOO (A B C))

So ,,p means “the value of p is a form; use the value of the value of p.”

‘‘(foo ,,@q) UU (LIST* ’LIST ’’FOO Q)

UU> (LIST ’FOO (UNION X Y) (LIST ’SQRT 9))

UU> (FOO (A B C) (SQRT 9))

So ,,@q means “the value of q is a list of forms; splice the list of values of the

elements of the value of q.”

‘‘(foo ,’,r) UU (LIST ’LIST ’’FOO (LIST ’QUOTE R))

UU> (LIST ’FOO ’(UNION X Y))

UU> (FOO (UNION X Y))

So ,’,r means “the value of r may be any object; use the value of r that

is available at the time of first evaluation, that is, when the outer backquote

is evaluated.” (To use the value of r that is available at the time of second

evaluation, that is, when the inner backquote is evaluated, just use ,r.)

‘‘(foo ,’,@s) UU (LIST ’LIST ’’FOO (CONS ’QUOTE S))

UU> (LIST ’FOO ’(UNION X Y))

UU> (FOO (UNION X Y))

So ,’,@s means “the value of s must be a singleton list of any object; use the
element of the value of s that is available at the time of first evaluation, that

is, when the outer backquote is evaluated.” Note that s must be a singleton

list because it will be spliced into a form (quote ), and the quote special form

requires exactly one subform to appear; this is generally true of the sequence

’,@. (To use the value of s that is available at the time of second evaluation,
that is, when the inner backquote is evaluated, just use ,@s,in which case the

list s is not restricted to be singleton, or ,(car s).)

‘‘(foo ,@,p) UU (LIST ’CONS ’’FOO P)

UU> (CONS ’FOO (UNION X Y))

UU> (FOO A B C)

So ,@,p means “the value of p is a form; splice in the value of the value of p.”

‘‘(foo ,@,@q) UU (LIST ’CONS ’’FOO (CONS ’APPEND Q))

UU> (CONS ’FOO (APPEND (UNION X Y) (LIST ’SQRT 9)))

UU> (FOO A B C SQRT 9)
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So ,@,@q means “the value of q is a list of forms; splice each of the values of

the elements of the value of q, so that many splicings occur.”

‘‘(foo ,@’,r) UU (LIST ’CONS ’’FOO (LIST ’QUOTE R))

UU> (CONS ’FOO ’(UNION X Y))

UU> (FOO UNION X Y)

So ,@’,r means “the value of r must be a list; splice in the value of r that
is available at the time of first evaluation, that is, when the outer backquote

is evaluated.” (To splice the value of r that is available at the time of second

evaluation, that is, when the inner backquote is evaluated, just use ,@r.)

‘‘(foo ,@’,@s) UU (LIST ’CONS ’’FOO (CONS ’QUOTE S))

UU> (CONS ’FOO ’(UNION X Y))

UU> (FOO UNION X Y)

So ,@’,@s means “the value of s must be a singleton list whose element is

a list; splice in the list that is the element of the value of s that is available

at the time of first evaluation, that is, when the outer backquote is evalu-

ated.” (To splice the element of the value of s that is available at the time

of second evaluation, that is, when the inner backquote is evaluated, just use
,@(car s).)

I leave it to the reader to explore the possibilities of triply nested back-

quotes.

(setq fools3 ’(

"$$$(foo %%%p)" "$$$(foo %%%@q)"

"$$$(foo %%’%r)" "$$$(foo %%’%@s)"

"$$$(foo %%@%p)" "$$$(foo %%@%@q)"

"$$$(foo %%@’%r)" "$$$(foo %%@’%@s)"

"$$$(foo %’%%p)" "$$$(foo %’%%@q)"

"$$$(foo %’%’%r)" "$$$(foo %’%’%@s)"

"$$$(foo %’%@%p)" "$$$(foo %’%@%@q)"

"$$$(foo %’%@’%r)" "$$$(foo %’%@’%@s)"

"$$$(foo %@%%p)" "$$$(foo %@%%@q)"

"$$$(foo %@%’%r)" "$$$(foo %@%’%@s)"

"$$$(foo %@%@%p)" "$$$(foo %@%@%@q)"

"$$$(foo %@%@’%r)" "$$$(foo %@%@’%@s)"

"$$$(foo %@’%%p)" "$$$(foo %@’%%@q)"

"$$$(foo %@’%’%r)" "$$$(foo %@’%’%@s)"
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"$$$(foo %@’%@%p)" "$$$(foo %@’%@%@q)"

"$$$(foo %@’%@’%r)" "$$$(foo %@’%@’%@s)"

))

It is a pleasant exercise to construct values for p, q, r, and s that will allow

execution of (try fools3 3) without error.
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Index of Generic Functions

Index only generic functions, not primary methods (which are redundant—
there is a generic function for every group of primary methods).
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Don’t have a separate index for types or classes.
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Colophon

Camera-ready copy for this book was created by the author (using TEX, LaTEX,
and TEX macros written by the author), proofed on an Apple LaserWriter II,

and printed on a Linotron 300 at Advanced Computer Graphics. The text

of the first edition was converted from Scribe format to TEX format by a

throwaway program written in Common Lisp. The diagrams in chapter 12

were generated automatically as PostScript code (by a program written in
Common Lisp) and integrated into the text by Textures, an implementation

of TEX by Blue Sky Research for the Apple Macintosh computer.

The body type is 10-point Times Roman. Chapter titles are in ITC Eras

Demi; running heads and chapter subtitles are in ITC Eras Book. The
monospace typeface used for program code in both displays and running text

is 8.5-point Letter Gothic Bold, somewhat modified by the author through

TEX macros for improved legibility. The accent grave (‘), accent acute(’),

circumflex ( )̂, and tilde (~) characters are in 10-point Letter Gothic Bold

and adjusted vertically to match the height of the 8.5-point characters. The
hyphen (-) was replaced by an en dash (-). The equals sign (=) was replaced

by a construction of two em dashes (UU), one raised and one lowered, the better

to match the other relational characters. The sharp sign (#) is overstruck with

two hyphens, one raised and one lowered, to eliminate the vertical gap (#--).
Special mathematical characters such as square-root signs are in Computer

Modern Math. The typefaces used in this book were digitized by Adobe Sys-

tems Incorporated, except for Computer Modern Math, which was designed

by Donald E. Knuth.
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